## **Electrical Tapes & Optical Links**

- Electrical tapes
  - Al/kapton tapes for SCT
  - Wiggly tapes for SCT EC
  - Lessons learned.
- Optical Links
  - Survey reliability in ATLAS
  - Focus on problematic systems
  - Lessons learned and being learnt.

# **Al/kapton Tapes**

- 50 um Al/50 um kapton
- 500 um wide tracks for HV & control signals (wider tracks for LV).
- Al/kapton tape was quite robust but ...
- After Ni/Sn plating for soldering to PCBs tapes were extremely fragile → photo next slide.
- We believe this is due to hydrogen embrittlement.
- Managed to do repairs(bodge) for barrel LMTs
- Changed to Cu/kapton for EC because number of breaks unmanageable.



## **Cracks Barrel kapton flexes**

- Layout of opto-flexes not optimised because there were too many flavours to design!
- Added ceramic stiffeners behind connectors.



#### **EC** Wiggly Tapes

- Cu/kapton tapes for HV and control signals.
- CCA twisted pair for LV.
- Twisted pair attached to Cu/kapton > photos.

#### **Module with ASICs**

#### silicon



Flex Circuits

**Redundancy** links

# **End Cap Flex Circuits**

**CuKapton for HV and control** signals

CCA twisted pair for high current (DC power)



Quality Works



## **Wiggly Tape Problems**

- First tapes made by Samtec with new photoimageable cover layer → bad idea, too fragile.
- Even with conventional cover layer had many breaks on Cu/kapton.
  - Problem is CCA wires much stiffer than
     Cu/kapton → caused breaks when tapes were bent (Cu/kapton alone was very robust).
  - Shouldn't have tied CCA to Cu/kapton

#### **Tapes: Lessons Learned**

- Test tapes in realistic routing during R&D not during production/detector integration.
- Al/kapton tapes can be used in future but we should connect with wire bonding not soldering.

#### **Optical Links**

- Summary VCSEL reliability in ATLAS
- Failure rates & FITs
- Systems with major problems
  - ATLAS LAr
  - SCT/Pixel TXs
  - SCT on-detector VCSELs
- Lessons learned and being learnt.

| Detector               | VCSEL type               | Manufacturer  | Package                  | Hermetic/<br>atmos | Number          | Failures                          |
|------------------------|--------------------------|---------------|--------------------------|--------------------|-----------------|-----------------------------------|
| Pixel on-det.          | Oxide<br>8-way Array     | True-Light    | Custom<br>Ac. Sinica     | No/dry             | 312             | 1 suspect channel                 |
| SCT on-det.            | Proton<br>implant        | True-Light    | Custom<br>Ac. Sinica     | No/dry             | ~8200           | ~1% mainly infant mortalities     |
| SCT/Pixel off-<br>det. | Oxide<br>12-way<br>Array | True-Light    | Custom<br>Ac. Sinica     | No/lab RH          | ~650<br>272+376 | MTTF ~ 1<br>year                  |
| TRT                    | Oxide                    | AOC (Finisar) | LC                       | Yes/lab RH         | 768             | None                              |
| LAr                    | Oxide                    | True-Light    | Custom<br>Ac. Sinica     | Yes/lab RH         | ~1600           | ~1-2 /<br>month<br>before<br>2011 |
| Tiles                  | Proton<br>implant        | True-Light    | Custom<br>Ac. Sinica     | Yes/lab RH         | 512             | None                              |
| MDT                    | Oxide                    | AOC (Finisar) | LC                       | Yes/lab RH         | ~1200           | None                              |
| RPC                    | Oxide                    | Avago         | MT-RJ                    | Yes/lab RH         | ~512            | Was ~1/month                      |
| TGC                    | Oxide                    | Infineon      | LC                       | Yes/lab RH         | ~200            | None                              |
| CSC                    | Oxide                    | Stratos       | SC                       | Yes/lab RH         | ~160            | None                              |
| Salainky Workshop 2    | 011 Oxide                | Infineon To   | ony W <b>&amp;BB</b> erg | Yes/lab RH         | ~1600           | ≤6 since 2006                     |

## Reliability

- Some systems with commercial & hermetic components have seen no failures
  - eg RPCs have ~ 10M device operating hours →
     Failure rates <~ 100 FIT (failures in 10<sup>9</sup> operating hours), consistent with manufacturer's claims.
- Other systems have seen problems, focus on more serious cases
  - LAr OTx
  - SCT/Pixel TX
  - SCT on-detector

## Possible Causes (1)

#### ESD

- VCSELs known to have very low ESD thresholds
- ESD most common cause of field failures for VCSELs
- Controlled low level
   ESD pulses can cause a decrease in spectral widths



# Possible Causes (2)

- Humidity (TO can should be hermetic but suspect some damage during assembly)
- Deliberately opened TO can
  - Operation of VCSEL in lab environment with RH ~
     55% shows decrease in spectral width





#### **ATLAS LAr**

#### OSA revealed two populations

Failed devices nearly all show narrow spectral widths

Remaining devices with narrow widths removed during 2011 shutdown No failures seen since



Serial number

#### **Pixel & SCT TXs**

- End of life failures experienced after ~ 6 months
- ESD suspected during assembly all devices replaced with greatly improved ESD precautions
- Lifetimes improved but still << 10 years required for ATLAS operation</li>



Quality Workshop 2011 Tony Weidberg 16

## **Failure Analysis**

- Many techniques available
- EBIC to localise damage in plan view
- FIB to prepare sample for STEM.

