Near Detector at a Neutrino Factory

Neutrino Factory International Design Study Meeting 17 January 2008 Paul Soler

Beam Diagnostics and Near Detector aims

- Beam diagnostics (needed for flux measurement)
 - Number of muon decays
 - Measurement of divergence
 - Measurement of Muon polarization
- Near detector measurements needed for neutrino oscillation systematics:
 - Flux control for the long baseline search.
 - Measurement of charm background
 - Cross-section measurements: DIS, QES, RES scattering
- Other near detector neutrino physics (electroweak and QCD):
 - $sin^2\theta_W \delta sin^2\theta_W \sim 0.0001$
 - Unpolarised Parton Distribution Functions, nuclear effects
 - Polarised Parton Distribution Functions polarised target
 - Lambda (Λ) polarisation
 - $\alpha_{\rm S}$ from $xF_3 \delta\alpha_{\rm S} \sim 0.003$
 - Charm production: $|V_{cd}|$ and $|V_{cs}|$, CP violation from D^0/D^0 mixing
 - Beyond SM searches
 - Neutrino Factory International Design Study Meeting

- ...

Beam Diagnostics

Beam Current Transformer (BCT) to be included at entrance of straight section: large diameter, with accuracy ~10^{-3.}

Flux Measurement at Near Detector

Best possibility: Inverse Muon Decay: scattering off electrons in the near detector

$$V_{\mu} + e^- \rightarrow V_e + \mu^-$$

Known cross sections in Standard Model

$$\sigma = \frac{G_F^2}{\pi} \frac{\left(s - m_{\mu}^2\right)^2}{s} \qquad \sigma = \frac{2G_F^2}{\pi} \frac{\left(s - m_{\mu}^2\right)^2 \left(E_e E_{\mu} + \frac{1}{3} E_{\nu I} E_{\nu 2}\right)}{s^2}$$

Neutrino Factory International Design Study Meeting RAL 17 January 2008

Flux Measurement at Near Detector

Energy spectra for v_μ (green) and anti v_e (blue) for 10²¹ μ decays/year, Mass ~1 ton, 400 m long section.

$$E_{\mu} = 40 \text{ GeV}.$$

6

Near Detector used to extract Pv_ev_u

Use matrix method with Near Detector data (even if spectrum not identical in near and far detector!) to extract oscillation probability:

$$P_{V_e V_{\mu}} = M_2^{-1} M M_1 M_{nOs}^{-1}$$

□ Where: M_1 =matrix relating event rate and flux of v_e at ND M_2 =matrix relating event rate and flux of v_u at FD

M=matrix relating measured ND ν_{e} rate and FD ν_{μ} rate

 $M_{nOsc} \mbox{=} matrix \ relating \ expected \ \nu_e \ flux \ from \ ND \ to \ FD$

Method works well
 but need to extract
 syst errors of method:

Probability of oscillation determined by matrix method under "simplistic" conditions. Need to give more realism to detector and matter effects.

Charm measurement

- Motivation: measure charm cross-section to validate size of charm background in wrong-sign muon signature
- Charm cross-section and branching fractions poorly known

 Semiconductor vertex detector only viable option in high intensity environment (emulsion too slow!)

Neutrino Factory International Design Study Meeting RAL 17 January 2008

Cross section measurements

- □ Measure of cross sections in DIS, QE and RES.
- **Coherent** π
- Different nuclear targets: H₂, D₂
- Nuclear effects, nuclear shadowing, reinteractions

What is expected crosssection errors from MiniBoone, SciBoone, T2K, Minerva, before NUFACT?

At NUFACT, with modest size targets can obtain very large statistics, but is <1% error achievable?

Neutrino Factory International Design Study Meeting RAL 17 January 2008

Other physics: Parton Distribution Functions

- Unpolarised and Polarised
 Parton Distribution Functions
- \square $\alpha_{\rm S}$ from $xF_3 \delta\alpha_{\rm S} \sim 0.003$
- Sum rules: e.g. Gross-Llewelyn Smith
- - NOMAD best data
 - Neutrino factory 100 times more data

Neutrino Factory International Design Study Meeting RAL 17 January 2008

10

Near Detector Design

- Overall design of near detector(s):
 - Near Detector could be a number of specialised detectors to perform different functions (ie. lepton and flux measurement, charm measurement, PDFs, etc.) or larger General Purpose Detector

Near Detector Design

- Near Detector elements:
 - Vertex detector: Choice of Pixels; eg. Hybrid pixels, Monolithic Active Pixels (MAPS), DEPFET; or silicon strips
 - Tracker: scintillating fibres, gaseous trackers (TPC, Drift chambers, ...)
 - Other sub-detectors: PID, muon ID, calorimeter, ...
- □ Tasks:
 - Simulation of near detector and optimisation of layout: could benefit from common software framework for Far Detector
 - Flux determination with inverse muon decays, etc.
 - Analysis of charm using near detector
 - Determination of systematic error from near/far extrapolation
 - Expectation of cross-section measurements
 - Test beam activities to validate technology (eg. vertex detectors)
 - Construction of beam diagnostic prototypes
 - Other physics studies: PDFs, etc. (engage with theory community for interesting measurements)