
Software and DAQ for the CMS Silicon Tracker Front End Driver

J. Fulcher 1, L. Mirabito4, J. Coughlan2, G. Iles 1, R. Bainbridge 1, I. Church 2, E. Corrin 1, C. Foudas 1, E.J. Freeman 2,

G. Hall 1, R.N.J. Halsall 2, G. Iles 1, J. Leaver 1, M. Noy 1, M. Pearson 2, I. Reid 3,

M. Ageron4, G. Rogers 2, J. Salisbury 2, S. Taghavi 2, I.R. Tomalin 2, O. Zorba 1

1 Imperial College, London, UK. 2 CCLRC Rutherford Appleton Laboratory, Oxfordshire, UK
3Brunel University, London, UK. 4Institut de Physique Nucléaire, Lyon, France

Abstract
The CMS Silicon Tracker Front End Driver is a 9U 400mm

VME64x card that digitizes and processes the analogue raw data,
generated within the silicon tracker by the APV25[1] readout ASICs.
The compressed data is then sent to the Data Acquisition(DAQ).
The current tracker DAQ is fully based on the CMS communication
and acquisition tool called XDAQ[2]. This paper discusses the
software and DAQ methodology developed in order to initialize,
control and readout data from the FEDs. Data illustrating the
performance of the software and data readout are then presented.

I. INTRODUCTION
The CMS Silicon Strip Tracker(SST) Front End Driver (FED)[3][4]
is a 9U 400mm VME64x card that processes the raw data from 192
APV25 silicon readout ASICs, corresponding to 0.2% of the total
tracker. After multiplexing and streaming, the data from the front-
end are routed via analogue optical links to the FEDs. 96 optical
channels are then digitised to 10bit precision at 40MHz and
processed in large FPGAs, before being collated into events and sent
to the CMS DAQ via either VME or the SLINK-64 protocol.

Figure 1: 9U VME FED

The software specific to the FED has been developed in an
object-oriented manner using the programming language c++. The
hardware components of the FED have been mimicked by software
class equivalents and the data that are required for configuration of
the FED are stored in a class providing a neat data container of
necessary configuration information. The software structure is
modular and layered, at each layer a level of abstraction is achieved,
making the code manageable and extensible. Before delving into

more detail about the software we consider the approach that has
been taken.

II. SOFTWARE APPROACH
Software in HEP has come a long way in the last few decades,

going from punch card machine code through monolithic Fortran
programs right up to the modern era of an object oriented modular
approach in c++. The benefits of object orientation are well
discussed and not the topic of this paper[5].

A. Object Orientation
The tracker itself has been designed in a modular manner and it

makes perfect sense to carry this methodology though into the
architecture of the software. For the parts of the Tracker system
which require software interaction, which is nearly everything, (APV
ASICs at the front end, PLL clock control, analogue optical laser
drivers, temperature readout, clock and trigger distribution right up
to the FED itself) it is important that the software is clearly defined,
easily understandable and simple to integrate into the final software
system. Therefore, the individual parts of the software have been
based upon object representations of the subsystems and have been
developed in the c++ language using standard object oriented
axioms. In the case of the FED, this resulted in the development of a
C++ class called Fed9UDevice which, although not the complete
software required to operate the FED, nevertheless embodies the
FED as a software object.

B. Modularity and Extensibility
One major consideration when designing software projects of

any kind is the fact that it, or parts of it, may well be required in
future projects, either due to the inclusion of its corresponding
hardware in another experiment or due to an architectural rethink on
the part of the integrating framework. In either case it is important
that the package in question is designed in a way that makes future
extensions or utilisations as effortless as possible.

There are clear distinctions between the hardware interfaces and
the purely software objects used for auxiliary tasks such as file
handling and data manipulation, to name just a few. Therefore, it is
prudent to separate these tasks into different software objects.

C. The Layered Approach
One method of dividing up larger chunks of software into

manageable parts is to follow a layered approach. In this instance,
one builds a base class, which can then either be inherited from and
functionally augmented one layer at a time, or can be used as a data
member of a higher order class, either approaches result in a project

which is both easy to divide up amongst developers and easy to
adapt and extend in future iterations.

III. FED SOFTWARE

A. Overview of Architecture
The structure of the FED specific software can be seen in Figure

2; each grey ellipse represents a software class. An attempt has been
made to demonstrate how each class fits into the context of another
class, for example the Fed9UHALInterface class can be seen to be
contained within the Fed9UVMEBase class. In this instance it is
included as a member variable of this class. The red arrows show
class inheritance; the main inheritance of note is that of the
Fed9UVMEDevice and the Fed9UDescription from the Fed9UABC
abstract base class; the purpose of which is to fix the interface of
both classes to be identical. Thus, programmatically speaking, the

software representation of the FED in the Fed9UVMEDevice and
that of the container class for the FED configuration data, are
identical and one could interchangeably call methods on objects of
both class types without need to rewrite code.

