

Status of the beta-beam study

Mats Lindroos on behalf of the EURISOL beta-beam task

The beta-beam options

- Low energy beta-beams
 - Nuclear physics, double beta-decay nuclear matrix elements, neutrino magnetic moments
- The medium energy beta-beams or the EURISOL beta-beam
 - Lorenz gamma approx. 100 and average neutrino energy at rest approx.
 1.5 MeV (P. Zucchelli, 2002)
- The high energy beta-beam
 - Lorenz gamma 300-500 and average neutrino energy at rest approx. 1.5 MeV
- The very high energy beta-beam
 - Lorenz gamma >1000
- The high Q-value beta-beam
 - Lorenz gamma 100-500 and average neutrino energy at rest 6-7 MeV
- The Electron capture beta-beam

Production of beta-beam isotopes

- The Isotope Separation On-Line (ISOL) method at medium energy
 - EURISOL type production, uses typically 0.1-2 GeV protons with up to 100-200 kW beam power through spallation, fission and fragmentation
- Direct production
 - Uses low energy but high intensity ion beams on solid or gas targets. Production through compound nuclei which forms with high cross section at low energies
- Direct production enhanced with a storage ring
 - Enhancing the efficiency of the direct production through recirculation and re-acceleration of primary ions which doesn't react in the first passage through the target.
 - Possible thanks to ionization cooling!

Options for production

- ISOL method at 1-2 GeV (200 kW)
 - >1 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - ⁸Li and ⁸B not studied
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - ⁸Li and ⁸B not studied
 - Studied at LLN, Soreq, WI and GANIL
- Production ring
 - 10¹⁴ (?) ⁸Li
 - >10¹³ (?) ⁸B
 - ⁶He and ¹⁸Ne not studied
 - Will be studied in the future

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is ~2x10¹³ ions/s (dc) for ~200 kW on target.

Direct production: ¹⁶O(³He,n)¹⁸Ne

Measurements at Louvain-La-Neuve (CRC) of cross section

Courtesy to Semen Mitrofanov and Marc Loislet at CRC, Belgium

- The gas target was constructed like a cell with thin entrance foils
- In experiment the target pressure and the ³He beam energy was changed

Beam energy, MeV	Target pressure, mbar (torr).	E _{loss} ,MeV
13	900 (675)	2
14.8	1200 (900)	2.4

Beta-beam team

lon

beam

Thinn MgO

target

- Production of 10¹²¹⁸Ne in a MgO target:
 - At 13 MeV, 17 mA of ³He
 - At 14.8 MeV, 13 mA of ³He
- Producing 10¹³ ¹⁸Ne could be possible with a beam power (at low energy) of 1 MW (or some 130 mA ³He beam).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.
- To be studied:

beam

- Extraction efficiency
- Optimum energy
- Cooling of target unit
- High intensity and low energy ion linac
- High intensity ion source

Water cooled target

holder and beam dump

Light RIB Production with a 40 MeV Deuteron Beam

- T.Y.Hirsh, D.Berkovits,
 M.Hass (Soreq, Weizmann
 I.)
- Studied ⁹Be(n,α)⁶He,
 ¹¹B(n,α)⁸Li and ⁹Be(n,2n)⁸Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the ⁶He production rate via the two stage targets setup is ~6.10¹³ atoms per second.

Beam cooling with ionisation losses – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

See also: Development of FFAG accelerators and their applications for intense secondary particle production, Y. Mori, NIM A562(2006)591

Critical review of the production ring concept

- Low-energy Ionization cooling of ions for Beta Beam sources – D. Neufer (To be submitted)
 - Mixing of longitudinal and horizontal motion necessary
 - Less cooling than predcited
 - Beam larger but that relaxes space charge issues
 - If collection done with separator after target, a Li curtain target with ³He and Deutron beam would be preferable
 - Separation larger in rigidity

Problems with collection device

- A large proportion of beam particles (⁶Li) will be scattered into the collection device.
 - The scattered primary beam intensity could be up to a factor of 100 larger than the RI intensity for 5-13 degree using a Rutherford scattering approximation for the scattered primary beam particles (M. Loislet, UCL)
 - The ⁸B ions are produced in a cone of 13 degree with 20 MeV ⁶Li ions with an energy of 12 MeV±4 MeV (33% !).

