DEVELOPMENT OF FFAG STRAIGHT LINES AND DISPERSION SUPPRESSORS

Y. Mori, JB Lagrange Kyoto University

CONTENTS

- Scaling straight lines
- Dispersion suppressor
- Application: PRISM case

2

MOTIVATIONS

- Scaling FFAG transport lines.
- Insertions in scaling FFAG rings:
 - Straight sections
 - Dispersion suppressors in straight lines and bending lines.

SCALING STRAIGHT LINES

Transverse linearized equations of motion

$$\begin{cases} \frac{d^2x}{dy^2} + \frac{1}{\rho^2}(1 - K\rho^2)x = 0\\ \frac{d^2z}{dy^2} + \frac{1}{\rho^2}(K\rho^2)z = 0 \end{cases} \quad \text{with} \quad K = \frac{1}{B\rho} \left(\frac{\partial B_z}{\partial x}\right)_{z=0} \end{cases}$$

These equations have to be independent of momentum $\begin{cases} \frac{d\left(\frac{1}{\rho^2}\right)}{dP} = 0 \\ \frac{d(K\rho^2)}{dP} = 0 \end{cases} \Leftrightarrow \begin{cases} \rho = const. \\ \frac{1}{B}\left(\frac{\partial B_z}{\partial x}\right)_{z=0} = \frac{n}{\rho} \end{cases}$ The field law is given by $B_z = B_0 e^{\frac{n}{\rho}(X-X_0)}$

SCALING STRAIGHT LINES

Tracking in Runge Kutta with linear fringe field for an example with protons

Length of the magnets	$60\mathrm{cm}$
Drift	$40\mathrm{cm}$
Kinetic energy range	80 to $200 \mathrm{MeV}$
Field index	17
Local curvature radius	$2.1\mathrm{m}$
Step size	$1\mathrm{mm}$
Phase advances:	
horizontal μ_x	$104.8 \deg.$
vertical μ_z	$112.5 \deg$.

DISPERSION SUPPRESSOR

DISPERSION SUPPRESSOR

Problem of phase advance: still scaling?

Limitation comes from amplitude dependance of the phase advance.

THANKYOU FORYOUR ATTENTION

SCALING STRAIGHT LINES

Straight section = Bending section with infinite radius

$$\lim_{r_0 \to \infty} \left(\frac{r}{r_0}\right)^k = \lim_{r_0 \to \infty} \left[\left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{x}{r_0}k} = \left[\lim_{r_0 \to \infty} \left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{n}{\rho}x} = e^{\frac{n}{\rho}x}$$
with $r = x + r_0$

$$k = \frac{r_0}{\rho}n$$

$$n = \frac{\rho}{\rho} \left(\frac{dB}{\rho}\right)$$

 $n = \frac{P}{B} \left(\frac{dx}{dx}\right)_{z=0}$

DISPERSION SUPPRESSOR IN STRAIGHT LINES distance to Po-reference trajectory Ρ $X_2 - (X_1 - X_2) = X_3$ Ρ X $2X_2 = X_1 + X_3$ $X = \frac{\rho}{n} \ln(\frac{P}{P_0})$ X_2 X₃ P 180 deg.

$$2\frac{\rho_2}{n_2} = \frac{\rho_1}{n_1} + \frac{\rho_3}{n_3}$$

DISPERSION SUPPRESSOR IN BENDING LINES distance to Po-reference trajectory Ρ Ρ $R_2 - (R_1 - R_2) = R_3$ X Ρ R_1 R_2 R₃ $2R_2 = R_1 + R_3$ P $R = R_0 \left(\frac{P}{P_0}\right)^{\frac{1}{k+1}}$ 180 deg.

$$\frac{1}{k_2 + 1} = \frac{1}{k_1 + 1} + \frac{1}{k_3 + 1}$$

APPLICATION: PRISM

x [m]

13

Wednesday, July 1, 2009

y [m]

$$R_{1} - R_{01} = R_{2} - R_{02}$$

$$R = R_{0} \left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}}$$

$$Ist order$$

$$\frac{R_{01}}{R_{02}} = \frac{k_{1} + 1}{k_{2} + 1}$$

MISMATCH BEND-STRAIGHT