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Rare loop-induced decays are sensitive to New Physics in many Standard Model extensions. In this paper we

discuss the reconstruction of the radiative penguin decays b→sγ and the electroweak penguin decay b→``s at the

LHC. The expected annual yields and B/S estimates are presented.

Studies of the rare radiative penguin decays
b→sγ, the electroweak penguin decay b→``s, and
the decay Bs→µµ [1] allow to extract valuable in-
formation about penguin and box loop-diagrams.
The complex couplings of new particles may re-
sult in enhancement of decay rates or in the ap-
pearance of non-trivial CP-violating phases. For
example for the decay Bd→K∗γ because of the
one-diagram dominance (the strong phase ap-
pears only at order αS and 1/mb) the direct CP-
asymmetry is reliably predicted in the SM to be
≤ 1% [2], but for some SUSY scenarios it could
be as large as 10–40% [2,3].

Due to the V −A structure of the weak current
the photon polarisation in b → s (d) γ transitions
is almost 100%. In the SM this causes mixing-
induced CP-asymmetries to vanish [4], while in
extensions of the SM these asymmetries could be
as large as 50% [5]. This effect can be used as a
probe for the spin structure of new particles.

The test of QCD models in radiative penguin
decays still plays an important rôle [6]. The ratio
|Vtd| /|Vts| could be extracted from Γ (Bd→ωγ)/
Γ (Bd→K∗γ) with moderate theoretical uncer-
tainty [7].

The forward-backward asymmetry AFB for the
decay b→``s, is defined through the angle θFB

between the `+ and the b hadron flight direc-
tions in the di-lepton rest frame. The shape of
the asymmetry AFB

(

m2
``

)

and especially the po-
sition of the zero crossing in the SM are almost
unaffected by hadronic form factor uncertainties,
thus providing a good basis for searching for de-
viations [8].

The ratio of b→µµs and b→ees decays in any

exclusive mode is also a clean probe of the SM.
Lepton-universality predicts this ratio to be 1
with theoretical errors below 1% [9].

The LHC will produce copious amounts of b-
hadrons, with a total bb̄ cross-section of 500 µb.
This potential will be exploited by the ATLAS,
CMS and LHCb experiments.

ATLAS and CMS are general-purpose central
spectrometers designed for new physics searches
at high luminosity [10]. Yet they will have a small
trigger bandwidth dedicated to B-physics for de-
cays involving muons during the initial running
at lower luminosity. We assume for the following
that this programme covers 3 years of running at
L = 1033 cm−2s−1, i.e. 30 fb−1.

LHCb is a forward spectrometer [11] optimised
for b physics. Its main features are the precise
vertex detector, the two RICH detectors and the
versatile trigger with a 2 kHz output rate domi-
nated by pp → bb̄X events. LHCb will operate
at a lower luminosity of L = 2 · 1032 cm−2s−1,
corresponding to 2 fb−1 per year.

The reconstruction of rare b decays at LHC is
a challenge due to the small rates and large back-
grounds from various sources. The most critical
is the combinatorial background from pp → bb̄X
events, containing secondary vertices and charac-
terised by high charged and neutral multiplicities.

1. Radiative B meson decays at LHCb

Radiative b→sγ decays can be reconstructed
in the modes Bd→K∗γ1 and Bs→φγ [12]. K∗

1The charge conjugate mode is always implied unless ex-
plicitly stated otherwise
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Figure 1. Reconstructed Bd→K∗γ and Bs→φγ
mass distributions for signal events after trigger
and selection cuts. The specific background from
B → K∗π0 and B → φπ0 decays is shown with
proper normalisation. The dominant combinato-
rial background is not shown.

and φ candidates are reconstructed in the K+π−

and K+K− modes respectively. Charged tracks
have to be inconsistent with any reconstructed
primary vertex. Selected K∗0 (φ) candidates are
combined with photon candidates of transverse
energy greater than 2.8 GeV. The reconstructed
B candidate is required to be compatible with
coming from a primary vertex. This requirement
is one of the most powerful cuts against combina-
torial background. Background from the decays
Bd → K∗π0 and Bd → φπ0 with an energetic π0

reconstructed as a single photon is suppressed by
cutting on the K∗ and φ helicity angle. The mass
resolution of the selected and triggered B candi-
dates is expected to be 65 MeV/c2 as shown in
Figure 1.

