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Summary. — We review first the parton model formalism for polarized deep
inelastic lepton-hadron scattering. Topics discussed include the “spin crisis in the
parton model”, the role of the axial anomaly, our knowledge of the polarized gluon
number density and attempts to measure it. Secondly, going beyond the simple
parton model, we discuss the evolution of parton densities, the generalization of
the parton model in QCD, perturbative QCD corrections and scheme dependence.
Finally we comment on our knowledge of the polarized strange quark density and
attempts to learn about it from semi-inclusive deep inelastic scattering.

1. – Deep inelastic scattering

Deep inelastic lepton-hadron scattering (DIS) has played a seminal role in the devel-
opment of our present understanding of the sub-structure of elementary particles. The
discovery of Bjorken scaling in the late nineteen-sixties provided the critical impetus for
the idea that elementary particles contain almost pointlike constituents and for the sub-
sequent invention of the Parton Model. DIS continued to play an essential role in the
long period of consolidation that followed, in the gradual linking of partons and quarks,
in the discovery of the existence of missing constituents, later identified as gluons, and in
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Fig. 1. – Feynman diagram for deep inelastic lepton-hadron scattering

the wonderful confluence of all the different parts of the picture into a coherent dynamical
theory of quarks and gluons – Quantum Chromodynamics (QCD).

1.1. General formalism in one photon exchange approximation. – Consider the inelas-
tic scattering of polarized leptons on polarized nucleons. We denote by m the lepton
mass, k (k′) the initial (final) lepton four-momentum and s (s′) its covariant spin four-
vector, such that s · k = 0 (s′ · k′ = 0) and s · s = −1 (s′ · s′ = −1); the nucleon mass
is M and the nucleon four-momentum and spin four-vector are, respectively, P and S.
Assuming one photon exchange, (see fig. 1), the differential cross-section for detecting the
final polarized lepton in the solid angle dΩ and in the final energy range (E′, E′ + dE′)
in the laboratory frame, P = (M,0), k = (E, k), k′ = (E′, k′), can be written as

(1)
d2σ

dΩdE′ =
α2

2Mq4

E′

E
LµνWµν

where q = k − k′ and α is the fine structure constant.
The leptonic tensor Lµν is given by

Lµν(k, s; k′, ) =∑

s′
[ū(k′, s′) γµ u(k, s)]∗ [ū(k′, s′) γν u(k, s)](2)

and can be split into symmetric (S) and antisymmetric (A) parts under µ, ν inter-
change:

(3) Lµν(k, s; k′, ) = 2{L(S)
µν (k; k′) + iL(A)

µν (k, s; k′)}



The longitudinal spin structure of the nucleon 3

where

L(S)
µν (k; k′) = kµk′ν + k′µkν − gµν (k · k′ −m2)

L(A)
µν (k, s; k′) = m εµναβ sα qβ(4)

The unknown hadronic tensor Wµν describes the interaction between the virtual pho-
ton and the nucleon and depends upon four scalar structure functions, the unpolarized
functions W1,2 and the spin-dependent functions G1,2. These must be measured and can
then be studied in theoretical models, in our case in the QCD-modified parton model.
These can only be functions of the scalars q2 and q · P . Usually people work with

(5) Q2 ≡ −q2 and xBj ≡ Q2/2q · P = Q2/2Mν

where ν = E − E′ is the energy of the virtual photon in the Lab frame.
xBj is known as “x-Bjorken”, and we shall simply write it as x.
One has:

(6) Wµν(q; P, S) = W (S)
µν (q; P ) + i W (A)

µν (q;P, S)

with

1
2M

W (S)
µν (q;P ) =

(
−gµν +

qµqν

q2

)
W1(P · q, q2)

+
[(

Pµ − P · q
q2

qµ

)(
Pν − P · q

q2
qν

)]
W2(P · q, q2)

M2
(7)

1
2M

W (A)
µν (q; P, S) =

εµναβ qα

{
MSβG1(P · q, q2)

+ [(P · q)Sβ − (S · q)P β ]
G2(P · q, q2)

M

}
.(8)

Note that these expressions are electromagnetic gauge-invariant:

(9) qµWµν = 0
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From these one has

(10)
d2σ

dΩ dE′ =
α2

2Mq4

E′

E

[
L(S)

µν Wµν(S) − L(A)
µν Wµν(A)

]

Differences of cross-sections with opposite target spins single out the L
(A)
µν Wµν(A)

term:

[
d2σ

dΩ dE′ (k, s, P,−S; k′)− d2σ

dΩ dE′ (k, s, P, S; k′)
]

=
α2

2Mq4

E′

E
4L(A)

µν Wµν(A) .(11)

After some algebra (for a detailed explanation of the steps involved, see [1]) one
obtains:

d2σs,S

dΩ dE′ −
d2σs,−S

dΩ dE′ =

8mα2E′

q4E

{[
(q · S)(q · s) + Q2(s · S)

]
MG1

+Q2
[
(s · S)(P · q)− (q · S)(P · s)

]G2

M

}
(12)

which yields information on the polarized structure functions G1(P · q, q2)
and G2(P · q, q2).

