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The longitudinal double spin asymmetry ALL in the reaction pp → πX has been measured at
RHIC with extremely interesting consequences. If the gluon polarization in a proton were as big
as needed to resolve the famous “spin crisis” then ALL would be large and positive. Early RHIC
results suggested that ALL might even be negative, which is impossible in the simple collinear parton
model. Later results indicate very small positive values. Recently, for the first time, we derived
expressions for the general partonic structure for all hadron spin asymmetries with inclusion of all
transverse motion of the partons in a hadron and of the hadrons in a fragmenting parton. Besides
the standard soft functions that are present in the collinear treatment, several new spin and k⊥
dependent soft functions appear and contribute to the cross sections and to spin asymmetries, both
transverse and longitudinal. We examine the influence of k⊥ and of the new terms on ALL, and
in particular whether they could alter the conclusion that the gluon polarization is very small. It
turns out that the contribution from these effects is essentially negligible.

PACS numbers: 13.88.+e, 13.60.-r, 13.15.+g, 13.85.Ni

I. INTRODUCTION

In the QCD Parton Model there is a significant difference between longitudinal and transverse spin asymmetries.
Longitudinal double spin asymmetries can be generated directly in terms of the longitudinal polarized parton densities,
even in the simplest version of the model with collinear kinematics, and can be sizeable; longitudinal single spin
asymmetries are forbidden by parity invariance and one needs high energy parity violating effects to observe them.
On the contrary, transverse double spin asymmetries in high energy hadronic inclusive collisions are expected to be
very small at mid rapidity due to the non transverse nature of the gluonic contributions [1], and transverse single spin
asymmetries (SSA) are allowed by parity invariance, but essentially vanish in the collinear approximation at leading
twist.

Transverse SSA can be generated in two ways, either in a field-theoretic approach by including higher twist quark-
quark-gluon correlators [2, 3], or in the parton model by including the transverse motion of the partons [4, 5] and
introducing new soft functions, which violate naive time reversal invariance. The two approaches might be corre-
lated [6]. These new functions induce single spin dependences in the partonic distributions and in the fragmentation
processes according to four new mechanisms: the Sivers effect [4] whereby in a transversely polarized nucleon the
number density of quarks with momentum k can depend upon the azimuthal angle between k and the spin vector
of the nucleon; the Boer-Mulders effect [7, 8] which allows partons to be transversely polarized in an unpolarized
nucleon; the Collins effect [9] whereby the number density of unpolarized hadrons with momentum k produced in the
fragmentation of a transversely polarized quark can depend on the azimuthal angle between k and the spin vector
of the quark; a mechanism whereby an unpolarized quark can fragment into a polarized hadron [7, 10, 11]. We have
shown that in reactions in which an unpolarized hadron is produced the transverse single spin asymmetries are domi-
nated by the Sivers mechanism, because phase cancelations greatly reduce the contributions of the other mechanisms
[12].

What is perhaps surprising is that these mechanisms, invented in order to produce transverse asymmetries, also
contribute to the total cross-section and to the longitudinal spin asymmetries. It has been shown that their effect in
total cross-sections is negligible [13, 14], but given that ALL is so small it is important to check whether they can have
a significant influence upon its value, in particular whether they could produce a small value of ALL in conjunction
with a large gluon polarization. We find that the new contributions can indeed be negative, thus reducing the value
of ALL, but that their magnitude is much too small to be relevant. Thus the conclusion that the small positive value
of ALL implies a very small gluon polarization is unaltered.

The plan of the paper is the following. In Section II we briefly recall the formalism used for our calculation, which
includes the full non-collinear kinematics of the scattering process. In Section III we present the “kernels” for the
calculation of each partonic contribution to the polarized cross-sections. In Section IV we show and discuss our
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phenomenological results for the longitudinal double spin asymmetry in inclusive neutral pion production at RHIC.
Finally, in Section V we draw our conclusions.

