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IC/HEP/04-5Parton intrinsi motion: suppression of the Collins mehanism fortransverse single spin asymmetries in p" p! �XM. Anselmino1, M. Boglione1, U. D'Alesio2, E. Leader3, F. Murgia21Dipartimento di Fisia Teoria, Universit�a di Torino andINFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy2INFN, Sezione di Cagliari and Dipartimento di Fisia, Universit�a di Cagliari,C.P. 170, I-09042 Monserrato (CA), Italy3Imperial College, Prine Consort Road, London, SW7 2BW, EnglandAbstratWe onsider a general formalism to ompute inlusive polarised and un-polarised ross setions within pQCD and the fatorisation sheme, takinginto aount parton intrinsi motion in distribution and fragmentation fun-tions, as well as in the elementary dynamis. Surprisingly, the intrinsi par-toni motion, with all the orret azimuthal angular dependenes, produesa strong suppression of the transverse single spin asymmetry arising fromthe Collins mehanism. As a onsequene, and in ontradition with ear-lier laims, the Collins mehanism is unable to explain the large asymmetriesfound in p" p ! �X at moderate to large Feynman xF . The Sivers e�et isnot suppressed.



1. Introdution and general formalismThe inlusive prodution of large pT partiles in the high energy ollision of twonuleons has been for a long time a ruial testing ground for perturbative QCD;in suh kinematial regions the partoni degrees of freedom dominate the hadroniproesses, whih an be desribed in terms of quark and gluon dynamis, oupledto non perturbative information { parton distribution (pdf) and fragmentation (�)funtions { gathered from other proesses and evolved to the proper sale via QCDevolution equations.In the simplest ase this translates into the well known expression:EC d�AB!CXd3pC = Xa;b;;d Z dxa dxb dz fa=A(xa; Q2) fb=B(xb; Q2) (1)� ŝ�z2 d�̂ab!ddt̂ (ŝ; t̂; û; xa; xb) Æ(ŝ+ t̂+ û)DC=(z;Q2)= Xa;b;;d Z dxa dxb fa=A(xa; Q2) fb=B(xb; Q2) (2)� 1�z d�̂ab!ddt̂ (ŝ; t̂; û; xa; xb)DC=(z;Q2) ;whih ombines all possible elementary QCD interations ab ! d, with distribu-tion, f(x;Q2), and fragmentation,D(z;Q2), funtions: all partoni intrinsi motionshave been integrated over and the hadrons are onsidered as omposed of ollinearmassless quarks and gluons, eah arrying a fration x of the parent momentum;similarly for the �nal quark fragmentation into a ollinear hadron with fration zof the quark momentum. The energy-momentum onservation of the elementaryinterations, ŝ + t̂ + û = 0, allows to relate xa; xb and z, namely, in this ollinearpiture, xa xb z s = �xa t� xb u, where ŝ; t̂; û (s; t; u) are the Mandelstam variablesfor the partoni (hadroni) proess.Eq. (1) { taking into aount higher order ontributions to the elementary in-terations { desribes suessfully the highest energy ross setion data, inludingthe most reent ones from RHIC [1℄. However, already starting from the pioneer-ing work of Feynman, Field and Fox [2℄, several papers have shown that intrinsitransverse momenta k?'s have to be expliitly introdued into Eq. (1) in order tobe able to explain data at moderately large pT , for prodution of pions and photons[3, 4℄; without them the theoretial (ollinear) omputations would give results insome ases muh smaller (up to a fator 10 or even more) than experiment.Taking into aount intrinsi transverse momenta is not an entirely straight-forward matter. In the pure parton model, where partons are regarded as physialpartiles with de�nite mass (usually assumed to be negligible), the standard ollinearparton density fa=A(xa) is simply generalised to f̂a=A(xa;k?a), where k?a is the par-ton momentum perpendiular to the nuleon momentum, andfa=A(xa) = Z d2k?a f̂a=A(xa;k?a) ; (3)1



where, to be preise, xa is the light-one momentum fration of parton a insidehadron A. Similarly, the fragmentation funtion is generalised to D̂C=(z;k?C),where k?C is the transverse momentum of the observed hadron C with respet tothe fragmenting parton . All dynami partoni alulations are then arried outwith inlusion of the intrinsi transverse momenta k?'s.This natural generalisation apparently modi�es Eq. (1) into:EC d�AB!CXd3pC = (4)Xa;b;;d Z dxa dxb dz d2k?a d2k?b d3k?C Æ(k?C � p̂) f̂a=A(xa;k?a;Q2) f̂b=B(xb;k?b;Q2)ŝ2�xaxbz2s J(k?C) d�̂ab!ddt̂ (ŝ; t̂; û; xa; xb) Æ(ŝ+ t̂+ û) D̂C=(z;k?C ;Q2) ;where k?a (k?b) and k?C are respetively the transverse momenta of parton a (b)with respet to hadron A (B), and of hadron C with respet to parton , whih in thease of light quarks or gluons is taken to be massless. We have formally extendedour de�nition of the 2-vetor k?C into a 3-vetor via the Æ-funtion Æ(k?C � p̂).Negleting parton masses, the funtion J is given by [4℄J(k?C) = �EC +qp2C � k2?C�24(p2C � k2?C) � (5)Eq. (4) has been widely used in the literature, albeit without the fator J , whihequals 1 if we neglet the �nal hadron mass and k2?C in Eq. (5). Note that the fatorŝ=(�z2) in Eq. (1) follows from the fator ŝ2=(� xaxb z2s) in (4) sine for ollinearollisions ŝ = xaxb s. Although it is true that even with k?, ŝ ' xaxb s, the use ofthis approximation has been shown by Cahn [5℄ to lead to azimuthal asymmetrieswhih are physially impossible.The k? dependent pdf and � are usually assumed to have simple fatorised andGaussian forms, like:f̂q=p(x;k?;Q2) = fq=p(x;Q2) g(k?) = fq=p(x;Q2) �2� e��2 k2? ; (6)so that hk2?i = 1=�2 ; Z d2k? f̂q=p(x;k?;Q2) = fq=p(x;Q2) ; (7)where � might depend on x and the energy; it is usually assumed to be avourindependent. A similar fatorisation is adopted for the k? dependent fragmenta-tion funtions. The elementary ross setions d�̂=dt̂ depend, via the elementaryMandelstam variables ŝ; t̂ and û, on the intrinsi motions.The QCD fatorisation theorem impliitly used in Eq. (4) { with unintegratedk? dependent distribution and fragmentation funtions { has never been formally2



