

A and DA tracking in NuFact muon chain - status -

F. Méot CEA & IN2P3 LPSC, Grenoble

Contents	
1 Muon front end	2
2 Acceleration, US-Study2a FFAG optics	4
3 Acceleration, NuFact-J optics	9
4 Acceleration, RAL isochronous FFAG	11
5 Muon storage ring, triangle	15
6 Muon storage ring, bowtie	17
7 Conclusions	19
8 Bibliography	20

1 Muon front end

In the 2002-2004 period a muon front end has been studied at CERN, based on a quadrupole funnelling channel (in view of a 4-target system, aimed at decreasing the power on each target), and on a quadrupole collect channel. Transmission of π/μ beam over the 32 meter long structure has been optimized.

Transmission through a 30 m long purely solenoid channel with optimized field, has been computed for comparison.

Optical functions and beam centroid orbit in funnel, from horn exit (s = 0) to entrance of collect channel (s = 10 m).

Optimization of transmission :

- counting through transverse ellipses (π or 4π , geometrical) and longitudinal ellipses (0.2 2 eV.s) are maximized,
- fit variables are ellipse shape and positionning, and optical parameters (magnetic fields, etc.).
- apertures are fixed, 40 cm in solenoid, 40 cm in quadrupole channel, 80 cm in funnel.

Full solenoid channel, 30 m long.

IDS NuFact meeting, Jan. 16-17, 2008, RAL

2 Acceleration, US-Study2a FFAG optics

DA in $10 \rightarrow 20$ GeV NuFact-J scaling FFAG rings has been tracked. Cells of concern are shown below. All characteristics accounted for in these simulations are those given on web ISS-NuFact webpage.

5-10 GeV

0.3

10-20 GeV

0.3

5-10 GeV

10-20 GeV

The 3π cm beam, inscribed in horizontal and vertical stability limits.

Acceleration of a 3 π cm rad and $\epsilon_l = 0.05 \pi$ eV.s bunch :

100% transmission is observed in both rings (no decay).

3 Acceleration, NuFact-J optics

DA in $10 \rightarrow 20$ GeV NuFact-J scaling FFAG rings has been tracked. Magnet of concern is shown below. All characteristics accounted for in these simulations are NuFact-J Report ones, also available on web ISS-NuFact webpage.

120 cells, k=280, R=200 m, 6 T in dipole

Type of magnet considered in this DA study.

Typical field on closed orbits, in mid-plane.

Off mid-plane field behaves ok...

Tunes on DAs (left) at 10, 15 and 20 GeV, and horizontal DAs (pure H motion).

Horizontal motion induced (left), for a 10 GeV particle launched on $z_0 = 30$ cm (right). Donuts due to proximity of $Q_x = 2Q_z$ are stable, an indication of symplectic behavior.

Transverse normalized emittances $\epsilon_{N,x,z}=3~\pi$ cm rad within the stability limits at 10 GeV.

$10 \rightarrow 20 \text{ GeV transmission}$

- taking $\epsilon_x = \epsilon_z = 3 \pi \text{cm}$, norm., $\epsilon_l / \pi = 0.05$ eV.s (by far too small, needs be re-visited) - we get 100% efficiency (regardless of decay) :

Initial distributions in $\epsilon_{N,x,z} = 3 \pi$ cm rad and $\epsilon_l = 0.05 \pi$ eV s.

Muon acceleration in stationary bucket.

4 Acceleration, RAL isochronous FFAG

DA in $8 \rightarrow 20$ GeV isochronous FFAG has been tracked.

Machine parameters are the following :

123 cells, circumference 1255 m, acceleration in 16 turns using 201 MHz, 18.3 MV RF, 1 cavity/3 cells.

Time of flight (excursion about 1/10 that in linear FFAG optics).

Horizontal stability limits, 8, 14 and 20 GeV :

Vertical stability limits, 8, 14 and 20 GeV :

Comparing to 3π cm emittance (red ellipse) :

Muon Transmission :

Transmission rate as a function of the number of passages through the cavities. Lossless transmission up to 17 GeV, for $\epsilon_{N,x} \leq 2 \ 10^{-3} \ \pi \ \text{cm}$, $\epsilon_{N,y} \leq 0.5 \ 10^{-4} \ \pi \ \text{cm}$.

Horizontal and vertical beam envelopes and histograms of the muons losses.

(regular systematic resonances up to the 6th order shown).

Notes :

(i) case of the 11-20 MeV electron model

Transmission rate as a function of the number of passages through the cavities.

Beam trajectory in the tune diagram (regular systematic resonances up to the 6th order shown).

(ii) optics with insertion was also proposed, lower Qz and Qx excursions, still needs be tracked

5 Muon storage ring, triangle

Table 1 : Muon storage ring parameters.The right column gives, where worth, the stepwise ray-tracing data.

Residual H closed orbit, chromaticity corrected.

Residual V closed orbit, chromaticity corrected.

Sample multiturn tracking, arbitrary particles with various H, V and $\delta p/p$ conditions. It shows the good behavior of the numerical integration (no evidence for prohibitive non-symplectic behavior).

Horizontal (top) and vertical (bottom) admittance, for various sets of errors. The rms matching ellipses correspond to more than 3π cm norm., total.

6 Muon storage ring, bowtie

Ray-tracing data files have been installed.

Muon storage ring parameters.

					Matri	ix		
Energy			(GeV)		20			
Circumference			(m)		1608.8			
Requested transverse admittance		e (7	τ cm, norm)	6			
Requested $\delta p/p$ admittance			(%)		±1			
Total tunes ν_x/ν_z					14.3749 / 12.7882			
Total chromaticities ξ_x/ξ_z					-17.7 / -17.7			
Phase adavnces, H/V :			(2π)					
Arc cell					0.2 / 0.2			
production straight					0.69963 / 0.69963			
sol./arc match section				0	0.252525 / 0.205128			
tuning straight				-	1.98279 / 1.	284238		
Matching conditions :	eta_x	α_x	eta_x	α_z	D_x	D'_x		
collimation st centre	8.86984	0	21.08630	0	0	0		
arc input/output	3.78758	0	12.67568	0	0.837046	0		
production st waists	94.21980	0	94.21980	0	0	0		

Residual geometrical closed orbits. The (negligile) vertical one is due to residual coupling in the silenoid.

Horizontal (top) and vertical (bottom) beam envelopes ($\epsilon_{x,z} = 1$) in the bowtie ring, from ray-tracing.

Ready for DA tracking. Ready for spin tracking too.

7 Conclusions

- Tools are there
- Defect studies can be persued
- A lot is ready for s2e tracking
- It might be a good idea to have a kind of reference magnet design, 3D, including multipole defects and fringe fields.
- Planning to take a PhD student in the frame of EURONu program to work on IDS-NuFact topics

8 Bibliography

Muon front end and acceleration : Franck Lemuet, PhD thesis, CEA & CERN, April 2007. Triangle storage ring : F. Mot, G. Rees, Report CEA DAPNIA-06-04 / IN2P3 LPSC 06-38 Bow-tie storage ring : F. Mot, Note LPSC 06-127(NuFact)