B. Hardware interface abstraction
The VME crates are controlled by a PCI-VME interface. The

controller of choice during development has been the SBS[6],
although this will almost certainly change in the final system. The
low-level driver software is hidden behind an abstract API -
Hardware Access Library[7] (HAL) developed in CMS to perform
basic input/output operation on the bus. In order to be immune to any
future changes of this API, a FED HAL wrapper interface
(Fed9UhalInterface) was developed, which provides a set of
read/write commands that have been fixed for the lifetime of the
FED software thus providing a stable basis upon which to build the
project.

Figure 2: Schematic representation of the FED software project

Were the choice of controller to change, then the low-level
software drivers for such a controller would be different from that of
the SBS, this could result in a change in the HAL, or even a
replacement for it. By setting a concrete interface to the hardware in
the Fed9UHalInterface, we maintain the flexibility to easily adapt
the software to any combination of controller and driver with a
minimum overhead.

C. Low Level Hardware Communication
The next layer is the FED VME Base commands library

(Fed9UVMEBase). All access to the FED is achieved via a large set
of serial commands within the FED, the Fed9UVMEBase abstracts
from these serial commands and provides a simplified API to the
FED internal registers. An example interface would be a method
such as setFineDelay(address, delay). The usage of this method is

self-explanatory enabling the user to set specific clock delay values
on a channel by channel basis, but the actual implementation of this
action within the Fed9UVMEBase is a more complicated process
where one first constructs the serial command to send to the FED
and then sends it via the VME bus. The purpose of this class is
clearly to simplify the interface to the FED by abstracting from the
complicated serial commands and exporting simple single method
calls for each function.

D. Addressing Areas of the FED Hardware
In order to address the specific areas within the complicated

architecture of the FED, a Fed9UAddress class was developed. This
class encompasses all device space within the FED from the
individual strips in each APV channel right through the APVs on
each channel, the channel on each front end module and the backend
and VME FPGA. The address internal to the Fed9UAddress class is
stored in a format that gives the unique address as understood by the
FED, but the user passes the address around in one object, and since
nearly everything in the FED can be addressed by a Fed9Uaddress,
it makes the API to the FED registers in the Fed9UVMEDevice class
(see below) very neat. All methods that require an address of a strip,
APV, channel or FPGA, to define exactly which object we are
communicating with, take the Fed9UAddress specific to that
location, instead of some methods taking an FPGA number, some
taking a channel number, some taking a strip number and so on.

E. Fed Event Class
One hugely important aspect of the FED software is the handling

of the output data packets. Each data packet is called an event since
in the final system each of these packets is produced on the receipt of
a level 1 trigger and contain all the data from 192 APVs for a
specific bunch crossing. The purpose of the Fed9UEvent class is to
provide a neat handle to the data and also to perform integrity
checking on the data and provide status information about the timing
of each channel.

F. Fed VME Device Class
The next layer up is the Fed9UVmeDevice, which serves three

main purposes. Firstly it incorporates the Fed9UAddress class as the
interface to hardware addresses of parts of the FED, secondly it
implements the API defined within the Fed9UABC base class,
providing as simple an interface as possible to all aspects of the
FED’s configurable hardware. Finally it wraps groups of base
commands to provide the high level API to the FED including
methods such as init(), start(), stop(), checkEvent(), getEvent(),
purgeEvents(). During the construction of this class, a
Fed9UDescr ip t ion object is required, from which all the
configuration data for the FED is passed through into the FED
registers. All required configuration tasks are performed within the
two main initialisation methods: init() and initStrips(). Therefore, it
is almost never necessary to call individual methods on a per register
basis when using the FED in the final system. However, this is
clearly possible when debugging the FED system, and the highest-
level debug software (see below), FedDebugSuite.exe, provides a
simple interface to the full register by register API.

G. FED High Level API
The Fed9UDevice class is derived directly from the

Fed9UVmeDevice. It is actually this class that is instantiated within
the DAQ software directly providing a handle on the FED. As well
as exporting all the methods from the previous layer, it adds more

complicated tasks such as calibration of input parameters and timing
of the ADC in each of the 96 channels at the front end.