proven in general [6℄, but only for the Drell-Yan proess, for the two-partile inlusiveross setion in e+e� annihilation [7℄ and, reently, for SIDIS proesses in partiularkinematial regions [8℄. Moreover, in QCD the parton model is a leading-twistapproximation to the theory, whereas intrinsi transverse e�ets are of higher-twistand should therefore be inorporated in a onsistent higher-twist development ofthe theory. Unfortunately, suh a treatment is very ompliated and introdues awhole set of new unknown soft funtions and quark-gluon orrelations with unlearpartoni interpretation.It turns out, however, that some partoni e�ets of transverse momentum aresurprisingly large and an generate phenomena whih would be impossible to repro-due in the ollinear treatment:� the presene of an intrinsi k? alters the relationship between the light-onemomentum fration x of the parton and the Bjorken xBj, so that x 6= xBj.Although the shift is small and proportional to k2?=(xps)2, it an have asubstantial e�et in the region of x where the parton densities are varyingrapidly. This is a kind of enhaned higher-twist e�et and an lead up to anorder of magnitude hange in a ross setion. Similarly, due to intrinsi motion,the partoni sattering angle in the pp .m. frame might be muh smallerthan the hadroni prodution angle, thus enhaning the large pT inlusiveprodution of partiles.� In the presene of transverse momentum, ertain spin-dependent e�ets an begenerated by soft mehanisms and an be used to understand the large trans-verse single spin asymmetries (SSA) found in many reations like A" + B !C +X and the large hyperon polarisations in proesses like A+B ! H"+X.At leading twist there are 4 suh soft mehanisms, often referred to as \oddunder naive time reversal":a) Sivers distribution funtion [9℄: in a transversely polarised nuleon withmomentum p and polarisation vetor P , the number density of quarks withmomentum (xp;k?) is allowed to depend upon P � (p� k?); in other words,the Sivers distribution funtion represents the azimuthal dependene (aroundp) of the number density of unpolarised quarks inside a transversely polarisedproton.b) Collins fragmentation funtion [6℄: in the fragmentation of a transverselypolarised quark with momentumpq and polarisation vetor Pq, q ! C+X, thenumber density of hadrons C with momentum (zpq;k?) is allowed to dependon P q � (pq�k?); in other words the Collins fragmentation funtion representsthe azimuthal dependene (around pq) of the number density of unpolarisedhadrons resulting from the fragmentation of a transversely polarised quark.) Boer-Mulders distribution funtion [10℄: in an unpolarised nuleon a quarkwith momentum (xp;k?) is allowed to have a non-zero polarisation alongp � k?; that is, the Boer-Mulders distribution funtion represents the az-imuthal dependene (around p) of the number density of transversely polarised3



quarks inside an unpolarised proton.d) polarising fragmentation funtion [11, 12℄: in the fragmentation of an unpo-larised quark with momentum pq a �nal spin 1/2 hadron C with momentum(zpq;k?) is allowed to have a non-zero polarisation along pq � k?; that is,the polarising fragmentation funtion represents the azimuthal dependene(around pq) of the number density of transversely polarised hadrons resultingfrom the fragmentation of an unpolarised quark.It should be noted that in the pure parton model, where partons are treated asphysial free partiles, all these e�ets vanish [13℄.In the present paper we study transverse single spin asymmetries, in p" p! �Xproesses, taking into aount all parton intrinsi motions in initial and �nal hadronsand in the elementary dynamis. This generalises previous work in whih only theone k? essential to the mehanism was taken into aount, either in the initialpolarised nuleon (Sivers e�et) or in the �nal quark fragmentation (Collins e�et),and the k? distribution was somewhat simpli�ed into essentially a two-dimensionalÆ-funtion [14, 15, 16℄.For the reasons explained above, we have not attempted to onstrut a fullyonsistent next-to-leading-twist treatment. Our strategy is to keep only the en-haned higher-twist terms and to alulate partoni heliity amplitudes as if thepartons were partiles. We believe this approah is physially meaningful sine ittakes into aount the most important higher-twist terms in the ross setion andthe asymmetry. Three of the above spin e�ets, a){), an ontribute to pion SSA,but in this paper we wish to explore the generation of SSA due to the existene ofthe Collins fragmentation funtion alone, for whih there is some evidene in thepolarised lepto-prodution data of the HERMES ollaboration [17, 18℄. The Boer-Mulders e�et an also ontribute to transverse single spin asymmetries but, at leastfor p" p! �X proesses, it would ontribute mainly at negative xF values, whereasdata are in the positive xF region. The Sivers e�et is also relevant, and has beenstudied in a parallel paper [4℄. In fat we shall show that the onsistent treatmentof all intrinsi partoni motions indues a major suppression of the ontribution tothe asymmetry due to the Collins mehanism and renders it inapable of produing,by itself, the kind of asymmetries measured in p" p! �X reations [19, 20℄.This result modi�es the onlusions of Ref. [15, 16℄, where the Collins ontribu-tion to SSA in p" p! �X proesses was omputed adopting a simpli�ed kinematialon�guration: it appeared that the Collins fragmentation funtion ould, althoughwith some diÆulty, explain the E704 data [19℄. Note that the results on SSA ob-tained using the Sivers distribution funtion, with a similar simpli�ed kinematialon�guration [14℄ are, instead, essentially on�rmed by the exat treatment of allintrinsi partoni motions [4℄.In order to study spin asymmetries we have to introdue spins in the QCD hardsattering proesses. Eq. (1) holds also for polarised proesses, (A;SA)+(B;SB)!C +X [21℄, provided one introdues in the fatorisation sheme, in addition to the4