The selection of the Cabibbo suppressed de-
cay Bd→ωγ followed by ω → π+π−π0 follows a
similar approach, but it is complicated by the π0

reconstruction [13].2

The expected annual (2 fb−1) yields and B/S
ratios in a ±200 MeV/c2 mass window are given
in the table below:

Yield B/S
Bd→K∗γ 35 000 < 0.7
Bs→φγ 9 000 < 2.4
Bd→ωγ 40 < 3.5

2The Bd→ργ mode has not yet been studied, but is ex-
pected to be cleaner than the ω counterpart.

The background is estimated from a fully simu-
lated pp → bb̄X MC sample. The limits are given
at 90% C.L.

These yields will for instance allow CP asym-
metry measurements at the per-cent level in the
Bd→K∗γ channel.

2. Λb→Λγ at LHCb

Radiative b baryon decays like Λb→Λγ can be
used to probe the chirality of the effective Hamil-
tonian by measuring the photon polarisation [14].
The angular asymmetry between the Λb spin and
the photon momentum combined with the Λ →
pπ decay polarisation probes the predicted V −A
structure of this decay.

The Λ reconstruction is delicate at the LHC
since it may traverse a large fraction of the track-
ing system before decaying. Therefore one also
uses decays to heavier Λ resonances decaying
strongly to pK, losing the handle from the Λ de-
cay polarisation [15].

The event selection is similar to the one pre-
sented above for B mesons. In a preliminary
study LHCb expects the following annual yields
and B/S ratios for one year (2 fb−1):

Yield B/S
Λb→Λγ 750 < 42
Λb→Λ(1520)γ 4 200 < 10
Λb→Λ(1670)γ 2 500 < 18
Λb→Λ(1690)γ 2 500 < 18

The same comment as in Section 1 applies about
the background estimates.

The Λb is expected to be polarised in pp col-
lisions at LHC, especially in the forward region.
This polarisation is assumed to be 20%, a fraction
that will be measured to a 1% precision with Λb

→ J/ψΛ decays [16].
With these yields LHCb will be able to mea-

sure the right-handed polarisation component to
an accuracy of 5% after 5 years of data taking
(10 fb−1), which is smaller than the expected SM
contribution [17]. This accuracy only depends
weakly on the actual value of the Λb polarisation.
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Figure 2. a) The µµ mass in Bd→µµK∗ at LHCb.
Selected events (crosses) are compared with gen-
erated events (solid). b) The Λµµ mass at AT-
LAS (all signal and selected event compared).

3. AFB at the LHC

Thanks to its very clean experimental signa-
ture the decay b→µµs can be accessed by AT-
LAS, CMS and LHCb in the exclusive decays
Bu→µµK, Bs→µµφ, Bd→µµK∗ and Λb→µµΛ.
The latter two can be used to extract AFB.3

The selections combine two tracks positively
identified as opposite-charged muons with the rel-
evant hadronic final state. Similar selection crite-
ria as in Section 1 are applied. Very strict require-
ments on the vertex quality are applied to reduce
the backgrounds from cascade semileptonic b →
µνc, c → µνs decays and from two semileptonic
b→µνc decays. The former background needs to
be well under control because it induces an AFB

bias. The background from cc̄ resonances is re-
moved by vetoing the J/ψ and ψ(2S) mass win-
dows.

LHCb expects a 15 MeV/c2 resolution for the
B mass and 10 MeV/c2 for the µµ mass. The
resolution for θFB is 4 mrad. The distributions
for the di-muon invariant mass and the angle θFB

are not distorted by acceptance or selection cuts,
as illustrated in Fig. 2a for mµµ [18].