In the Bjorken limit, or Deep Inelastic Scattering (DIS) regime,

−q2 = Q2 →∞ ν = E − E′ →∞
x =

Q2

2P · q =
Q2

2Mν
, fixed

the scalar functions are known to approximately scale:

lim
Bj

MW1(P · q, Q2) = F1(x)

lim
Bj

νW2(P · q, Q2) = F2(x) ,(13)

lim
Bj

(P · q)2
ν

G1(P · q, Q2) = g1(x)

lim
Bj

ν (P · q) G2(P · q, q2) = g2(x) .(14)



The longitudinal spin structure of the nucleon 5

where F1,2 and g1,2 vary very slowly with Q2 at fixed x.
In terms of g1,2 the expression for W

(A)
µν becomes

W (A)
µν (q; P, s) =

2M

P · q εµναβ qα

{
Sβg1(x,Q2)

+
[
Sβ − (S · q)P β

(P · q)
]

g2(x,Q2)

}
.(15)

1.2. Polarized DIS . – The cross-section for unpolarized scattering is given by

(16)
d2σ

dx dy
=

4πα2s

Q4
[xy2F1 + (1− y)F2]

where we have used

(17) y ≡ ν

E
=

P · q
P · k

and where s = (P + k)2. If now we take the lepton and target nucleon polarized
longitudinally, i.e. along or opposite to the direction of the lepton beam, then, under
reversal of the nucleon’s spin direction the cross-section difference is given by

(18)
d2σ

→⇐
dx dy

− d2σ
→⇒

dx dy
=

16πα2

Q2

[
(1− y

2
) g1 − 2M2xy

Q2
g2

]
.

For nucleons polarized transversely in the scattering plane, one finds

(19)
d2σ→⇑

dx dy
− d2σ→⇓

dx dy
= −16α2

Q2

(
2Mx

Q

) √
1− y

[y

2
g1 + g2

]
.

In principle these allow measurement of both g1 and g2, but the transverse asymmetry is
much smaller and therefore much more difficult to measure. Only in the past few years
has it been possible to gather information on g2 which turns out to be smaller than g1.

2. – The simple parton model

In a reference frame where the proton is moving very fast, say along the OZ axis, it
can be viewed as a beam of parallel-moving partons, as shown in fig. 2.

In the hard interaction with the photon, the quark-partons are treated as free, massless
particles with momentum x′P , as shown in fig. 3.

One finds that the antisymmetric part of the hadronic tensor is given by
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Fig. 2. – Visualization of parton density q(x′, s))

W (A)
µν (q : P, S) =

∑

f,s

e2
f

1
2P · q

∫ 1

0

dx′

x′
δ(x′ − x)

nf (x′; s, S) w(A)
µν (x′; q, s)(20)

where w
(A)
µν (x′; q, s) is the quark tensor and is just like the leptonic tensor L

(A)
µν since

the quarks are treated as point-like particles, and the sum is over flavours f and spin
orientations s of the struck quark.

The delta-function that forces x′ = x arises from the usual convention of treating the
quarks as “free” particles on mass shell i.e. one takes

(21) p2 = (x′P )2 = 0 (q + p)2 = (q + x′P )2 = 0

so that

(22) q2 + 2x′q ¦ P = 0

With the definition of xBjorken [ see eq. (5) ] this implies

Fig. 3. – Lepton-quark deep inelastic scattering
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(23) −Q2 + Q2 x

x′
= 0 or x′ = x

However, let us for the moment take p2 = m2 and p′2 = m′2. One finds that

(24) w(A)
µν = 2 εµναβ m′sα

[
(1− m

m′ ) pβ − m

m′ qβ
]

Note that because of the term in round brackets the result is not gauge invariant i.e.
qµ wµν 6= 0 unless m′ = m. But for longitudinal polarization, sα = sα

L, we have

(25) m′ sα
L → ±pα for

m′

p
¿ 1

and therefore the non-gauge invariant term vanishes because of the antisymmetry of
the ε symbol.