distribution funtions, the heliity density matries whih desribe the parton spinstates. This an be done also for Eq. (4) with the result:EC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;;d;f�g Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?C Æ(k?C � p̂)J(k?C) �a=A;SA�a;�0a f̂a=A;SA(xa;k?a) �b=B;SB�b;�0b f̂b=B;SB(xb;k?b) (8)M̂�;�d;�a;�b M̂��0;�d;�0a;�0b Æ(ŝ+ t̂+ û) D̂�C ;�C�;�0 (z;k?C) ;where we have used the notation f�g to imply a sum over all heliity indies. InEq. (8) �a=A;SA�a;�0a is the heliity density matrix of parton a inside the polarised hadronA whose polarisation state is generially labelled by SA (for spin 1=2 partiles thismeans longitudinal or transverse polarisation); similarly for parton b inside hadronB with spin SB. The M̂�;�d;�a;�b's are the heliity amplitudes for the elementaryproess ab ! d, normalised so that the unpolarised ross setion, for a ollinearollision, is given by d�̂ab!ddt̂ = 116�ŝ2 14 X�a;�b;�;�d jM̂�;�d;�a;�bj2 : (9)D̂�C ;�0C�;�0 (z;k?C) is the produt of fragmentation amplitudes for the ! C+X proessD̂�C ;�0C�;�0 =PZ X;�X D̂�X ;�C ;� D̂��X ;�0C;�0 ; (10)where the PZ X;�X stands for a spin sum and phase spae integration over all unde-teted partiles, onsidered as a system X. The usual unpolarised fragmentationfuntion DC=(z), i.e. the number density of hadrons C resulting from the fragmen-tation of an unpolarised parton  and arrying a light-one momentum fration z,is given by DC=(z) = 12 X�;�C Z d2k?C D̂�C ;�C�;� (z;k?C) : (11)Eq. (8) an be formally simpli�ed, showing its physial meaning, by notiingthat: X�a;�b;�0a;�0b;�d �A;SA�a;�0a �B;SB�b;�0b M̂�;�d;�a;�b M̂��0;�d;�0a;�0b = �0�;�0() = ��;�0 Tr�0() ; (12)where ��;�0 is the normalised heliity density matrix of parton  produed in theab ! d proess, with initially polarised partons a and b; the normalisation fatorTr�0() is related to the polarised ross setion for a ollinear ollision:Tr�0() = (32�2ŝ2) d2�̂(a;sa)+(b;sb)!+ddt̂ d�̂ ; (13)5



where �̂ is the azimuthal angle of parton  in the partoni enter of mass frame.Moreover, X� �0;�C ��;�0 D̂�C ;�C�;�0 (z;k?C) = D̂C=;s (z;k?C) ; (14)is just the fragmentation funtion of a polarised parton , with spin on�gurations, into a hadron C, whose spin is not observed.Using Eqs. (12)-(14), Eq. (8) an be written as:EC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;;d Z dxa dxb dz d2k?a d2k?b d3k?C Æ(k?C � p̂)f̂a=A;SA(xa;k?a) f̂b=B;SB(xb;k?b) 2ŝ2xaxbz2s J(k?C)d2�̂(a;sa)+(b;sb)!+ddt̂ d�̂ Æ(ŝ+ t̂+ û) D̂C=;s(z;k?C) ; (15)whih is the analogue of Eq. (4) in the polarised ase.Eq. (15) shows learly the fatorised struture and the partoni interpretation:inside polarised hadrons one has polarised partons with spin on�gurations sa andsb, whih interat via pQCD proesses, leading to a �nal polarised parton, with spinon�guration s, whih fragments into the observed �nal hadron. For the initial and�nal step { the determination of the parton polarisation from the hadron polarisationand the fragmentation of the polarised parton { one has to rely on distribution andfragmentation funtions; some of them are known from other proesses or from the-oretial models and some of them, in partiular when allowing for intrinsi motions,are new and unexplored.Although Eq. (15) has a simple physial interpretation, it is more onvenient tostudy the sattering proess with the heliity formalism of Eq. (8); when dealingwith heliities and heliity density matries all spins have a well de�ned interpreta-tion onerning their diretions [22℄, and this is ruial if we are taking into aountall parton transverse motions, so that there are several transverse spin diretions.Sine the diretion of motion of the parton does not oinide with that of its parenthadron, the longitudinal and transverse diretion of the parton spin will also bedi�erent from the longitudinal and transverse diretion of the parent hadron spin.The partoni distribution is usually regarded, at Leading Order, as the inlusiveross setion for the proess A ! a + X; therefore the heliity density matrix ofparton a inside a hadron A with polarisation SA an be written as�a=A;SA�a;�0a f̂a=A;SA(xa;k?a) = X�A;�0A �A;SA�A;�0A PZ XA;�XÂF�a;�XA;�A F̂��0a;�XA ;�0A (16)= X�A;�0A �A;SA�A;�0A F̂ �a;�0a�A;�0A ; (17)6