# EBIC comparison working & Failed channels TL VCSEL array

Working Dead





- All taken with same SEM settings: 10KV spot 5 (roughly same mag 4700X and 5000x)
- Original Image LUTs stretched to accentuate EBIC changes across VCSELs
- Only Ch 10 shows distinct EBIC minima (dark spots) within the emission region
- Ch 06 & 08 show some inhomogeneity but no distinct minima
- Small dark speckles are surface topography

# STEM Unused Channel TL VCSEL array after FIB cut



# STEM Failed Channel TL VCSEL array after FIB cut



# Used Working Channel Plan View SEM

Dislocations starting to form on edge of aperture



## **Humidity Hypothesis**

- Single channel VCSELs usually packaged in hermetic TO cans
- Very difficult to package arrays in hermetic packages
- Reliability of first arrays in damp environments was poor (lifetimes ~ 100 hours at 85C/85% RH)
- Electrolytic corrosion hypothesis:
  - Moisture depletes As in oxide layer → excess Ga → point defects which grow toward active area

#### **RH and Lifetime Correlation**

- Use (accidental) fact that RH was different for some SCT crates
- Weibull fits to failures
   Mean Time To Failure
- Correlation with RH similar to that reported in literature



#### **Accelerated Aging Tests**

THB test of True Light VCSEL at 85°C / 85% R.H.



#### **Humidity Tests**

- 85/85 test is extreme, so how do we know that humidity is the main cause of death?
- Use OSA to look at spectral narrowing for
  - TX VCSELs in dry N<sub>2</sub>
  - TX VCSELs in lab RH air

#### Development of spectral width, VCSELs kept in air



- **-** ST432
- **-▼** T2224
- **--** T3295
- → T3365

#### **Open Questions**

- Why have none of these devices failed yet?
- Is all the data compatible with humidity being the only cause of failure?
  - Try to fit all data to common accelerated aging model.
  - More lessons to be learnt here …

#### Development of spectral width, VCSELs kept in nitrogen



1.4

0

50

100



200

250

300

days

150

## **Example Spectra**

- Air ~ 50% RH
  - Loss of higher order modes visible



- Dry N<sub>2</sub>
  - Higher order modes very similar



#### **Pixel On-detector VCSEL**

- Same Truelight VCSEL array/MT package as for the SCT/Pixel off-detector arrays which are failing
- But inside detector very low RH
- Accelerated aging tests for Truelight arrays at low RH: no deaths for 24 channels, T=85C, I=10 mA, 2100 hours → lower limit on lifetime = 49 years



Quality Workshop 2011 Tony Weidberg 30

#### **SCT On-detector VCSELs**

- ~1% failures: "delayed infant mortalities"
  - Burn-in 3 days at 70C insufficient to remove infant mortalities (requires 120C according to TL).
  - Custom-package incompatible with higher temperatures.
- 4 failures during operation in 2011.
  - Suspect that these are random failures because lifetime testing after radiation for batch of 20 VCSELs gave good results.
  - Radiation testing on samples from all wafers but no lifetime testing maybe we have some bad wafers?

#### **Other Quality Issues**

- Use of unbalanced codes for SCT & Pixels data links → off-detector system much more complicated → use balanced codes in future!
- Temperature variations of on-detector VCSEL arrays not studied carefully before production (required heaters).
- Common series resistance for VCSEL connection.
- Fibre management not always very good (eg SCT fibres violated minimum bend radius).

### Redundancy vs Reliability

- Redundancy only protects against random failures not end of life (as seen in SCT/Pixel TXs).
- Only argument for redundancy is if entire detector will fail if one element fails.
- Better to invest in quality and reliability a la CMS (0.04% dead (broken fibres) in 40,000 links) than redundancy.

## **Summary Optical Links Quality**

- Very reliable VCSELs are available commercially.
- Reliability can be destroyed by many environmental factors
  - Wafer dicing and handling
  - Wire bonding
  - ESD/EoS
  - Humidity
- Big advantage in using a commercial package:
  - Large manufacturers have performed extensive developments and reliability studies involving millions of device operating hours.
  - Commercial packages are "qualified by the customers"
  - If a commercial package can't be used inside the ID then best option is minimal modification of a commercial component
    - Used successfully by CMS
    - Approach used by VL.

# **Backup Slides**

### **Solutions for Humidity Problems**

- Some manufacturers claim to make VCSELs that are reliable in high RH
  - Details commercially sensitive but principle measure is blocking holes used for steam to grow oxide layer with a dielectric layer
- AOC and ULM have made VCSELs that pass 1000 hours of 85C/85% RH → should be ok for 10 years operation in normal lab environment

#### **Reliability Tests**

- Bare AOC arrays
- I=8 mA DC, 85C/85% RH
- No deaths for 31 channels after 3200 hours
- AOC arrays packaged by CSIST
  - I=10mA DC, 70C/85% RH, 60 channels used
  - No significant change in spectral widths for 2000 hours



Initial increase when T increased from 20C to 70C

#### **iFlame**

- Semi-hermetic package
  - Small form-factor →
    compatible with ATLAS
     SCT/Pixel TX PCBs
- Uses ULM (ViS) VCSEL which also passes 1000 hours of 85C/85% RH
- We will repeat lifetime tests with OSA



4 channel TRx ATLAS 12x in production

### **Testing**



#### Radiation tolerance test:

Jan Troska et al. "Single-Event Upset testing of the Versatile Transceiver" See poster #133

#### VTrx Prototype



#### Radiation tolerance test:

Jan Troska et al. "Single-Event Upset testing of the Versatile Transceiver" See poster #133

#### Successes

- Silicon *p-i-n* diodes have turned out to be very reliable (no confirmed failures).
- Fibres: no indication for fibre reliability problems even when minimum fibre bend radius violated.