2.1. Longitudinal polarization. – Consider a fast moving proton, momentum along
OZ, and polarized along OZ. Substituting eq. (24) into eq. (20), and comparing with
eq. (15), we find

(26) g1(x) =
1
2

∑

f

e2
f 4qf (x)

where

(27) 4q(x) = q(+)(x)− q(−)(x)

where q(±)(x) are the number densities of quarks whose spin orientation is parallel or
antiparallel to the spin direction of the proton (see fig. 4). In terms of these, the usual
(unpolarized) parton density is

(28) q(x) = q(+)(x) + q(−)(x)
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Fig. 4. – Visualization of the longitudinally polarized parton density. The upper arrows show
the spin direction ∆q(x)

2.2. What about g2(x)? . – For a transversely polarized quark we have seen eq. (24),
that the quark tensor is only gauge-invariant if m′ = m. This is a bad sign! The result
should not be sensitive to the precise value of the quark mass. So what happens if we
take m′ = m? We find g2(x) = 0! Is this result reliable? Not in so far as it relates to the
proton. The point is that the quark DIS tensor does not have a transverse asymmetry,
so we cannot hope to use it to provide such an asymmetry in the proton.

There are many different, inconsistent results for g2(x) in the literature, including
this beautiful one

(29) g2(x) =
1
2

∑
e2
f

( mq

xM
− 1

)
∆q(x)

due to Anselmino and myself [2] , which, alas, should not be taken seriously.
The only reliable result is the Wandzura-Wilcczek relation [3]

(30) g2(X) ' −g1(x) +
∫ 1

x

g1(x′)
x′

dx′

which was originally derived as an approximation in an operator product expansion
approach, but which has recently been shown to be derivable directly in the simple parton
model [4] .

3. – The spin crisis in the parton model

The accepted expression for g1 was completely analogous to the equation for F1, with
the unpolarized quark density replaced by the (longitudinal) polarized density ∆q(x) .

The expression for g1 is then:

(31) g1(x) =
1
2

{
4
9
∆u(x) +

1
9
∆d(x) +

1
9
∆s(x) + antiquarks

}

Define combinations of quark densities which have specific transformation properties
under the group of flavour transformations SU(3)F :

(32) ∆q3 = (∆u + ∆u)− (∆d + ∆d)
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(33) ∆q8 = (∆u + ∆u) + (∆d + ∆d)− 2(∆s + ∆s)

(34) ∆Σ = (∆u + ∆u) + (∆d + ∆d) + (∆s + ∆s)

which transform respectively as the third component of an isotopic spin triplet, the eighth
component of an SU(3)F octet and a flavour singlet. Then

(35) g1(x) =
1
9

[
3
4
∆q3(x) +

1
4
∆q8(x) + ∆Σ

]

Taking the first moment of this yields

(36) Γ1 ≡
∫ 1

0

g1(x)dx =
1
12

[
a3 +

1√
3
a8 +

4
3
a0

]

where

a3 =
∫ 1

0

dx ∆q3(x)

a8 =
1√
3

∫ 1

0

dx ∆q8(x)

a0 = ∆Σ ≡
∫ 1

0

dx ∆Σ(x)(37)

Via the Operator Product Expansion these moments can be related to hadronic matrix
elements of currents which are measurable in other processes, as will be explained below.

The hadronic tensor Wµν is given by the Fourier transform of the nucleon matrix
elements of the commutator of electromagnetic currents Jµ(x):

(38) Wµν(q; P, S) =
1
2π

∫
d4x eiq·x〈P, S|[Jµ(x), Jν(0)]|P, S〉

where Sµ is the covariant spin vector specifying the nucleon state of momentum Pµ.
In hard processes, x2 ' 0 is important, so we can use the Wilson expansion.
The OPE gives moments of g1,2 in terms of hadronic matrix elements of certain

operators multiplied by perturbatively calculable coefficient functions. The ai in Eq. (36)
are hadronic matrix elements of the octet of quark SU(3)F axial-vector currents Jj

5µ (j =
1, ..., 8) and the flavour singlet axial current J0

5µ.
The octet currents are

(39) Jj
5µ = ψ̄γµγ5

(
λj

2

)
ψ (j = 1, 2, ..., 8)
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where the λj are the usual Gell-Mann matrices and ψ is a column vector in flavour space

(40) ψ =




ψu

ψd

ψs


 ,

and the flavour singlet current is

(41) J0
5µ = ψ̄γµγ5ψ .

The forward matrix elements of the Jj
5µ can only be proportional to Sµ, and the aj are

defined by

〈P, S|Jj
5µ|P, S〉 = MajSµ

〈P, S|J0
5µ|P, S〉 = 2Ma0Sµ .(42)

Analogous to Eq. (39) one introduces an octet of vector currents

(43) Jj
µ = ψ̄γµ

(
λj

2

)
ψ (j = 1, ...,8)

which are conserved currents to the extent that SU(3)F is a symmetry of the strong
interactions.

