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1 INTRODUCTION

Sum rules, relating the total angular momentum of a nucleon to the spin and
orbital angular momentum carried by its constituents, are interesting and im-
portant in understanding the internal structure of the nucleon. Indeed it is
arguable that the main stimulus for the tremendous present day experimental
activity in the field of spin-dependent structure functions was the surprising
result of the European Muon Collaborations polarized DIS experiment in 1988,
which, via such sum rules, led to what was called a “spin crisis in the parton
model”, namely the discovery that the spins of its quarks provide a very small
contribution to the angular momentum of the proton.

In a much cited paper, Jaffe and Manohar stressed the subtleties involved
in deriving general angular momentum sum rules. As they point out, too naive
an approach leads immediately to highly ambiguous divergent integrals, and a
careful limiting procedure has to be introduced in order to obtain physically
meaningful results. In this it is essential to work with non-diagonal matrix el-
ements 〈p′, σ|J |p , σ〉 and, this can have some unexpected consequences. Jaffe
and Manohar comment that to justify rigorously the steps in such a proce-
dure requires the use of normalizable wave packets, though they do not do this
explicitly in their paper.

We show that the results in the literature are incorrect , and we have taken
pains to derive the correct expressions in three different ways, two involving
explicit physical wave packets and the third, totally independent, based upon
the rotational properties of the state vectors. Surprisingly it turns out that the
results are very sensitive to the type of relativistic spin state used to describe
the motion of the particle i.e. whether a standard canonical (i.e. boost, as in
e.g. Bjorken -Drell) state or a helicity state is utilized.

We present results for the matrix elements of the angular momentum opera-
tors, valid in an arbitrary Lorentz frame, both for helicity states and canonical
states.

We present a new sum rule for transversely polarized nucleons.

2 CONTENTS

We shall discuss:

1) The origin of the problem

2) The source of errors in the literature
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3) Brief summary of our calculations

4) Comparison of our results with those in the literature

5) The new sum rule for transversely polarized nucleons

3 THE ORIGIN OF THE PROBLEM

In the standard approach one relates the matrix elements of the angular mo-
mentum operators to those of the energy-momentum tensor Tµν(x), which is
conserved. Typically one deals with expressions like

Mµνλ(x) ≡ xνTµλ(x)− xλTµν(x) (1)

The angular momentum operators are space integrals of the spatial components
of these, so we would like to know the structure of the forward matrix elements

M0ij(p, s) ≡ 〈p, s|
∫

d3xM0ij(x, 0)|p, s〉 (2)

i.e. what is the functional dependence on the momentum and spin label of
the nucleon.

We have:

M0ij(p, s) =
∫

d3x〈p, s|xiT 0j(x)− xjT 0i(x)|p, s〉

=
∫

d3xxi 〈p, s|eiP ·xT 0j(0)e−iP ·x|p, s〉
−(i ↔ j)

=
∫

d3xxi 〈p, s|T 0j |p, s〉 − (i ↔ j). (3)

The integral in Eq. (3) is totally ambiguous, being either infinite or, by symme-
try, zero.

The essential problem is to obtain a sensible physical expression, in terms of
p and s, for the above matrix element. The fundamental idea is to work with
a non-forward matrix element and then to try to approach the forward limit.
This is similar to what is usually done when dealing with non-normalizable plane
wave states and it requires the use of wave packets for a rigorous justification.

4 THE SOURCE OF ERRORS IN THE LIT-
ERATURE

The spin state of the nucleon is labelled by the momentum and the covariant
spin vector S.
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1) The most crucial error in these treatments is the mishandling of the
matrix elements of a covariant tensor operator. If Tµλ transforms as a second-
rank tensor its non-forward matrix elements do not transform covariantly. This
was the motivation, decades ago, for Stapp to introduce M -functions.

Namely, the covariance is spoilt, for canonical spin states by the Wigner
rotation, and, for helicity states by the analogous Wick helicity rotation.

Only by first factoring out the wave-functions (in our case Dirac spinors) i.e.
by writing

〈p′,S ′|Tµλ|p,S〉 = ū(p′,S ′)T µν(p′, p)u(p,S). (4)

does the remaining M -function, in this case T µν(p′, p), transform covariantly.
2) For simplicity S ′ is chosen equal to S.
A wave packet is constructed

|Ψp,S〉 =
N√
(2π3)

∫
d3qe−λ2(q−p)2 |q,S〉 (5)

But for physical states q2 = M2 and S.q = 0, so for a superposition of
physical nucleon states the integration over q is restricted, and this fact is
ignored.

The correct way to do it is to build the packet as a superposition of physical
plane waves all with the same rest frame spin vector s

|Ψp,s〉 =
N√
(2π3)

∫
d3qe−λ2(q−p)2 |q, s〉 (6)

5 OUR CALCULATIONS

We have used THREE different approaches, all giving the same answer:
1) Relativistic Quantum-Mechanical Dirac particle.
We construct a wave-function corresponding to a superposition of plane wave

physical states centered around momentum p, all of which have rest-frame spin
vector s:

ψp,s(x, t) =
N̄

(2π)3

∫
d3q

q0
e−λ2(q−p)2ei(q·x−q0t)u(q, s), (7)

where q0 =
√

q2 + M2, and u(q, s) is a standard Dirac spinor.
2) Field Theoretic State
We construct a wave-packet state

|Ψp,s〉 =
N√
(2π3)

∫
d3qe−λ2(q−p)2 |q, s〉 (8)

3) A Totally Independent Method Based On The Rotational Properties Of
States

This is the simplest most direct approach.
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a) It does not need wave packets because it does not use the energy momen-
tum tensor.

b) It works for arbitrary spin, and equally well for helicity states or standard
canonical or boost states.

