DEVELOPMENT OF FFAG STRAIGHT LINES AND DISPERSION SUPPRESSORS

Y. Mori, JB Lagrange Kyoto University

CONTENTS

- Scaling straight lines
- Dispersion suppressor
- Application: PRISM case

MOTIVATIONS

- Scaling FFAG transport lines.
- Insertions in scaling FFAG rings:
- Straight sections
- Dispersion suppressors in straight lines and bending lines.

SCALING STRAIGHT LINES

Transverse linearized equations of motion
$\left\{\begin{array}{l}\frac{d^{2} x}{d y^{2}}+\frac{1}{\rho^{2}}\left(1-K \rho^{2}\right) x=0 \\ \frac{d^{2} z}{d y^{2}}+\frac{1}{\rho^{2}}\left(K \rho^{2}\right) z=0\end{array} \quad\right.$ with $\quad K=\frac{1}{B \rho}\left(\frac{\partial B_{z}}{\partial x}\right)_{z=0}$
These equations have to be independent of momentum
$\left\{\begin{array}{l}\frac{d\left(\frac{1}{\rho^{2}}\right)}{d P}=0 \\ \frac{d\left(K \rho^{2}\right)}{d P}=0\end{array} \Leftrightarrow\left\{\begin{array}{l}\rho=\text { const. } \\ \frac{1}{B}\left(\frac{\partial B_{z}}{\partial x}\right)_{z=0}=\frac{n}{\rho}\end{array}\right.\right.$
The field law is given by $B_{z}=B_{0} e^{\frac{n}{\rho}\left(X-X_{0}\right)}$

SCALING STRAIGHT LINES

Tracking in Runge Kutta with linear fringe field for an example with protons

DISPERSION SUPPRESSOR

distance to

DISPERSION SUPPRESSOR

Problem of phase advance: still scaling?

180 deg.

Limitation comes from amplitude dependance of the phase advance.

APPLICATION: PRISM

THANKYOU FOR YOUR ATTENTION

SCALING STRAIGHT LINES

Straight section $=$ Bending section with infinite radius
$\lim _{r_{0} \rightarrow \infty}\left(\frac{r}{r_{0}}\right)^{k}=\lim _{r_{0} \rightarrow \infty}\left[\left(1+\frac{x}{r_{0}}\right)^{\frac{r_{0}}{x}}\right]^{\frac{x}{r_{0}} k}=\left[\lim _{r_{0} \rightarrow \infty}\left(1+\frac{x}{r_{0}}\right)^{\frac{r_{0}}{x}}\right]^{\frac{n}{\rho} x}=e^{\frac{n}{\rho} x}$
with $r=x+r_{0}$

$$
\begin{aligned}
& k=\frac{r_{0}}{\rho} n \\
& n=\frac{\rho}{B}\left(\frac{d B}{d x}\right)_{z=0}
\end{aligned}
$$

$$
B_{z}=B_{0} e^{\frac{n}{\rho}\left(X-X_{0}\right)}
$$

DISPERSION SUPPRESSOR IN

$$
2 \frac{02}{n_{2}}=\frac{01}{n_{1}}+\frac{03}{n 3}
$$

DISPERSION SUPPRESSOR IN

 $\substack{\text { distance to } \\ \text { poreferencee }} \quad$ BENDING LINES$$
\begin{aligned}
& R_{2}-\left(R_{1}-R_{2}\right)=R_{3} \\
& 2 R_{2}=R_{1}+R_{3} \\
& R=R_{0}\left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}}
\end{aligned}
$$

I st order

$$
\frac{2}{k_{2}+1}=\frac{1}{k_{1}+1}+\frac{1}{k_{3}+1}
$$

APPLICATION: PRISM

CHANGE RADIUS

distance to Po-reference trajectory

$$
\begin{array}{ll}
R_{1}-R_{01}=R_{2}-R_{02} \\
R=R_{0}\left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}} & \text { | st order }
\end{array} \quad \frac{R_{01}}{R_{02}}=\frac{k_{1}+1}{k_{2}+1}
$$