These octets of currents control the β-decays of the neutron and of the octet of
hyperons which implies that the values of a3 and a8 are known from other measurements.

Therefore a measurement of Γ1 can be considered as giving the value of the flavour
singlet a0. Now the European Muon Collaboration, working at CERN, measured the first
moment of the spin dependent structure function g1 of the proton and in 1988 announced
their startling results [5].

Knowing the values of a3 and a8, the EMC measurement implied

(44) aEMC
0 ' 0

But in the naive parton model

(45) a0 = ∆Σ

where ∆Σ is given by eq. (34).
In 1974 Ellis and Jaffe [6] had suggested that one could ignore the contribution from

the strange quark i.e. from ∆s + ∆s̄, implying that

(46) a0 ' a8 ' 0.59
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Thus the EMC result eq. (44) is in gross contradiction with Ellis-Jaffe.
It was this contradiction which at first aroused interest in the EMC result, but it was

soon realized that their result had far more serious consequences.
Consider the physical significance of ∆Σ(x). Since q±(x) count the number of quarks

of momentum fraction x with spin component ± 1
2 along the direction of motion of the

proton (say the z-direction), the total contribution to Jz coming from a given flavour
quark is

Sz =
∫ 1

0

dx

{(
1
2

)
q+(x) +

(
−1
2

)
q−(x)

}

=
1
2

∫ 1

0

dx ∆q(x) .(47)

It follows that

(48) a0 = 2Squarks
z

where Squarks
z is the contribution to Jz from the spin of all quarks and antiquarks.

Note that a0 plays two roles:
i) it measures the z component of the spin carried by the quarks

ii) it measures the expectation value of the flavour singlet axial-vector current.
What is the connection? Noether’s Theorem tells us that the spin density operator

for a spin 1/2 particle is 1/2ψ̄(x)γρσνλψ(x).
Having the spin in the z direction implies ρ = 0, ν = 1, λ = 2 . Then we recognize

the connection between the operators

(49) 1/2ψ̄(x)γ0σ12ψ(x) = 1/2ψ̄γ3γ5ψ

If we write the nucleon state as a superposition of partonic states, we find that

(axial-vector current)expectation value

= 2× (spin carried by quarks)

3.1. Simple parton model . – One takes p⊥ = 0 and all quarks move parallel to the
parent hadron.

Thus the quark, momentum p, has p = xP which implies that the orbital angular
momentum carried by quarks is perpendicular to P, and hence does not contribute to
Jz. Thus, in the simple parton model, one expects for a proton of helicity +1/2 :

(50) Squarks
z = Jz = 1/2 .
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Fig. 5. – Feynman diagram responsible for the anomaly

The EMC result [5] for the value of a0, on the contrary, implied that

(51)
(

Squarks
z

)

Exp

= 0.03± 0.06± 0.09 .

It was this highly unexpected result which was termed a “spin crisis in the parton model”
[7].

3.2. Resolution of the spin crisis. – Take the divergence of the flavour-f axial current.
Using the equations of motion one finds

(52) ∂µJf
5µ = 2imqψ̄f (x) γ5 ψf (x)

where mq is mass of the quark of flavour f .
In the chiral limit mq → 0 this implies that Jf

5µ is conserved. This would mean a
symmetry between left and right-handed quarks and ultimately a parity degeneracy of
the hadron spectrum e.g. there would exist two protons, of opposite parity.

Adler [8], and Bell and Jackiw [9] showed that the formal argument from the free
equations of motion is not reliable, and there exists an anomalous contribution arising
from the triangle diagram shown in fig. 5.

For the QCD case one finds

(53) ∂µJf
5µ =

αs

4π
Ga

µνG̃µν
a =

αs

2π
Tr [Gµν G̃µν ]

where αs is QCD analogue of fine structure constant, and G̃a
µν is the dual field tensor

(54) G̃a
µν ≡ (1/2) εµνρσGρσ

a

A field vector or tensor without a colour label stands for a matrix. In this case

(55) Gµν ≡ (1/2)λaGa
µν .
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The above result is actually very tricky. It is a particular limit of a non-uniform function
[1]. If we take mq 6= 0, k2 6= 0 then the RHS of Eq. (53) is multiplied by

T (m2
q/k2) = 1− 2m2

q/k2

√
1 + 4m2

q/k2

ln

(√
1 + 4m2

q/k2 + 1
√

1 + 4m2
q/k2 − 1

)
(56)

The anomaly corresponds to T → 1 for (m2
q/k2) → 0. But for on-shell gluons, k2 = 0,

and mq 6= 0, i.e. in the limit (m2
q/k2) → ∞ the terms cancel, T → 0, and there is no

anomaly. For gluons bound inside a nucleon one should utilize k2 6= 0 and the anomalous
triangle contributes.