having de�ned F̂ �a;�0a�A;�0A �PZ XA;�XÂF�a;�XA;�A F̂��0a;�XA;�0A ; (18)and where the PZ XA;�XAstands for a spin sum and phase spae integration over allundeteted remnants of hadron A, onsidered as a system XA and the F̂ 's are theheliity distribution amplitudes for the A! a+X proess.Notie that Eq. (17) relates the heliity density matrix of parton a to the heliitydensity matrix of hadron A. The heliity density matrix desribes the spin orienta-tion of a partile in its heliity rest frame [22℄; for a spin 1/2 partile, Tr (�i�) = Pi isthe i-omponent of the polarisation vetor P in the heliity rest frame of the parti-le. In this sense Eq. (17) relates the hadron polarisation to the parton polarisation,whih have both to be de�ned and interpreted in the proper rest frames.The distribution funtion of parton a inside the polarised hadron A;SA is givenby f̂a=A;SA(xa;k?a) = X�a;�A;�0A �A;SA�A;�0AF̂ �a;�a�A;�0A (19)and the usual unpolarised distribution funtion fa=A(xa), i.e. the number density ofpartons a inside an unpolarised parton A, arrying a light-one momentum frationxa, is given by fa=A(xa) = 12 X�a;�A Z d2k?a F̂ �a;�a�A;�A : (20)Similar expressions for the fragmentation proess have already been introduedin Eqs. (10) and (11).By using Eq. (17), Eq. (8) an be written asEC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;;d;f�g Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?C Æ(k?C � p̂)J(k?C) �A;SA�A;�0A F̂ �a;�0a�A;�0A �B;SB�B;�0B F̂ �b;�0b�B;�0B M̂�;�d;�a;�b M̂��0;�d;�0a;�0b Æ(ŝ+ t̂+ û) D̂�C ;�C�;�0 : (21)Eq. (21) ontains all possible ombinations of di�erent distribution and fragmenta-tion amplitudes: these ombinations have partoni interpretations and are relatedto the k? and spin dependent fragmentation and distribution funtions disussedabove and, for example, in Refs. [23℄ and [24℄. Notie that, even though Eq. (4), forthe unpolarised ross setion, looks intuitively orret and onvining, Eq. (21), ifCollins and Boer-Mulders e�ets are operative, will yield a di�erent result, i.e. with�I�I ;�0I = (1=2) Æ�I ;�0I (I = A;B), Eq. (21) ontains terms not inluded in Eq. (4),that is the terms o�-diagonal in the parton heliities. We have heked numeriallythat these ontributions are negligible in the unpolarised ross setion. All this willbe disussed in detail in a forthoming paper [25℄, where all ontributions to singleand double spin asymmetries will be examined, together with the parity and k?7



properties of the distribution and fragmentation amplitudes. Here we are only on-sidering the proess p" p ! �X and are foussing only on the ontribution of Collinsmehanism [6℄, that is the azimuthal dependene of the number of pions reated inthe fragmentation of a transversely polarised quark. The unpolarised ross setionwill be omputed aording to Eq. (4), taking into aount the intrinsi transversemotion of all partons (see also Ref. [4℄).2. Single Spin Asymmetries and Collins mehanism for pion produtionLet us then onsider the proesses p"(p#) p ! �X; we study them in the ppenter of mass frame, with the polarised beam moving along the positive Z-axis andthe pion produed in the XZ plane with (p�)x > 0 values. The " (#) is de�nedas the +Y (�Y ) diretion. We then have, with SA = "; #, and with an unpolarisedhadron B (SB = 0),�A;"#�A;�0A = 12  1 �i�i 1 ! �B;0�B;�0B = 12  1 00 1 ! � (22)The omputation of the single spin asymmetryAN = d�" � d�#d�" + d�# (23)requires evaluation and integration, for eah elementary proess ab ! d, of thequantity [see Eq. (21)℄�(SA; SB) �Xf�g �A;SA�A;�0A F̂ �a;�0a�A;�0A �B;SB�B;�0B F̂ �b;�0b�B;�0B M̂�;�d;�a;�b M̂��0;�d;�0a;�0b D̂��;�0 ; (24)where D̂��;�0 is de�ned as in Eq. (10), for pion prodution. From Eqs. (22) and(24) one has that the numerator of AN is proportional to�("; 0) � �(#; 0) =Xf�g (�i)2 hF̂ �a;�0a+;� � F̂ �a;�0a�;+ i F̂ �b;�0b�B;�B M̂�;�d;�a;�b M̂��0;�d;�0a;�0b D̂��;�0 ;(25)while the denominator ontains:�("; 0)+�(#; 0) =Xf�g 12 hF̂ �a;�0a+;+ + F̂ �a;�0a�;� i F̂ �b;�0b�B;�B M̂�;�d;�a;�b M̂��0;�d;�0a;�0bD̂��;�0 : (26)In the equations above and in the sequel + and � stand for +1=2 and �1=2 heliities,when referring to nuleons or quarks, and for +1 and �1 heliities, when referringto gluons.As we have said, in this paper we are foussing solely on the Collins mehanismand we do not onsider all possible ontributions to AN , whih will be disussed8



