Superbeams

Patrick Huber

CERN

IDS Plenary Meeting RAL, January 16-17, 2008

Outline

- Definition
- Setups
- Comparison
- Systematics
- Summary

Superbeams

Neutrino beam from π -decay

They are called 'super'

- beam power $\sim 1 \, \mathrm{MW}$
- detectors mass $\sim 100 \, \mathrm{kt}$
- running time of the experiment ~ 10 years
- price

Setups

- T2KK beam from JAERI, $P=4\,\mathrm{MW}$, two water Cherenkov detectors at $L=295\,\mathrm{km}$ and $L=1050\,\mathrm{km}$ with a fiducial mass of $270\,\mathrm{kt}$, off-axis
- WBB beam from FNAL, $P=1.1\,\mathrm{MW}$, one water Cherenkov detector at $L=1300\,\mathrm{km}$ with a fiducial mass of $300\,\mathrm{kt}$, on-axis
- NO ν A* beam from FNAL, $P=1.1\,\mathrm{MW}$, one liquid Argon TPC at $L=810\,\mathrm{km}$ with a fiducial mass of $100\,\mathrm{kt}$, off-axis
- SPL similar to T2HK in its physics reach, main difference beam energy and baseline.

Joint BNL-FNAL study group report reviews the US based options

Comparison

adapted from Barger, PH, Marfatia, Winter, Phys.Rev.D76:031301,2007.

- $\sin^2 2\theta_{13}$ performances are very similar
- T2KK clearly best for CPV
- WWB clearly best for mass hierarchy

Exposure

Everyone has different assumptions about

- seconds in a year
- number of years
- detector size
- beam power (or pot)

Therefore we introduce the concept of exposure

detector mass [Mt] \times target power [MW] \times running time [10⁷ s].

Exposure and systematics

On vs off-axis

On vs off-axis

At large θ_{13} any of the three setups can have the same performance as a NuFact* or β -beam.

These large values would be certainly discovered by Double Chooz, Daya Bay, T2K and NO ν A!

⇒ decision on next generation facility should wait at least for the first reactor data

^{*} pre-IDS NuFact, actual IDS 0.10 is worse

CP violation & systematics

Includes near detector! $\tilde{\sigma}_{\mu}/\tilde{\sigma}_{e}$ is the by far

 $\tilde{\sigma}_{\mu}/\tilde{\sigma}_{e}$ is the by far most important parameter

Large θ_{13} is the most difficult region

P. Huber, M. Mezzetto, T. Schwetz, arXiv:0711.2950.

Summary

Superbeams

- Exposure is the key factor money and physics
- Detector technology plays a big role
- cross section systematics crucial at large θ_{13}
- Off vs On-axis decision requires careful analysis
- Short distances (< 500 km) are disfavored
- Every strategy requires MW beams, 0.1 Mt detectors, 10 years of running

For large θ_{13} strong competition for NF.