3.3. Effect of anomaly . – Adler’s expression for the triangle diagram, modified to
QCD, gives for the forward gluonic matrix element of the flavour f current

〈k, λ|Jf
5µ|k, λ〉 = −αs

2π
Sg

µ(k, λ)T (m2
q/k2)(57)

where λ is the gluon helicity and

(58) Sg
µ(k, λ) ≈ λkµ

is the covariant spin vector for almost massless gluons.
We can now compute the gluonic contribution to the hadronic expectation value

〈P, S|J0
5µ|P, S〉. The gluons being bound will be slightly off-shell i.e. k2 6= 0, but small.

The full triangle contribution involves a sum over all quark flavours.
Take mu,md and ms to be ¿ k2 whereas mc,mb and mt are À k2. The function

T (m2
q/k2) thus takes the values:

T = 1 for u, d, s

T = 0 for c, b, t(59)

Hence the gluon contribution is [10, 11, 12, 13]

agluons
0 (Q2) = −3

αs

2π

∫ 1

0

dx ∆G(x,Q2)

≡ −3
αs(Q2)

2π
∆G(Q2)(60)

where ∆G(x) is analogous to ∆q(x)

(61) ∆G(x) = G+(x)−G−(x)
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So, there exists a gluonic contribution to first moment of g1 !

(62) Γgluons
1p (Q2) = −1

3
αs(Q2)

2π
∆G(Q2) .

This result is of fundamental importance.
It implies that the simple parton model formulae for a0 (and hence for Γp

1) in terms
of the ∆qf are incorrect

Instead,

(63) a0 = ∆Σ− 3
αs

2π
∆G

The fundamental conclusion is that the small measured value of a0 does not necessarily
imply that ∆Σ is small.

3.4. A surprising aspect of this result! . – The simple parton model is usually thought
of as the limit when the QCD coupling is switched off. Moreover QCD possess the
property of asymptotic freedom i.e the effective coupling goes to zero logarithmically as
Q2 →∞.

Hence we would expect that as Q2 →∞ the term agluons
0 (Q2) should vanish implying

a return to the simple parton model result. But - - - the anomalous gluon contribution
is really anomalous!

It can be shown that the first moment ∆G(Q2) tends to infinity logarithmically as
Q2 →∞, thus exactly cancelling the decrease in α(Q2) and the gluonic term survives!

3.5. A note on angular momentum sum rules. – The “spin crisis” was signalled via
the failure of

(64) Squarks
z = Jz = 1/2 .

which is an intuitive statement that the angular momentum of the nucleon should
be made up of the angular momentum of its constituents. This is an example of an
angular momentum sum rule, and it seems obviously true. However, such relations in a
relativistic theory are very subtle.

Angular momentum sum rules require explicit expressions for the matrix elements of
the angular momentum operators and obtaining these is non-trivial. Indeed, for some
decades it was believed that one could not have an angular momentum sum rule for a
transversely polarized nucleon, but this was recently shown to be incorrect. [14].

3.6. Is the spin crisis really resolved?? . – The key point concerning the axial anomaly
is that what is measured, a0, is not equal to ∆Σ. Instead one has

(65) a0 = ∆Σ− 3
αs

2π
∆G
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Fig. 6. – x ∆G(x) extracted rom the world DIS data by various groups

so we could have a “big” ∆Σ and a “small” a0, but this requires a large value of ∆G.
You will see in the lectures of Saito that the measured ∆G seems to be much too

small! Presently the best value for a0 is a0 ' 0.33. If we want, say, ∆Σ ' 0.6 we need
∆G ' 1.7 at Q2 = 1(GeV/c)2. But the latest value for ∆G, obtained from an analysis
of the world data on polarized DIS [15] (see fig. 6) is ∆G = 0.29±0.32, which, even with
the large error, looks much too small.

It could be argued that the role of ∆G(x) in DIS is very indirect. Its main influence
is in the evolution with Q2, and given the limited range of Q2 available in polarized DIS
experiments it is not very well determined. However there are other, more direct ways,
of measuring ∆G and they support the conclusion that it is rather small, much too small
to resolve the spin crisis. The “golden” method is in the reaction

←−µ +−→p → µ + two charmed particles

with the charmed particles roughly back to back. Since we assume essentially zero
charm content in the nucleon the only possible mechanism is the one shown in fig. 7.
Unfortunately, attempting to detect two charmed mesons turns out to be hopeless, from
a statistics point of view, so the ∆G extraction is based mainly on detecting a single,
charmed meson with large transverse momentum.The results are consistent with a van-
ishingly small ∆G.