ATLAS has also studied these channels and ob-
tains a typical mass resolution of 60 MeV/c2 for
the final candidates as shown in Fig. 2b for the

3The AFB in Bu→µµK is expected to be null in the SM
and most extensions. Bs→µµφ is not self tagging which
greatly reduces the sensitivity.
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Figure 3. TypicalAFB versus di-lepton mass plots
for a) Bd→µµK∗ with 2 fb−1 at LHCb and b)
Λb→µµΛ with 30 fb−1 at ATLAS compared to
two theoretical expectations.

decay Λb→µµΛ.
The expected yields for these channels are

listed below for one nominal year of running at
LHCb and three years of running at ATLAS.

∫

Ldt Yield B/S
LHCb 2 fb−1 Bd→µµK∗ 4 400 < 3
LHCb 2 fb−1 Bu→µµK 1 600 ∼ 3
ATLAS 30 fb−1 Bd→µµK∗ 2 500 < 20
ATLAS 30 fb−1 Bu→µµK 1 500 < 6
ATLAS 30 fb−1 Bs→µµφ 900 < 11
ATLAS 30 fb−1 Λb→µµΛ 800 < 5

LHCb estimates its sensitivity to AFB in
Bd→µµK∗ in a toy MC study using these yields,
B/S and the relevant distributions. A typical
year of running could provide the AFB versusm2

µµ

plot shown in Fig. 3a, already allowing to exhibit
non-SM features. LHCb expects to extract the
C9/C7 Wilson-coefficients ratio from the crossing
point with the AFB = 0 axis to a precision of 13%
after 5 years of running (10 fb−1).

ATLAS will also be able to disentangle the SM
expectation from extensions with C7 > 0 after
three years (30 fb−1), as shown in Fig. 3b for
Λb→µµΛ.

4. RK at LHCb

Reconstructing Bu→eeK as well as Bu→µµK
allows us to extract the ratio RK of the two
branching fractions, integrated over a given di-
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Figure 4. Expected B candidate mass distribu-
tions in a) Bu→eeK and b) Bu→µµK modes for
10 fb−1 at LHCb.

lepton mass range.4 Bu→µµK decays are re-
constructed as explained above and the same
requirements are applied for the Bu→eeK de-
cay. A proper bremsstrahlung correction is es-
sential in this channel. The correction for the
lower reconstruction and trigger efficiency in the
electron mode is extracted from Bu→J/ψK de-
cays. The di-lepton mass range is chosen to be
1 < m2

`` < 6 GeV2/c4 in order to avoid cc̄ reso-
nances (especially in the ee mode) and thresholds
effect due to the higher µ mass. The event yields
are extracted from a two-dimensional fit to the
``K and `` masses in order to take into account
the backgrounds from b→J/ψs and B→``K∗.

The expected B candidate mass distributions
are shown in Fig. 4 for five years (10fb−1) of data
taking. The yields are:

Yield B/S σ(mB)
Bu→µµK 8 000± 50 ∼ 3 15 MeV/c2

Bu→eeK 1800± 35 ∼ 5 75 MeV/c2

The errors on the yields are the statistical error in
the estimate. Using these errors one gets an error
on RK of 4% after five years of running (10 fb−1).

5. Conclusion

The LHC experiments have a promising physics
potential for the study of numerous loop-induced
rare decays such as the radiative penguin decays
b→sγ and the electroweak penguin decay b→``s.

4Bd→``K∗ is also a good candidate (measuring RK∗ ) but
has not yet been studied.

The expected annual signal event yields and pre-
liminary estimates on background-to-signal ratios
have been presented.

The precision and reliability of background-to-
signal estimates are expected to improve with
a significant increase of Monte Carlo samples.
Studies of high level trigger efficiencies, system-
atic uncertainties, and the sensitivity to new
physics are in progress.
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