H. FED XDAQ Supervisor
The Fed9USupervisor is responsible for the interface to the

XDAQ framework in which the DAQ software is embedded. Each
FED in the final system is represented by a unique instantiation of
the Fed9USupervisor , within each there is a pointer to the
Fed9UDevice object through which all software communication with
the FED is performed. The API to the Fed9USupervisor is
predefined by the XDAQ framework basically consisting of:
Configure(), Enable(), Disable(), and a SOAP[8] command handler
which is used to set run time states of the FED on the fly, such as
changing the readout mode from Scope to Virgin Raw, or Zero
Suppressed.

I. FED Debug Software and GUI
During testing and development stages of the project, it was

necessary to have a comprehensive debug tool for reading and
writing on a per register basis, and performing simple readout loops
for data handling analysis. To this end the FedDebugSuite.exe and
the FedGui.exe were developed. The Debug Suite is a command line
based application which provides a simple interface to the
configuration data in the Fed9UDescription, and also a direct
interface to the Fed9UVmeDevice API, providing a hands on control
panel from which one is able to directly read from and write to
configuration registers inside the FED. The GUI provides a very
simple user interface for reading editing and saving FED descriptions
to XML files. The later generation of the GUI now also gives a direct
handle on the registers in the FED using the same user interface as
that for creating descriptions, this was achievable very easily since
the API for the Fed9UDescription and that of the Fed9UVmeDevice
were identically predefined by the Fed9UABC. By simply calling the
interface on a pointer to the base class, one is able to invoke the
corresponding method on either a FED description or an actual FED
hardware object, without need for adaption of code. Figure 3 shows
the basic GUI to the front-end registers in the FED.

Figure 3: Graphical user interface to fed debug software

J. Error Handling
One very important aspect of any software project is the handling

of errors. This rather well avoided subject should be paid great
attention especially in projects that involve such an integrated
approach to hardware and software. If a piece of hardware is not
functioning as expected for one of many reasons, it is important that
the error is tracked and handled in a manner that can expedite its
resolution. To this end the ICException class was developed, which
provides ASSERT and VERIFY macros for ease of coding - such
macros provide a neat framework in which to test for potential
errors. Example syntax would be:
VERIFY(x<100)(x).msg(“x < 100”).err().code(CODE)

The exception that is thrown from such macros is an object of
type ICException (or a derived version), in which all the required
information about the error, where it occurred, when, what the values
of the error were, a description of the error, and error code for
programmatic resolution wherever possible.

IV. TRACKER DAQ SOFTWARE
The DAQ itself consists of independent web server applications

capable of loading plug-ins containing the actual applications (FED
Supervisor application, Trigger application, Event Builder, Filter
Unit and so on). The web server approach allows to have distributed
computing with easy configuration by the mean of SOAP messages.
The data collection is achieved using an asynchronous event builder
connecting the data source (FED) to the analysing applications
(Filter Unit). Data transfer is performed using[9] message packets.
The integration in this framework of the FED was eased by the use
of several adaptor classes interfacing it to the Event Builder. This
adaptor method allowed a fast integration of this new hardware in the
existing data acquisition system used for test beams and detector
commissioning. Additionally the FED9USupervisor application
implements connections to the configuration Data Base and to the
error management system. Preliminary measurements show a
comparable performance of the card in standalone running or in the
DAQ framework.

A. Requirements
The tracker data acquisition[10] has to achieve two main tasks:
It should first provide an infrastructure to read Si detectors

during the test and assembly phase of the project. It implies
scalability in terms of data flow since setups can handle from one to
several hundred detectors. The final system will require 440 FEDs
reading out a total of 75,000 APV chips corresponding to 37,500
optical channels. Clearly, scalability of the software is essential.

Secondly, it should provide tools to commission the tracker
before it is included in the central control and data acquisition of
CMS and to configure it. This constraint forces the adoption of the
final architecture as the default framework in which to develop the
software and to customize the final parts to the needs of the Tracker.

Consequently the XDAQ environment developed for the CMS
online software was chosen in early 2001 to facilitate tracker data
acquisition tasks. It offers both an application deployment and
configuration environment based on Web technologies (SOAP). It
also provides a communication API based on I2O to exchange
messages and/or data between applications. Tthe default
xdaqAppl icat ion , from which all applications such as the

Fed9USupervisor are derived, implements a state machine
representational of the different stages of a physics run: Configure,
Enable, Halt, Pause and Resume, which are event-driven (SOAP
messages) and facilitate coherent configuration and operation of the
various applications comprising the DAQ.