elsewhere [25℄. Therefore, we do not onsider the possibility of �nding transverselypolarised quarks inside the unpolarised proton B [10℄ or the possibility of havingdi�erent total numbers of quarks, at di�erent k? values, inside the transverselypolarised proton A [9℄. This does not imply that these other e�ets whih arenegligible for the unpolarised ross setion are negligible for the SSA; simply thatwe wish to explore to what extent the Collins mehanism alone is able to explain themeasured transverse single spin asymmetries. As a onsequene, the F̂ -terms o�-diagonal in �b; �0b (while diagonal in �B; �0B) and the F̂ -terms o�-diagonal in �A; �0A(while diagonal in �a; �0a) will be negleted. The Collins mehanism orresponds tothe terms o�-diagonal in the fragmenting quark heliities �; �0. Taking all this intoaount, a partial summation in Eq. (25) obtains�("; 0) ��(#; 0) =Xf�g (�i)2 �hF̂+;�+;� � F̂+;��;+ ia=A f̂b=B M̂�;�d;+;�b M̂���;�d;�;�b D̂��;�� + (27)hF̂�;++;� � F̂�;+�;+ ia=A f̂b=B M̂�;�d;�;�b M̂���;�d;+;�b D̂��;�� � ;where we have exploited the fat that, by parity invariane,F̂ �b;�b+;+ + F̂ �b;�b�;� = f̂b=B ; (28)independently of the value of �b.The same proedure applied to Eq. (26) reveals that the denominator of AN isjust twie the unpolarised ross setion, as given by Eq. (4).Eq. (27) an be further simpli�ed by exploiting the dynamial and the parityproperties of the heliity amplitudes appearing in it. This requires some arefulonsiderations.� Whereas the hadroni proess p" p ! �X takes plae, aording to our hoie,in the XZ plane, all other elementary proesses involved: A(B)! a(b) +X,ab! d and ! �+X, do not; all parton and hadron momenta, pa; pb; pC ,have transverse omponents k?a; k?b; k?C and this ompliates remarkablythe kinematis. For example, the elementary QCD proess ab ! d, whoseheliity amplitudes are well known in the ab enter of mass frame, is not,in general, a planar proess anymore when observed from the pp enter ofmass frame. Similarly, as we ommented, the spin properties desribed byheliity density matries have lear physial interpretations in eah partile'sown heliity rest frame, but not neessarily in the pp enter of mass frame.Of ourse, one an always boost and rotate from one frame into another, butthis introdues phases in the heliity amplitudes, whih have to be properlyaounted for. 9



� We refer all angles to the pp .m. frame, in whih p̂i = (�i; �i), (i = a; b; ; d).Then the distribution funtions of the polarised proton A desribe proessestaking plae in the plane de�ned by Z and the pa diretion, (�a; �a). Therefore[22, 25℄ F̂�a;�XA;�A(xa;k?a) = F�a;�XA ;�A(xa; k?a) exp[i�A�a℄ (29)and F̂ �a;�0a�A;�0A(xa;k?a) = F �a;�0a�A;�0A(xa; k?a) exp[i(�A � �0A)�a℄ ; (30)where k?a = jk?aj; F �a;�0a�A;�0A(xa; k?a) has the same de�nition as F̂ �a;�0a�A;�0A(xa;k?a),Eq. (18), with F̂ replaed by F .The parity properties of F�a;�XA ;�A(xa; k?a) are the usual ones valid for heliityamplitudes in the �a = 0 plane [22℄,F��a;��XA ;��A = � (�1)SA�sa�SXA (�1)�A��a+�XA F�a;�XA;�A ; (31)where � is an intrinsi parity fator suh that �2 = 1. These imply:F��a;��0a��A;��0A = (�1)2(SA�sa) (�1)(�A��a)+(�0A��0a) F �a;�0a�A;�0A : (32)� Let us onsider now the elementary partoni amplitudes. As already remarked,the hard partoni interations, a(pa) + b(pb) ! (p) + d(pd), take plae outof the XZ plane, whih we have hosen as the plane of the overall p" p! �Xproess. One ould ompute the heliity amplitudes for these generi proessesamong massless partiles using tehniques well known in the literature, likethose explained in Chapter 10 of Ref. [22℄. On the other hand, the expliitexpressions and the parity properties of the heliity amplitudes M̂0, whihapply when the elementary satterings our in the ab .m. frame, in the XZplane, are well known. Therefore, rather than omputing diretly the generiheliity amplitudes M̂ , we prefer to relate them to the known amplitudes M̂0.To reah the simple on�guration of the M̂0 amplitudes, starting from thegeneri on�guration pa; pb, we have to perform a boost in the diretion de-termined by (pa + pb) so that the boosted three-vetor (p0a + p0b) is equal tozero. This will provide us with a .m.-like referene frame S0 where the partonsa and b ollide head-on. Here the parton a and the parton , resulting fromthe hard interation between a and b, will have diretions identi�ed by (�0a; �0a)and (�0; �0) respetively. In general, the parton momenta in S0 are related tothe initial ones (before the boost) by:p0i = pi � qq0 +pq2  pi � qpq2 + p0i! (33)where i = a; b; ; d and q� = (q0;q) = p�a + p�b .10



We need now to perform two subsequent rotations, one around the Z axis byan angle �0a, and one around the Y axis, by an angle �0a, suh that the ollisionaxis of the two olliding initial partons turns out to be aligned with the Z axis.We all this frame S00.Under these boost and rotations the heliity states and onsequently the sat-tering amplitudes aquire phases, �a;b;;d and ~�a;b;;d:M̂�;�d;�a;�b = M̂S00�;�d;�a;�b e�i(�a�a+�b�b�����d�d) e�i[(�a��b)~�a�(���d)~�℄ ; (34)where �j and ~�j (j = a; b; ; d) are de�ned by [22℄os �j = os �q sin �j � sin �q os �j os(�q � �j)sin �qpj (35)sin �j = sin �q sin(�q � �j)sin �qpj ; (36)and ~�j = �0j + �0j ; (37)where os �0j = os �q sin �0j � sin �q os �0j os(�q � �0j)sin �qp0j (38)sin �0j = � sin �q sin(�q � �0j)sin �qp0j ; (39)os �0j = os �0a � os �0j os �p0ap0jsin �0j sin �p0ap0j (40)sin �0j = sin �0a sin(�0a � �0j)sin �p0ap0j ; (41)and the polar angles (�0j; �0j) are determined via Eq. (33). Here �pipj (0 ��pipj � �) is the angle between pi and pj, and so on. Notie that �0a = 0.In the S00 frame the diretion of the parton  is haraterised by an azimuthalangle �00 given bytan�00 = sin �0 sin(�0 � �0a)sin �0 os(�0 � �0a) os �0a � os �0 sin �0a � (42)A �nal rotation around Z of an angle �00 will then �nally bring us to theanonial on�guration in whih the partoni proess is a .m. one in the XZplane. This introdues another phase. As a result of the performed boost and11