Radiation protection issues

- Radiation safety for staff making interventions and maintenance at the target, bunching stage, accelerators and decay ring
 - 88% of ¹⁸Ne and 75% of ⁶He ions are lost between source and injection into the Decay ring
- Safe collimation of "lost" ions during stacking
 - ~1 MJ beam energy/cycle injected, equivalent ion number to be removed, ~25 W/m average
- Magnet protection
- Dynamic vacuum
- First study (Magistris and Silari, 2002) shows that Tritium and Sodium production in the ground water around the decay ring should not be forgotten

Momentum collimation: ~5*10¹² ⁶He ions to be collimated per cycle
 Decay: ~5*10¹² ⁶Li ions to be removed per cycle per meter

- Preliminary results:
 - Manageable in low-energy part.

Decay losses

Losses during acceleration

- PS heavily activated (1 s flat bottom).
 - Collimation? New machine?
- SPS ok
- Decay ring losses:
 - Tritium and sodium production in rock is well below national limits.

Full FLUKA simulations in progress for all stages (M. Magistris and M. Silari, *Parameters of radiological interest for a beta-beam decay ring*, TIS-2003-017-RP-TN).

- Reasonable requirements for tunnel wall thickness to enable decommissioning of the tunnel and fixation of tritium and sodium.
- Heat load should be ok for superconductor.

300

FI UKA simulated losses in surrounding rock (no public health implications)

Shielding thickness for different parts of the RCS within realistic limits

StrahlSim: Losses

He-beam. Decay products tracked to the collimator and beampipe (red & black curves).

 The coils could support 60 years operation with a EURISOL type beta-beam

The EURISOL scenario

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Relativistic gamma=100/100
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS

- Opportunity to share a Mton Water Cerenkov detector with a CERN superbeam, proton decay studies and a neutrino observatory
- Achieve an annual neutrino rate of either
 - 2.9*10¹⁸ anti-neutrinos from ⁶He
 - Or 1.1 10¹⁸ neutrinos from ¹⁸Ne
- Once we have thoroughly studied the EURISOL scenario, we can "easily" extrapolate to other cases. EURISOL study could serve as a reference.

Neutrino flux from a beta-beam

EURISOL beta-beam study

- Aiming for 10¹⁸ (anti-)neutrinos per year
- It is possible that it could be increased to some10¹⁹ (anti-) neutrinos per year. However, this only be clarified by detailed and site specific studies of:
 - Production
 - Bunching
 - Radiation protection issues
 - Cooling down times for interventions
 - Tritium and Sodium production in ground water

How can we improve the beta-beam?

- Increase production, improve bunching efficiency, accelerate more than one charge state and shorten acceleration
 - Improves performance linearly
- Accumulation
 - Improves to saturation
- Improve the stacking; sacrifice duty factor, add cooling or increase longitudinal bunch size
 - Improves to saturation

For 15 effective stacking cycles, 54% of ultimate intensity is reached for ⁶He and for 20 stacking cycles 26% is reached for ¹⁸Ne

The complete "chain" must be optimized to gain from faster acceleration

- Left: Cycle without accumulation
- Right: Cycle with accumulation. Note that we always produce ions in this case!

The beta-beam in EURONU DS

- The study will focus on production issues for ⁸Li and ⁸B
 - ⁸B is highly reactive and has never been produced as on ISOL beam
 - Production ring enhanced direct production
 - Which is the best ring lattice?
 - How to collect the produced ions?
 - What are the "real" cross sections for the reactions?
- How can the accelerator chain and decay ring be adapted to ⁸Li and ⁸B
 - Magnet protection system
 - Intensity limitations

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
 - First coherent study of a beta-beam facility
- A beta-beam facility using ⁸Li and ⁸B
 - First result from Euronu DS WP
- A beta-beam facility at DESY (Hamburg) or at FNAL?
 - For DESY contact Prof. Achim Stahl, Aachen