4. – Field theoretic generalization of the parton model

In a field theory whose elementary fields are quarks and gluons i.e. in QCD, one can
split the diagram for the hadronic tensor Wµν into a hard part Hµν , where the hard
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µ
µ’

p

c−bar

c

Fig. 7. – Feynman diagram responsible for producing back-to-back charm particles

photon interacts with a quark and a soft part Φ, where the nucleon emits the quark, as
shown in fig. 8. Note that this is not a Feynman diagram for an amplitude. It represents
something like a cross-section, and is really the imaginary part of the forward Compton
scattering amplitude for γ + P → γ + P with the photon polarization tensors removed.
The “blobs” H and Φ are cut diagrams and contain on-shell particles as intermediate
states. For a more pedagogical explanation of all this, see Chapter 11 of [16].

The blob H, involving hard interactions, can be treated in perturbation theory and

H

q q

k k

P, SP, S

α β

ν µ

α β

Fig. 8. – QCD generalization of parton model
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Hµ ν

Fig. 9. – Born term expression for the hard part

the leading terms are just the Born terms shown in fig. 9
The blob Φ, involving soft interactions, known as the quark-quark correlator, cannot

be evaluated explicitly, but its mathematical expression is

(66) Φαβ(P, S; k) =
∫

d4z

(2π)4
eik.z 〈P, S|ψ̄β(0) ψα(z)|P, S〉

where the quark fields are interacting fields. Note that flavour and the quark charge
have been ignored —- they are trivially reinstated at the end —- and that we work with
mq = 0.

In terms of these Wµν is given by

(67) Wµν =
1
2π

∫
d4k

(2π)4
Hµν

βα Φαβ(P, S; k)

where α, β are Dirac indices.
Note that to regain the results of the simple parton model one approximates H by its

Born terms and treats the quark fields in Φ as free fields. Note too that in this language
the axial anomaly emerges from the diagrams in fig. 10., in which the right hand diagram
involves the gluon-gluon correlator ΦG and the horizontal quark lines are on-shell. In
the Bjorken limit the top quark line effectively contracts to a point yielding the anomaly
triangle.

4.1. QCD corrections and evolution. – Going beyond the parton model means includ-
ing various QCD corrections. For example in fig. 11 we show the Born term for H and the
simplest correction terms, a vertex correction and a diagram where a gluon is radiated
from the active quark before it interacts with the photon.

Unfortunately these correction terms are infinite. There are two kinds of infinity:
i) the usual ultra-violet type divergences which have to be eliminated by renormal-

ization
ii) collinear divergences which occur because of the masslessness of the quarks and which
are removed by a process known as factorization.

In this the reaction is factorized (separated) into a hard and soft part and the infinity
is absorbed into the soft part which in any case cannot be calculated and has to be
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G

k k

q q
2

=

Fig. 10. – QCD diagram leading to the anomaly contribution

parametrized and studied experimentally.

The point at which this separation is made is referred to as the factorization scale µ2.
Schematically , one finds terms of the form αs ln Q2

m2
q

which one splits as follows

(68) αs ln
Q2

m2
q

= αs ln
Q2

µ2
+ αs ln

µ2

m2
q

and one then absorbs the first term on the right hand side into the hard part and the

(a)

(b)

Fig. 11. – Example of QCD correction terms (b), to the Born approximation (a)
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second into the soft part. µ2 is an arbitrary number, like the renormalization scale, and,
in an exact calculation, physical results cannot depend on it. However it does mean that
what we call the parton density has an extra label µ2 specifying our choice. Moreover,
since we never calculate to all orders in perturbation theory, it can make a difference
what value we choose. It turns out that an optimal choice is µ2 = Q2, so the parton
densities now depend on both x and Q2 i.e. we have q(x,Q2) and ∆q(x,Q2), and perfect
Bjorken scaling is broken. But the variation with Q2 is gentle (logarithmic), and can be
calculated via what are called the evolution equations which will be discussed later.