rotations the elementary sattering amplitudes omputed in the hadroni .m.system (the one where we are studying the hadroni ross setion) are relatedto the heliity amplitudes omputed in the partoni .m. system (in the XZplane, � = 0) by:M̂�;�d;�a;�b= M̂0�;�d;�a;�b e�i(�a�a+�b�b�����d�d) e�i[(�a��b)~�a�(���d)~�℄ ei(�a��b)�00(43)with �00 , �j and ~�j de�ned in Eqs. (35){(42); Eq. (33) allows to fully expressthe amplitudes in terms of the pp .m. variables pi. The parity properties ofthe anonial .m. amplitudes M̂0 are the usual ones:M̂0��;��d;��a;��b = �a�b��d(�1)sa+sb�s�sd (�1)(�a��b)�(���d)M̂0�;�d;�a;�b ;(44)where �i is the intrinsi parity fator for partile i.� Let us �nally onsider the fragmentation proess. We take as independentvariables, in the pp .m. frame, the four-momentum of the �nal hadronp�C � p�� = (qp2T + p2L; pT ; 0; pL) (whose three-momentum, aording to ourhoie, lies in the hadroni XZ plane and where we neglet the pion mass),the intrinsi transverse momentum k?C � k?� = (k?�; �k?� ; �k?�) of the �nalpion with respet to p (k?� � p = 0), and the light-one momentum frationz = p+� =p+ .The parity properties of the fragmentation amplitudes, Eq. (10), are simple {analogous to the ones for the distribution amplitudes, Eqs. (31) and (32) { ina frame SH in whih the parton  moves along the ZH -axis. This frame an bereahed from the hadroni pp frame by performing two rotations: �rst aroundZ by an angle � and then around the new Y -axis by an angle �, whih bringsthe 3-momentum p of parton  along the new ZH -axis. In the frame SH theazimuthal angle �H� identifying the diretion of the �nal deteted pion (whihoinides with the azimuthal angle of k?� in SH) is given, in terms of ourhosen pp .m. variables, bytan �H� = � pTqE2� � k2?� vuut1 �  k?� � pL os �k?�pT sin �k?� !2 tan �k?� ; (45)where E� = qp2T + p2L is the energy of the �nal pion.The analogue of Eqs. (29), (30) and (32), for the fragmentation of a parton into a pion, readsD̂�X ;�(z;k?�) = D�X ;�(z; k?�) exp[i��H� ℄ ; (46)D̂��;�0 = D��;�0 exp[i(� � �0)�H� ℄ ; (47)12



with the parity relationshipsD��� ;��0 = (�1)2s (�1)�+�0 D��;�0 ; (48)where D��;�0 is de�ned aording to Eq. (10), in the ase in whih the hadronC is a spinless partile (pion),D��;�0(z; k?�) =PZ X;�X D�X ;�D��X ;�0 : (49)By exploiting the above angular and parity relations, Eqs. (30), (32), (43), (44),(47) and (48), we an now further simplify Eq. (27). One obtains:�("; 0)� �(#; 0) = �iXf�g hf̂b=B M̂0�;�d;+;�b M̂0 ���;�d;�;�b D��;��inF+�+� os[�a + �00 � �a � ~�a + 2�(� + ~� + �H� )℄ (50)� F+��+ os[�a � �00 + �a + ~�a � 2�(� + ~� + �H� )℄o ;where we have also used the fat that partons a and , arrying transverse polarisa-tion, are quarks or antiquarks, that is sa = s = 1=2.Let us �nally perform the remaining sum over heliities in Eq. (50). The onlytypes of elementary interations ontributing are qaqb ! qqd (generially denotedas qq) and qg ! qg (generially denoted as qg), where qa = u; d; s; �u; �d; �s and so on.The only independent heliity amplitudes M̂0 for the qq proesses are:M̂0+;+;+;+ = M̂0�;�;�;� � (M̂01 )qqM̂0�;+;�;+ = M̂0+;�;+;� � (M̂02 )qq (51)M̂0�;+;+;� = M̂0+;�;�;+ � (M̂03 )qq :and, for the qg proesses,M̂0+;1;+;1 = M̂0�;�1;�;�1 � (M̂01 )qg M̂0�;1;�;1 = M̂0+;�1;+;�1 � (M̂02 )qg : (52)At Leading Order all suh amplitudes are real.On summing over f�g Eq. (50) gives, for qq proesses,[�("; 0) ��(#; 0)℄qq = nF+�+� (xa; k?a) os[�a + �00 � �a � ~�a + � + ~� + �H� ℄� F+��+ (xa; k?a) os[�a � �00 + �a + ~�a � � � ~� � �H� ℄o (53)� f̂q=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqq h�2iD�+�(z; k?�)iand, for qg proesses[�("; 0) ��(#; 0)℄qg = nF+�+� (xa; k?a) os[�a + �00 � �a � ~�a + � + ~� + �H� ℄� F+��+ (xa; k?a) os[�a � �00 + �a + ~�a � � � ~� � �H� ℄o (54)� f̂g=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqg h�2iD�+�(z; k?�)i :13



