Plans for Accelerator Working Group

J. Scott Berg Brookhaven National Laboratory IDS Plenary Meeting 16 January 2008

Accelerator Systems Goals

10²¹ decays per 10⁷ second year toward targets
25 GeV total energy muon beam
Keep the cost down

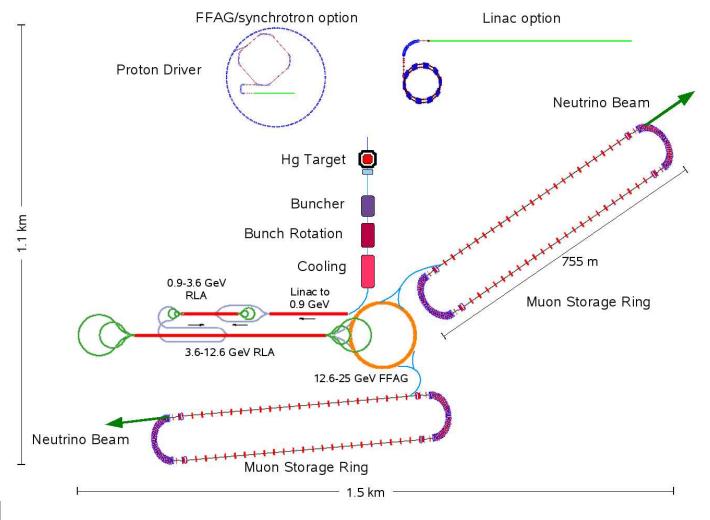
Accelerator Systems Components

- ○4 MW proton driver 4 MW
 - 2 ns bunch length
 - □50 Hz, 3 bunches
- Mercury jet target
- Capture and phase rotation: 200 MHz train
- Cooling: "maximum" transmission into 30 mm transverse, 150 mm longitudinal acceptance

Capture through cooling baseline: ICOOL file

Accelerator Systems Components

Acceleration: to 25 GeV Linac to 0.9 GeV 2 dogbone RLAs, to 3.6 and 12.6 GeV FFAG to 25 GeV


○ Two 25 GeV racetrack storage rings □ Handle both signs simultaneously □ 0.1/ γ RMS angular divergence

IDS Accelerator Systems

Work Plan

OProton driver

□ Get ≥ 1 outline design meeting specs □ Different design types to make comparison

○ Target

Analyze MERIT data
 Engineering of target infrastructure

Work Plan

Capture through cooling

Convert ICOOL files to readable format
 MUCOOL results for maximum field on cavities

Re-design systems if needed

Acceleration

Design of subsystems
 Design of transfer lines
 Tracking

Work Plan

Storage ring Redesign to current specifications Tracking Determine neutrino flux Tracking through entire system

Concerns

- Required bunch train spacing too short (40 µs total)
 - \square MERIT data: is 200 μ s acceptable? If not
 - Analyze difficulty of handling shorter time
 - Re-design proton driver for one bunch
- Injection/extraction difficult in acceleration
 - Analyze chicane injection for RLAs
 Analyze kickers for FFAGs
 If not possible, re-design acceleration layout

Alternatives/Improvements

Improved Neuffer phase rotation scheme
 Scaling FFAG for lower energy acceleration
 Solid target options

Next Steps

- Produce set of "deliverables"
- Assign names
- Attempt some sort of time scale