B. Tracker Implementation
Preliminary to any data acquisition, all hardware devices have to

be mapped to a xdaqAplication. Nominally they are: FecSupervisor,
which manages the FEC[11] and handles chip configuration of on
detector devices and the trigger and clock distribution and timing;
the Fed9USupervisor which handles digitization of detector analog
signals. And the LTCSupervisor which manages the LTC handling
trigger and clock formatting. Finally, the data from the FEDs must
be collected, analyzed and stored, which is achieved in the event
builder described below

C. The Event Builder
Together with the XDAQ environment, the CMS online software

group provides a software prototype of the final event builder. On an
Event Manager (EVM) request, the data sources - Readout Units
(RUs) push their data fragment to the Builder Units (BUs). Filter
Units (FUs) can then request lists of fragments to process. The whole
process is asynchronous. Well-defined message interfaces are
provided to feed the RU with FED data and to get merged events
from the FUs. The trigger flow is controlled by feeding triggers to
the EVM.

The interface to this builder is achieved through three
applications:

1. The TrackerSupervisor controls the trigger flow, blocking
Level 1 triggers at the LTCSupervisor level and sending software
triggers to the EVM. It can then make dedicated acquisition loops,
scanning chip settings (FecSupervisor) for batches of events during a
commissioning run.

2. The dataSender collects data from different FEDs, formats
them in RU readable form and send them to one RU.

3. The RootAnalyzer collects events from the Filter Units, writes
them to ROOT files and performs commissioning analyses.

The d a t a S e n d e r application provides a buffer to
Fed9USupervisor via a dataBufferAccepter interface (which the FED
application must derive from,in order to have access to the buffer) in
which the FED data is placed. Each buffer is then forwarded to the
next application (FED or dataSender) in the collection ring. Since
the acquisition is asynchronous, the TrackerSupervisor verifies the
receipt of the buffer at the RUs before sending more software
triggers to the EVM. The communication between the different
t racker appl icat ions is achieved with the I2O
TrackerCommandMessage. Sending and receipt of messages is
handled by two additional classes the TrackerCommandSender and
TrackerCommandListener, which the tracker applications inherit
from.

In the final system the FEDs will be read out using S-Link,
which is a fast link which continually pushes data out to a receiver
unit. In this situation the readout is slightly different, no longer
requiring the Fed9USupervisor to perform the readout, and the
addition of an application to handle the receiver unit routing of data
directly through the dataSender.

Figure 4: Schematic representation of the CME Tracker DAQ software

V. CONCLUSIONS
The software has been tested in test beams at CERN and has

been proven to work using both VME and S-Link readout.
Preliminary measurements in the laboratory show that over VME the
software is capable of sustaining an event readout rate of up to 150
Hz corresponding to 5.7Mb/s and with S-Link over 200Mb/s.

Figure 5: Example Landau distribution from data taken by DAQ in a
test beam of July 2004 at CERN. APVs were set to deconvolution

Figure 5 shows an example of a Landau distribution of
energy deposition in a number of Tracker modules during a
test beam at CERN in July 2004. These data were taken using
the system described in this paper with the front end APVs
running in deconvolution mode. A signal to noise level of 21
can be measured. This is a small example of a large amount of
data that has now been taken using this system. Confidence in

the reliability of the software is high and the project is in a
good state to move towards a final system for the
commissioning of the Tracker.

VI. REFERENCES
[1] M.J.French et al. “Design and results from the APV25, a deep
sb-micron fron-end chip for the CMS tracker”, Ncl. Instr. And Meth.
A466 (2001) 359-365
[2] J.Gutleber et al., “Architectural Software Support for Processing
Clusters”, IEEE International Conference on Cluster Computing
(Cluster 2000), November 28 - December 2, 2000, Chemnitz,
Germany, IEEE Conference Proceedings
http://xdaq.web.cern.ch/xdaq/
[3] G. Iles et al. “Performance of the CMS Silicon Tracker Front-
End Driver” These proceedings
[4] J. Coughlan et al. “The Manufacture of the CMS Tracker Front-
End Driver” These Proceedings
[5] C++ Object oriented reference
[6] SBS620 PCI-VME Bridge, http://www.sbs.com/products/457
[7] C. Schwick. The Hardware Access Libraries.
http://cmsdoc.cern.ch/~cschwick/software/documentation/HAL/inde
x.html
[8] D. Box, et al., “Simple Object Access Protocol (SOAP) 1.1”,
W3C Note 08, May 2000;
[9] I20
[10] L.Mirabito et al., “Tracker data acquisition for beamtest and
integration”, CMS IN 2003/021
[11] P. Gras et al., “Front-End Electronics configuration System for
CMS”. WEDT005 physics/0112049

