Neutrino Oscillations: Issues→ why, how, ..., what else...

M. Lindner Max-Planck-Institute, Heidelberg

IDS meeting, CERN, March 29-30, 2007

New Physics Beyond the SM

The Standard Model

→ success of renormalizable gauge field theories

 $\begin{array}{ccc} \textbf{QED} \Rightarrow & \textbf{QCD} \Rightarrow & \textbf{SM} \\ \\ U(1)_{em} \Rightarrow & SU(3)_c \Rightarrow & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$

- Singlet with respect to all symmetries
- Renormalizability
- Anomaly free combinations of chiral fermions

 $\label{eq:main_star} \text{Many details fixed by Lagrangian:} \quad \mathcal{L} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{fermion}} + \mathcal{L}_{\text{Higgs}} + \mathcal{L}_{\text{Yukawa}}$

$$\mathcal{L}_{gauge} = -\frac{1}{2}Tr\left[G_{\mu\nu}G^{\mu\nu}\right] - \frac{1}{2}Tr\left[W_{\mu\nu}W^{\mu\nu}\right] - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} \qquad \text{(adjoint representations)}$$

$$\mathcal{L}_{fermion} = \sum_{L} \overline{L} \, i \gamma^{\mu} D_{\mu} L + \sum_{r} \overline{r} \, i \gamma^{\mu} D_{\mu} r \qquad (\text{kinetic terms of all fermions})$$

 $\mathcal{L}_{Higgs} = |D\Phi|^2 - V(\Phi^+\Phi)$ (Higgs potential \Leftrightarrow SSB)

Chiral Fermion Fields in the SM

- Left-handed guarks and leptons:
- $L = (3_c \text{ or } 1_c, 2_L, Y = ..., Q = T_{3L} + Y/2)$ • Right-handed quarks and leptons: $r = (3_c \text{ or } 1_c, 1_L, Y = ..., Q = Y/2)$

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$ L_Q = \left(\begin{array}{c} l_u \\ l_d \end{array}\right) $	3	2	1/3
r_u	3	1	4/3
r_d	3	1	-2/3
$L_L = \begin{pmatrix} l_\nu \\ l_e \end{pmatrix}$	1	2	-1
r_{ν} ???	1	1	0
r_e	1	1	-2

- SM does not contain right-handed neutrinos $r_{\nu} \equiv \nu_R$
- Right-handed neutrinos make the table more symmetric!
- Fermions: Most diverse and the least constrains

SM speciality: No explicit fermion mass term $L=mLr \leftarrow \rightarrow$ no singlet can be formed

Majorana Mass Terms

Pair of left- and right-handed fields L,R \Rightarrow

$$\mathcal{L}_m = -m_D(\overline{L}R + \overline{R}L)$$

Charge conjugation for χ -ral fields: $L_i = \mathsf{left} \Leftrightarrow R_i = \mathsf{right}$

$$R' = L^c \ ; \quad L' = R^c \qquad \Leftrightarrow \qquad L = (R')^c \ ; \quad R = (L')^c$$

2 fields and 2 charge conjugate fields:
→ 4 possible mass terms:

$$L_{m} = m_{D} \overline{LR} + m_{D} \overline{L'R'} + M_{L} \overline{LR'} + M_{R} \overline{L'R} + h.c.$$

However: M_L and M_R only allowed for Q=0 particles → neutrinos → 2 new effects: L-violation, explicit mass terms

Neutrino Mass Operators

d=4 renormalizable mass operators natural scale +> symmetry

SM with v_L only $\Rightarrow m_v = 0 \Rightarrow$ introduce $v_R = 1_L$ $v_L g_N v_R$ $v_R v_R$

seesaw mechanism (type I)

$$\mathbf{M}_{\mathbf{v}} = \mathbf{M}_{\mathbf{D}} \mathbf{M}_{\mathbf{R}}^{-1} \mathbf{M}_{\mathbf{D}}^{\mathrm{T}} \mathbf{M}_{\mathbf{h}} = \mathbf{M}_{\mathbf{R}}$$

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ \Rightarrow neutrinos are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ \Rightarrow smallness of neutrino masses $\Leftarrow \Rightarrow$ high scale of L, symmetries of m_D , M_R

More Mass Operators

Seesaw type II $m_v = M_L - m_D M_R^{-1} m_D^T$

Further extensions: → SUSY → extra dimensions → ...

In general:

- mass matrix for <u>all</u> neutrino-like fields
- every term has a natural scale symmetries
 GUT, flavour symmetry, lepton number, ...