Let |p,m〉 be a state with momemtum p which has spin projection m in the
rest system.

Under a rotation about axis-i through an angle β:

U [Ri(β)] |p,m〉 = |Ri(β)p, n〉D s
nm(RW (p, β)). (9)

where U [Ri(β)] is the unitary operator effecting the rotation and RW (p, β) is
the Wigner rotation.

Since the angular momentum operators are the generators of rotations

U [Ri(β)] = exp(−iβJi) (10)

it is relatively straightforward to derive the matrix elements of the Ji from
Eq. (9).

(For helicity states the Wigner rotation is replaced by the Wick helicity
rotation)

6 COMPARISON OF OUR RESULTS WITH
THOSE IN THE LITERATURE

The nicely covariant looking, but alas wrong, form of the expectation value of
the angular momentum operators given by Jaffe-Manohar is:

〈p,S| ∫ d3xM0ij(x)|p,S〉
∣∣
JM

= 1
4Mp0

[
2p0εjiβσ − piε0jβσ + pjε0iβσ

]
pβSσ

In terms of p and s this leads to
For standard (e.g. Bjorken-Drell) canonical spin states:

〈Ji〉JM =
1

4Mp0

{
(3p2

0 −M2)si − 3p0 + M

p0 + M
(p · s)pi

}
(11)

to be compared with our result

〈Ji〉 = 1
2
si (12)

Note: In the above we have left out terms involving the derivative of a
delta-function, which vanish for a symmetrical wave-packet.

In general these are different. However, one may easily check that if s = p̂
the Jaffe-Manohar value agrees with Eq.(12), while if s ⊥ p̂ they are not the
same.

Because our result Eq. (12) does not look manifestly covariant, we have
shown in detail that it does in fact respect Lorentz invariance.
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7 SUM RULES

Sum rules, relating the total angular momentum of a nucleon to the spin and
orbital angular momentum carried by its constituents, are interesting and im-
portant in understanding the internal structure of the nucleon.

In order to deal with the massless gluons we need the analogue of Eq. (12)
for helicity states for which we find a surprisingly different result:

〈p′, λ′|Ji|p, λ〉 = (2π)32p0 [ληi(p)δλλ′ ] (13)

where

ηx = cos(φ) tan(θ/2), ηy = sin(φ) tan(θ/2),
ηz = 1. (14)

and (θ, φ) are the polar angles of p .
The agreement between our results and those of J-M for canonical spin states

when s = p̂ is consistent with the much used and intuitive sum rule
1
2

= 1
2
∆Σ + ∆G + 〈Lq〉+ 〈LG〉 (15)

In the case that s ⊥ p̂ we find a new sum rule. For a proton with transverse
spin vector sT we find

1
2

= 1
2

∑
q, q̄

∫
dx∆T qa(x) +

∑

q, q̄, G

〈LsT
〉a (16)

where LsT is the component of L along sT . The structure functions ∆T qa(x) ≡
hq

1(x) are known as the quark transversity or transverse spin distributions in
the nucleon. Note that no such parton model sum rule is possible with the
Jaffe-Manohar formula because, as p →∞, Eq. (11) for i = x, y diverges.

The result Eq. (16) has a very intuitive appearance, very similar to Eq. (15).
Note that the RHS of Eq. (16) is different from the expression for the tensor

charge (that expression should not be called a sum rule since the LHS is not
known a priori), which involves the difference of the contributions of quarks
and antiquarks. In Eq. (16) they are added.

The structure functions ∆T qa(x) ≡ hq
1(x) are most directly measured in

doubly polarized Drell-Yan reactions where the asymmetry is proportional to
∑

a

e2
a[∆T qa(x1)∆T q̄a(x2) + (1 ↔ 2)]. (17)

They can also be determined from the asymmetry in semi-inclusive hadronic
interactions like

p + p(sT ) → H + X

where H is a detected hadron, typically a pion, and in SIDIS reactions with a
transversely polarized target

` + p(sT ) → ` + H + X.

The problem is that in these semi-inclusive reactions ∆T qa(x) always occurs
multiplied by the largely unknown Collins fragmentation function.
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8 SUMMARY

1) The standard derivation of the tensorial structure of the expectation value of
the angular momentum J , for a relativistic spin-s particle, in which the matrix
elements of the angular momentum operators are related to the matrix elements
of the energy-momentum tensor, is rendered difficult by the singular nature of
the operators involved.

We have shown that the results in the literature are incorrect, and have
derived the correct expressions in three different ways, two of them based on a
careful wave-packet treatment of the standard approach, and the third, quite
independent, based on the known rotational properties of the spin states, which
circumvents the use of the energy-momentum tensor. All three methods yield
the same results.

2) We have shown that, surprisingly, the results for helicity states are very
different from those for standard canonical spin states.

3) Using a Fock-space picture of the proton, we have used our results to
obtain a new sum rule for a transversely polarized nucleon, which involves the
transverse spin or transversity distribution ∆T q(x) ≡ h1(x), and which is similar
in form to the classic longitudinal spin sum rule.
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