It turns out to be crucial in handling these divergences to use the technique of dimen-
sional regularization, which is straightforward in the unpolarized case, but which runs
into a snag in the polarized case. The problem is that the generalization of γ5 in more
than 4-dimensions is ambiguous. In 4-dimensions we have

(69) {γµ , γ5} = 0 µ = 0, 1, 2, 3

If we try

(70) {γn , γ5} = 0 n = 4, 5, ¦ ¦ ¦

it leads to a contradiction when using

(71) Tr[ABC −−−X] = Tr[XABC −−−]

There is also a problem with the generalization of εµνρσ. ’t Hooft and Veltman [17]
and Breitenlohner and Maison [18] suggested using

(72) {γµ , γ5} = 0 µ = 0, 1, 2, 3

(73) [γn , γ5] = 0 n = 4, 5, ¦ ¦ ¦

This gives rise to the MS − HV BM renormalization scheme, which, however, has
a problem. The third component of the isovector axial current J3

µ5
is NOT conserved,

implying that a3 depends on Q2. It turns out that this feature is linked to how the
factorization between hard and soft parts is implemented and can be remedied.

At present there are three schemes in use, all of them modified versions of MS −
HV BM :

i) The Vogelsang, Mertig, van Neerven scheme [19, 20] MS − MNV . Here J3
µ5

is
conserved i.e. a3 is independent of Q2.
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ii)The AB scheme of Ball, Forte and Ridolfi [21], which, in addition, has the first
moment

(74) ∆Σ =
∫ 1

0

dx∆Σ(x,Q2)

independent of Q2.
iii) The JET scheme of Carlitz, Collins and Mueller [12], Anselmino. Efremov and

Leader [1] and Teryaev and Müller [22], and which is identical to the Chiral Invariant
scheme of Cheng [23]. In this scheme a3 and a8 are independent of Q2 as is ∆Σ, but it
can be argued that the JET scheme is superior to the others in that all hard effects are
included in H.

Of course if one could work to all orders in perturbation theory it would make no
difference which scheme one used, but given that we work to leading order (LO), next
to leading order (NLO), and in some cases to NNLO, the choice of scheme can be of
importance.

4.2. Structure of G1(x,Q2) at and beyond leading order . – For the polarized densities
the evolution equations are

d

d lnQ2
∆q(x,Q2) =

αs(Q2

2π

∫ 1

x

dy

y
{∆Pqq(x/y)∆q(y,Q2)

+ ∆PqG(x/y)∆G(y,Q2)}(75)

d

d lnQ2
∆G(x, Q2) =

αs(Q2

2π

∫ 1

x

dy

y
{∆PGq(x/y)∆q(y, Q2)

+ ∆PGG(x/y)∆G(y, Q2)}(76)

The ∆P are the polarized splitting functions and are calculated perturbatively

(77) ∆P (x) = ∆P (0)(x) +
αs

2π
∆P (1)(x)

where the superscripts (0) and (1) refer to LO and NLO contributions. For details
about these the reader is referred to Vogelsang [19].

Note that in LO flavour combinations like qf − qf ′ e.g. u(x) − d(x) and valence
combinations like qf − q̄f e.g. u(x) − ū(x) are non-singlet and evolve in the same way,
without the ∆G term in eq. (75). (There is no splitting in LO from a q to a q̄ , nor
from say a u to a d.) However, in NLO flavour non-singlets like u(x)− d(x) and charge-
conjugation non-singlets like u(x)− ū(x) evolve differently. The origin of this difference
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Fig. 12. – NLO amplitude for q → q̄ transition

can be seen in figs. 12 and 13. Fig. 12 shows an NLO amplitude for a quark to split into
a q̄ .

Fig. 13 shows two possible contributions to ∆Pqq̄ from taking the modulus squared
of this amplitude.

In (a) the contribution is pure flavour singlet and involves only gluon exchange,
whereas in (b) the contribution is non-singlet. However, if we try to do something similar
for a flavour changing splitting function e.g. ∆Pdu we find that we cannot construct the
non-singlet diagram.

The expression for g1(x,Q2) now becomes

g1(x,Q2) =
1
2

∑

flavours

e2
q

{
∆q(x,Q2) + ∆q̄(x,Q2)

+
αs(Q2)

2π

∫ 1

x

dy

y
{∆Cq(x/y) [∆q(y,Q2) + ∆q̄(y,Q2)]

+ ∆CG(x/y)∆G(y,Q2)}
}

(78)

Fig. 13. – NLO contributions to the splitting function for a q → q̄ transition
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where ∆CG and ∆Cq are Wilson coefficients evaluated from the hard part calculated
beyond the Born approximation.

Note that very often the evolution equations are written using the convolution nota-
tion, for example,

(79) ∆Cq ⊗∆q ≡
∫ 1

x

dy

y
∆Cq(x/y)∆q(y)

5. – The polarized strange quark density: attempts to measure ∆s(x)

Although the srangeness content of the nucleon is small, it has played a major role in
provoking puzzles and controversies in our understanding of the internal structure of the
nucleon, particularly as concerns the spin structure. Recall that it was a misjudgement
of the significance of strangeness in the Ellis-Jaffe result that was behind the original
excitement generated by the famous EMC experiment in 1988. And as we shall now see
there is still some mystery surrounding the polarized strange density.