Neutrino Masses & Mixings

Some new physics to allow for neutrino mass terms \Rightarrow

Interaction states:

= 3 electro-weak partners of e, μ, τ (LEP: Z-line shape) Active Flavour States ν_{e_f} Sterile States ν_{N_s} = N electro-weak singlets

General mass matrix $(\nu_e, \nu_\mu, \nu_\tau, \nu_{N_1}, \nu_{N_2}, ...)$

 $M_L \simeq 0$ with standard Higgs content $m_D \simeq$ mass scale of charged leptons $M_R \simeq$ embedding scale (LR, GUT, ...)

• Physical states: propagation as mass eigenstate ν_i with mass m_i \Leftrightarrow

Diagonalization:⇒ See–Saw Mechanism

Heavy sterile ν 's: $m_{heavy} \simeq M_R$ (\simeq right-handed) Light active ν 's: $m_{light} \simeq M_L - m_D^T M_R^{-1} m_D$ (\simeq left-handed)

For
$$\mathbf{m_{heavy}} \gg \mathbf{m_{light}}$$
: $\begin{pmatrix} \nu_{e_f} \\ \nu_{N_s} \end{pmatrix} = \begin{pmatrix} U_{\text{mix}}^{\text{light}} \approx 0 \\ \approx 0 & U_{\text{mix}}^{\text{heavy}} \end{pmatrix} \cdot \begin{pmatrix} \nu_i^{\text{light}} \\ \nu_j^{\text{heavy}} \end{pmatrix}$

Mass hierarchy: \Rightarrow Consider sub-space of light neutrinos $U_{\text{mix}}^{\text{light}} \simeq$ unitary

Leptonic mixing matrix in basis where charged leptons are diagonal:

$$\mathbf{U}_{\mathrm{MNS}} := \mathbf{U}_{\mathrm{mix}}^{\mathrm{light}} = \mathbf{U}_{\mathrm{Dirac}} \cdot \mathbf{diag} \left(\mathbf{e}^{\mathbf{i}\alpha_1}, \mathbf{e}^{\mathbf{i}\alpha_2}, \dots, \mathbf{e}^{\mathbf{i}\alpha_{n-1}}, \mathbf{1} \right)$$

Oscillations depend only on $U_{\rm Dirac}$:

2 Neutrinos: 1 angle + 0 phase (1 Majorana-phase; does not enter osc.) **3 Neutrinos:** 3 angles + 1 phase (θ_{12} , θ_{23} , θ_{13} , δ) (+2 further Majorana phases)

<u>Warning: This contains various untested assumptions:</u>

• $3 v_R \rightarrow N$ could be different from $3 \leftarrow \rightarrow$ flavour representation

• Rank($M_R=3$) \leftarrow more light v's \leftarrow sterile v's

• ordinary QFT ←→ CPT ←→ identical neutrino-antineutrino parameters

• d=4, ...

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Four Methods of Mass Determination

- Kinematical: Mainz 2eV → KATRIN ~0.2eV
- lepton number violation ← → 0v2β decay
 ← → Majorana nature
 Heidelberg-Moscow ~0.5eV
 - → GERDA, Cuore: ~0.1eV
- astrophysics & cosmology ~0.5eV → 0.1eV
- Oscillations →

precision measurements of Δm^2 and mixings

The Future of Oscillation Physics

<u>∆m² and θ_{ij} regions</u> → improved oscillation experiments → controlled sources & detectors

Iong baseline experiments with neutrino beams
 reactor experiments with identical near & far detector

<u>Aims</u>: → improved precision of the leading 2x2 oscillations → detection of generic 3-neutrino effects: θ₁₃, CP violation

precision neutrino physics

Future Precision with Reactor Experiments

Double Chooz and Triple Chooz

Future Precison with New Neutrino Beams

- <u>conventional beams, superbeams</u>
 → MINOS, CNGS, T2K, NOvA, T2H,...
- <u>β-beams</u>
 - \rightarrow pure ν_{e} and ν_{e} beams from radioactive decays; $\gamma \simeq 100$
- <u>neutrino factories</u>
 - clean neutrino beams from decay of stored u's

 $P(\nu_e \to \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$

 $\pm \sin \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$

+ $\cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$

+
$$\alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

correlations & degeneracies, matter effects

Sensitivity Versus Time

Leptonic CP-Violation

<u>assume:</u> $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2 \rightarrow \text{combine T2K+NOvA+reactor}$

→ bounds or measurements of leptonic CP-violation
 → leptonic CP-violation in M_R ← → baryon asymetry via leptogenesis

The Value of Future Precision Experiments

Coming improvements:

- MINOS: improved oscillation parameters
- MiniBOONE **←→** LSND
- L/E dependence of oscillations
- KATRIN
- Better $0v2\beta$ limits / signals
- • •

But why do we need precision measurements? → learn about the origin of flavour!