The produt of amplitudes appearing in Eqs. (53) and (54) are given by:M̂01 M̂02 = g4s 89 (� ŝû̂t2 + Æ�� 13 ŝ̂t) (q�q� ! q�q�)M̂01 M̂02 = g4s 89 Æ� (� ŝû̂t2 + Æ�� 13 û̂t ) (q��q� ! q�qÆ) (55)M̂01 M̂02 = g4s 89 (94 ŝû̂t2 � 1) (qg ! qg)where �; �;  and Æ are avour indies. Notie that in the above expressions allthe dependenes on the angles in the distribution and fragmentation funtions areexpliit and the funtions F , f̂ and D do not depend on angles any more; theelementary amplitudes depend on angles via the Mandelstam variables ŝ; t̂ and û.Notie also that the qq and qg ontributions have exatly the same struture, thedi�erene being only in the parton b distribution and in the elementary proesses.From Eqs. (21), (24), (53) and (54) the numerator of the single spin asymmetryAN , under the assumption that only Collins e�et ontributes, is given by (b,d anbe either quarks or gluons):E� d�p" p!� Xd3p� � E� d�p# p!� Xd3p� = (56)Xqa;b;q;d Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?� Æ(k?� � p̂)� J(k?�) Æ(ŝ+ t̂+ û)� nF+�+� (xa; k?a) os[�a + �00 � �a � ~�a + � + ~� + �H� ℄� F+��+ (xa; k?a) os[�a � �00 + �a + ~�a � � � ~� � �H� ℄o� f̂b=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqab!qd h�2iD�+�(z; k?�)i :A few omments are in order.� All angles appearing in Eq. (56) an be expressed in terms of the pp .m.integration variables, via Eqs. (33), (35){(42) and (45).� From Eqs. (48) and (49) one an see that D�+� is a purely imaginary quantity.The Collins fragmentation funtion [6, 15, 24, 27℄�2iD�+� = 2 ImD�+� � �ND�=q" ; (57)has a simple interpretation in the frame in whih the quark moves along theZ diretion, with spin parallel (q") or antiparallel (q#) to the Y -axis, whilethe q ! �X proess ours in the XZ plane: it gives the di�erene betweenthe number density of pions resulting from the fragmentation of a quark q"14



and a quark q#. In the pp .m. frame the quark transverse spin diretion isnot, in general, orthogonal to the q ! �X plane and this reets into the �H�dependene appearing in Eq. (56).� The produt of elementary amplitudes M̂01M̂02 , see Eqs. (51) and (52), is, ina frame in whih the partoni .m. sattering plane is XZ, simply related tothe spin transfer ross setion:116�ŝ2 hM̂01M̂02 iqb = d�̂q" b!q" bdt̂ � d�̂q" b!q# bdt̂ � (58)Again, the parton intrinsi motions give, in general, more ompliated, nonplanar on�gurations for the elementary satterings, whih indue dependeneson the angles �j, �0j , �0j and �00 .� The distribution terms F+�+� (xa; k?a) and F+��+ (xa; k?a) are related to the dis-tribution of transversely polarised quarks inside a transversely polarised pro-ton; these transverse diretions an be di�erent for protons and quarks [25℄.Without any intrinsi motion, only the F+�+� (xa) distribution would be present,oiniding with the transversity distribution h1(xa) [24℄.� Note that if one takes into aount intrinsi motions only in the fragmentationproess, assumed to our in the XZ plane [k?a = k?b = 0, (k?�)y = 0, whihimplies all phases to be zero℄, one reovers the expression for the numeratorof AN (aside from the fator J) used in Refs. [15, 16℄.We an now use Eqs. (56) and (4) to ompute the SSA AN = (d�"�d�#)=2 d�.3. Attempts to �t the data: suppression of the Collins mehanismAs noted earlier, it was previously believed that the remarkably large SSA founde.g. in the E704 experiment [19℄ ould be generated by either the Sivers [14℄ orthe Collins mehanisms [15, 16℄. However, to avoid handling the very omplexkinematis and having to deal numerially with 8-dimensional integrals, only theone essential intrinsi k?, responsible for the asymmetry, was taken into aountin these studies. We now believe that the phases involved, when the kinematis istreated arefully, are ruial, and, as we shall see, lead to a large suppression of theasymmetry due to the Collins mehanism. As explained in [4℄ there is little or nosuppression of the asymmetry due to the Sivers mehanism.In order to demonstrate the extent of the suppression we shall hoose for theunmeasured soft funtions in Eq. (56) their known upper bounds. Let us �rst writethese funtions with the notations of Refs. [11℄ and [24℄ (details will be given in[25℄): F+�+� (x; k?) = h1(x; k?) = h1T (x; k?) + k2?2M2p h?1T (x; k?) (59)15



F+��+ (x; k?) = k2?2M2p h?1T (x; k?) (60)�2iD�+�(z; k?) = �ND�=q"(z; k?) = 2k?zM� H?q1 (z; k?) : (61)where Mp and M� are respetively the proton and pion mass. The following posi-tivity bounds hold [28, 29℄:jh1(x; k?)j � 12 [q(x; k?) + �q(x; k?)℄ = q+(x; k?) (62)k2?2M2p jh?1T (x; k?)j � 12 [q(x; k?)��q(x; k?)℄ = q�(x; k?) (63)j�ND�=q"(z; k?)j � 2D�=q(z; k?) : (64)In our numerial estimates we adopt for all the unmeasured soft funtions theabove maximum possible values, and, moreover, adjust their signs so that the on-tributions from the valene avours (up and down) reinfore eah other in the �+reation, produing a maximally large positive A�+N . By isospin invariane it thenturns out that this hoie also produes a maximally large negative A��N . To bepreise, we have omputed the SSA, AN = (d�" � d�#)=2 d�, via Eqs. (56) and (4),with the following hoies:� For the transversity pdf F+�+� (x; k?) = h1(x; k?) and its ompanion h?1T we haveonly onsidered up and down quark avours, without any sea ontribution. Wehave saturated Eqs. (62) and (63):hu1(x; k?) = u+(x; k?) hd1(x; k?) = �d+(x; k?) (65)k2?2M2p h?u1T (x; k?) = �u�(x; k?) k2?2M2p h?d1T (x; k?) = +d+(x; k?) : (66)One naturally expets, for valene quarks, positive values for hu1 and negativeones for hd1; the relative signs between h1 and h?1T are hosen in order to max-imise the sum of their ontributions in Eq. (56). The x and k? dependenes inthe unpolarised and polarised pdf are fatorised assuming the same Gaussianform as in Eq. (6), with qhk2?i = 0.8 GeV/ [4℄. For the x-dependene of theunpolarised pdf we have adopted the MRST01 set [30℄ and for the polarisedpdf either the LSS01 set [31℄ or the LSS-BBS set [32℄, as two examples of verydi�erent hoies. We have used the same QCD evolution sale as in Ref. [4℄.� We have hosen the z-dependene of the Collins funtion in suh a way asto maximise the e�ets. Let us onsider the prodution of �+'s: sine thedominant partoni ontribution at large xF is ug ! ug, for whih the produtof elementary amplitudes M̂01M̂02 is negative, see Eqs. (55), in order to get a16



