IDS Acceleration Systems Work Plan

J. Scott Berg Brookhaven National Laboratory IDS Plenary Meeting 16 January 2008

IDS Work Plan

This talk: only work to finalize baseline design
 Avoid discussion of potential improvements
 Baseline design needed as a point of comparison

Proton Driver

- ONO specific proton driver is part of the IDS Proof of principle meeting IDS requirements • Existing designs either Don't meet specs □ Systems not demonstrated (e.g., NFFAG) More detailed designs of proton driver scenarios
- $\odot\,\text{Demonstrate}$ that designs meet IDS specs

Target

Analyze MERIT data (Kirk)

- Acceptable bunch spacing especially important
- Repetition rate

Engineering of target infrastructure

Capture, Phase Rotation, Bunching, Cooling

- Convert ICOOL files into readable format (Fernow)
- Start engineering and costing work
- Determine what level of magnetic fields acceptable on cavities (MUCOOL)

Re-design systems if we need lower fields

Acceleration

- Design of NCRF acceleration just after cooling
 Design of SCRF linac (Bogacz)
- Design of RLAs (Bogacz)
 - Linear design, chromatic correction
 - Physical layout: switchyard, arc crossings
- Design of FFAG (Berg)
- Transfer lines, injection/extraction, etc.
- Tracking (Méot)

Storage Ring

- OUpdate design to meet requirements?
- O Tracking (Méot)
 - Compute neutrino flux
 - Pass same distribution through all systems