Learning about Flavour

Next: Smallness of θ_{13}

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} "predictions"
 - $\rightarrow \theta_{13}$ often close to experimental bounds

What if $\sin^2 2\theta_{13} < 0.01$?

→<u>is θ_{13} small or tiny?</u>

similar:

→ is θ_{23} maximal or just large?

numerical coincidence or symmetry

Further Implications of Precision

<u>Precision allows to identify / exclude:</u>

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... \longleftarrow discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?
- quantum corrections + renormalization group evolution

Provides also measurements or tests of:

- MSW effect (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity **<->** sterile neutrinos with small mixings
- neutrino decay (admixture...)
- decoherence
- NSI
- MVN, ...

→ various synergies with LHC and LFV

The larger Picture: GUTs

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa couplings for given GUT multiplet
- → ~ tension: small quark mixings ← → large leptonic mixings
- this was in fact the reason for the `prediction' of small mixing angles (SMA) ruled out by data

Mechanisms to post-dict large mixings:

- ➔ sequential dominance
- ➔ type II see-saw
- ➔ Dirac screening

→ ...

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
 flavour symmetries (finite number for limited rank)

→ symmetry not texture zeros

GUT 0 Flavour Unification

→ GUT group 0 flavour group example: SO(10) 0 SU(3)_F

- SSB of SU(3) $_{F}$ between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ->SSB
 e.g. Z2, S3, D5, A4
 - → structures in flavour space
 - ➔ compare with data

GUT 0 flavour is rather restricted

- \leftarrow small quark mixings *AND* large leptonic mixings ; quantum numbers
- \rightarrow so far only a few viable models; e.g. SO(10) 0 S4 Hagedorn, ML, Mohapatra
- → rather limited number of possibilities; phenomenological success non-trivial
- → aim: <u>distinguish models by future precision</u>

The Interplay of Topics

LHC physics **(+)** neutrino physics **(+)** LFV **(+)** astroparticle physics

3 Flavours and more

- Physics motivation: origin of flavour
 → 3flavour oscillations → precision neutrino physics
 → compare models of flavour with precise data
- Good reasons for physics beyond the SM
 ←→ 3 neutrinos? → expect effects beyond 3flavours
 → example NSIs = flavour violationg interactions from new physics ≥ TeV

$$\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{L\beta} \gamma^{\rho} \nu_{L\alpha}) (\bar{f}_L \gamma_{\rho} f_L)$$

 $\forall \epsilon G_F$ from integrating out heavy physics (like $G_F \longleftrightarrow M_W$)

$$\bullet \epsilon \simeq \frac{M_W^2}{M_{new physics}^2} \le \left(\frac{100 \text{GeV}}{1 \text{TeV}}\right)^2 = 0.01$$

NSIs interfere with Oscillations

Figure 1: (a): The golden channel oscillation process in a neutrino factory; (b) - (d): Non-standard contributions to the golden channel.

NSIs & Future Oscillation Experiments

Source	⊗ Oscillat	ion	\otimes	Detector	
- neutrino energy E - flux and spectrum - flavour composition - contamination - symmetric $\nu/\overline{\nu}$ operation	- oscillation - realistic ba - MSW mat - <mark>degenerac</mark> n - correlation	channels aselines tter profil ies 15	s le	 effective mass threshold, restricted in the standard structure particle ID (* event reconstructure backgrounds x-sections (a 	ss, material solution flavour, charge, truction,) t low E)

experiments with ≤ percent precision should be prepared
→ Modification of 3f oscillation formulae

- small event rates **>** offset in oscillation parameters
- spectral information **>** poor goodness of fit

Strategy Issues

 \otimes

Oscillation

 \otimes

Detector

- <u>3f strategies:</u>
 - best sources
 - best detector technologies
 - strategies to break degeneracies & correlations
 - → best physics potential / cost
- strategy with open boundary conditions:

Source

- most precise measurements
- spectral resolution & redundancy
- new ideas (e.g. Triple Chooz, Mössbauer v's, ...)?
- keep an eye on LHC, LFV, astroparticle

broad source and detector R&D theoretical support (phenomenology, theory) decide when time has come