positive AN we need a negative u-quark Collins funtion. That is, we satisfythe positivity bound (64) with:�ND�+=u"(z; k?) = �2D�+=u(z; k?) : (67)We onsider here also the ontribution of the sub-leading hannel dg ! dg(negleted in Refs. [15, 16℄); as it enters with a negative hd1, in order to addall ontributions, we use for the non-leading Collins funtion�ND�+=d"(z; k?) = +2D�+=d(z; k?) : (68)In this way also AN for ��'s is maximised in size (by isospin invariane).For �0's we take, exploiting isospin symmetry,�ND�0=q" = 12 ��ND�+=u" +�ND�+=d"� = 12 ��2D�+=u + 2D�+=d� ; (69)where q = u; �u; d; �d and whih still ful�lls the bound (64). The z and k? de-pendenes of the unpolarised fragmentation funtions are also fatorised, withthe same Gaussian dependene as in Ref. [4℄, whih introdues a z-dependenthk2?i value, smaller than the onstant hk2?i value assumed for the pdf. Thisvalue allows a good understanding of the unpolarised ross setions; we haveexpliitly heked that inreasing the � hk2?i does not hange signi�antly ourpresent results (while spoiling the agreement with the unpolarised ross se-tions). The z-dependent unpolarised � are taken either from Kretzer [33℄ orfrom KKP [34, 4℄, as typial examples of two di�erent sets.With the above hoies, Eqs. (59){(69), we an (over)estimate the maximumvalue that, within our approah, the Collins mehanism alone ontributes to theSSA in p" p ! �X proesses. The results are presented in the four plots of Fig. 1,whih show (AN)Collinsmax as a funtion of xF , at pT = 1:5 GeV/ and ps ' 19:4GeV: this is the E704 kinematial region and a omparison with their data [19℄is shown. The only di�erene between the plots is given by di�erent hoies ofthe polarised distribution funtions and/or the unpolarised fragmentation funtions.Four di�erent ombinations are possible: two di�erent sets of polarised pdf, LSS01[31℄ or LSS-BBS [32℄, and two di�erent sets of unpolarised �, Kretzer [33℄, or KKP[34℄. The four ombinations exhaust all possible features of hoies available inthe literature. The results learly show that the Collins mehanism alone, evenmaximising all its e�ets, annot explain the observed SSA values; its ontribution,when all proper phases are taken into aount, fails to explain the large E704 valuesobserved for A�+N and A��N at large xF . 17



4. Comments and onlusionsWe have developed a onsistent formalism to desribe, within pQCD and a fa-torisation sheme, the inlusive prodution of partiles in hadroni high energy ol-lisions; all intrinsi motions of partons in hadrons and of hadrons in fragmentingpartons, are properly taken into aount. Suh a sheme has been applied, in aparallel paper [4℄, to the desription of several unpolarised ross setions and tothe omputation of SSA in p" p ! �X proesses, generated by the Sivers meha-nism alone. In this paper we have again onsidered SSA in p" p ! �X proesses,but foussing on the ontribution of the Collins mehanism alone. Previous work[14, 15, 16℄, performed in a similar sheme with simpli�ed kinematis, showed thatboth the Collins and the Sivers mehanisms, ould alone explain the observed dataon SSA.Suh a onlusion has now to be modi�ed: while properly hosen Sivers distri-bution funtions ould still explain the data [4℄, there are no Collins fragmentationfuntions able to do that, as Fig. 1 shows. The failure of the Collins mehanism,when all partoni motions are inluded, an be understood from the ompliatedazimuthal angle dependenies in Eq. (56): the many phases arising in polariseddistribution and fragmentation funtions, and in polarised non planar elementarydynamis onspire, when integrated, to strongly suppress the �nal result.The situation with the Sivers ontribution alone is muh simpler, as the partonspartiipating in the elementary dynamis and in the fragmentation proess are notpolarised. As a onsequene, the phase struture of the numerator of AN , in Siversase, ontains only one phase, the Sivers angle (see Eqs. (44) and (45) of Ref. [4℄).Its integration, oupled with the dependene of the elementary dynamis on thesame angle, does not signi�antly suppress the result. In this ase, the simpli�edkinematis of Ref. [14℄ ontains the main physial features of the mehanism andgives a reasonably aurate omputation of AN .Our results show, one more, the importane and subtleties of spin e�ets; allphases have to be properly onsidered and they often play ruial and unexpetedroles. The analysis of this paper will be extended to other proesses, like semi-inlusive Deep Inelasti Sattering, where many SSA e�ets have been observed[17, 18℄ and are being measured.AknowledgementsThe authors are grateful to INFN for ontinuous support to their ollaboration.M.B. is grateful to Or�eal Italia for awarding her a grant from the sheme \For Womenin Siene". E.L. is grateful to the Royal Soiety of Edinburgh Auber Bequestfor support. U.D. and F.M. aknowledge partial support from \Co�nanziamentoMURST-PRIN03". We would like to thank F. Pijlman for useful disussions.18
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