There are two possibilities for measuring ∆s(x), via polarized DIS or via polarized
semi-inclusive DIS (SIDIS).

Recall that DIS only depends on ∆q(x) + ∆q̄(x). So we can obtain information on
∆s(x) + ∆s̄(x).

In SIDIS we could, in principle obtain ∆s(x) and ∆s̄(x) separately, but that is for
the future!

5.1. Results from polarized DIS . – Aside from one small issue there is general agree-
ment between several analyzes: see fig. 14.

What causes the disagreement at moderate to large x? Surprisingly—-positivity i.e.
the requirement that

(80) |∆s(x)| ≤ s(x)

As shown in fig. 15 the data seem to want a large negative ∆s(x) at moderate values of
x.

So there is a clash with positivity and the result is that the shape of ∆s(x) is sensitive
to the input unpolarized density. In the figure the polarized analyses BB2 [24], AAC03
[25] and GRSV [26] utilized the unpolarized strangeness density of GRV98 [27], whereas
LSS05(Set 1) [15] used the unpolarized strangeness density of MRST’02 [28]. It is seen
that LSS05 is incompatible with the unpolarized GRV density.

5.2. Results from SIDIS . – Before looking at results consider the following constraint
[29] on the first moment

(81) δs ≡ [∆s + ∆s̄]
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Fig. 14. – Polarized strange quark density from various analyzes of world data on DIS

Fig. 15. – Role of positivity in influencing ∆q(x) at moderate values of x
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We can rewrite the expression for Γp
1 as

(82) Γp
1(Q

2) =
1
6
[1
2
a3 +

5
6
a8 + 2δs(Q2)

]

or

(83) a8 =
6
5
[
6Γp

1(Q
2)− 1

2
a3 − 2δs(Q2)

]

We know a3 very accurately. Using the measured values of Γp
1(Q

2) we show that
δs(Q2) ≥ 0 implies an unacceptable value for a8.

We have to decide what value to use for Γp
1(Q

2), since the result depends on the
extrapolation to x = 0. We take two extremes:

(i) Assume perturbative QCD holds at small x as done by SLAC experiment E155
[30] etc. This yields

(84) Γp
1(Q

2 = 5) = 0.118± 0.004± 0.007

(ii) Assume Regge behaviour at small x as utilized by SLAC experiment E143 [31]
etc. This gives

(85) Γp
1(Q

2 = 3) = 0.133± 0.003± 0.009

Results: If δs is positive we find:

(i) a8 ≤ 0.089± 0.058

(ii) a8 ≤ 0.197± 0.068

Now to the best of our knowledge hyperon β-decay is adequately described by SU(3)F

and this leads to a8 = 0.585± 0.025
Thus δs(Q2) ≥ 0 implies a dramatic breaking of SU(3)F , and we conclude that it is

almost impossible to have δs(Q2) ≥ 0.
Now HERMES has extracted ∆s(x) + ∆s̄(x) from a study of SIDIS [32]. The results

are shown in fig. 16.
Within errors the results are consistent with zero, and HERMES quote

(86) δs(Q2 = 2.5) = 0.028± 0.033± 0.009
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Fig. 16. – x [∆s(x) + ∆s̄(x)] from HERMES SIDIS analysis

The previous discussion suggests that the central value cannot be the true value unless
we have totally failed to understand the connection between DIS and SIDIS . If the latter
is not the case, how can we understand the HERMES results?

I think it is important to remember that HERMES uses a LO method based on so-
called purities. I suspect that such an approach is unreliable at the values of Q2 involved,
and that the errors on the purities are somewhat underestimated in their analysis. So I
strongly believe that this new ‘strange quark crisis’ will prove to be illusory.

6. – A last word on the “spin crisis”

We have seen that the hope that a large polarized gluon density could resolve the
“spin crisis” is probably no longer tenable, given that recent experiments seem to be
indicating quite a small value for ∆G. If that is so, how are we to resolve the crisis? The
answer is, in principle, quite straightforward. In our collinear parton model we neglected
transverse motion of the partons, and this transverse momentum can generate orbital
angular momentum with a component in the direction of motion of the nucleon. It is
a simple exercise to show that an acceptable magnitude of transverse momentum could
yield enough Lz to satisfy the longitudinal angular momentum sum rule. Against this
explanation is the intuitive, but probably incorrect, argument that in quark models of
hadrons the nucleon appears as an s-wave ground state i.e. with zero orbital angular
momentum.
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