II. FORMALISM

Here we simply sketch the main aspects of the formalism; for details of the approach we refer to [14]. The longitudinal
double spin asymmetry ALL for the reaction pp → πX is defined as

ALL =
dσ++ − dσ+−

dσ++ + dσ+− =
dσ++ − dσ+−

2dσunp
, (1)

where the labels refer to the helicities of the protons.
The general expression for the differential cross-sections for the polarized hadronic process (A,SA)+(B,SB) → C+X

is given by

EC dσ(A,SA)+(B,SB)→C+X

d3pC

=
∑

a,b,c,d,{λ}

∫
dxa dxb dz

16π2xaxbz2s
d2k⊥a d2k⊥b d3k⊥C δ(k⊥C · p̂c)

× J(k⊥C)ρa/A,SA

λa,λ′a
f̂a/A,SA

(xa, k⊥a) ρ
b/B,SB

λb,λ′b
f̂b/B,SB

(xb, k⊥b)

× M̂λc,λd;λa,λb
M̂∗

λ′c,λd;λ′a,λ′b
δ(ŝ + t̂ + û) D̂

λC ,λC

λc,λ′c
(z, k⊥C) , (2)

which involves a (factorized) convolution of all possible hard elementary QCD processes, ab → cd, with soft partonic
polarized distribution and fragmentation functions. In Eq. (2) ŝ, t̂ and û are the Mandelstam variables for the partonic
reactions and the detailed connection between the hadronic and the partonic kinematical variables is given in full in
Appendix A of [14].

Let us simply recall here, for a better understanding, the physical meaning of the different factors in Eq. (2):

• ρ
a/A,SA

λa,λ′a
is the helicity density matrix of parton a inside the polarized hadron A, with spin state SA; it describes

the parton polarization. f̂a/A,SA
(xa, k⊥a) is the number density (or distribution) of unpolarized partons a inside

the polarized hadron A,SA: each parton carries a light-cone momentum fraction xa and a transverse momentum
k⊥a. Similarly for parton b inside hadron B with spin SB .

• The polarized cross-sections for the elementary partonic process (a, sa) + (b, sb) → (c, sc) + d are expressed in
terms of products of the helicity amplitudes M̂λc,λd;λa,λb

.

• The factor D̂
λC ,λC

λc,λ′c
(z, k⊥C) describes, again in the helicity basis, the fragmentation process c → C+X, according

to which a polarized parton c fragments into an unpolarized hadron C carrying a light-cone momentum fraction
z and a transverse momentum k⊥C .

• J(k⊥C) is a kinematical factor, numerically very close to 1 for RHIC kinematics. All details can be found in
Ref. [14]. Throughout the paper, we work in the AB c.m. frame, assuming that hadron A moves along the
positive Zcm-axis and hadron C is produced in the (XZ)cm plane, with (pC)Xcm > 0.

Eq. (2) is written in a factorized form, separating the soft, long distance from the hard, short distance contributions.
The hard part is computable in perturbative QCD, while information on the soft one has to be extracted from other
experiments or modeled. As already mentioned and discussed in Ref. [12], such a factorization with noncollinear
kinematics has never been formally proven. Indeed, studies of factorization [15–18], comparing semi-inclusive deep
inelastic scattering (SIDIS) and Drell-Yan reactions have indicated unexpected modifications of simple factorization,
and the situation for single inclusive particle production in hadron–hadron collisions is not yet resolved. Thus, our
approach can only be considered as the natural extension of the collinear case and a reasonable phenomenological
model. Of course, the perturbative calculation of the hard part is only reliable if the hard scale – in this case the
square of the transverse momentum of the final hadron, p2

T – is large enough. It turns out that the data on unpolarized
cross-sections demand [13] an average value of k2

⊥ ≡ |k⊥|2 ' 0.64 (GeV/c)2 for the intrinsic transverse momentum of
the parton distributions. We shall study how the contributions to ALL depend on the value of 〈k2

⊥〉.
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III. KERNELS

As we can see from Eq. (2), the computation of the cross-section corresponding to any polarized hadronic process
(A,SA) + (B,SB) → C + X requires the evaluation and integration, for each elementary process a + b → c + d, of the
general kernel

Σ(SA, SB)ab→cd =
∑

{λ}
ρ

a/A,SA

λa,λ′a
f̂a/A,SA

(xa,k⊥a)ρb/B,SB

λb,λ′b
f̂b/B,SB

(xb,k⊥b)

×M̂λc,λd;λa,λb
M̂∗

λ′c,λd;λ′a,λ′b
D̂

λC ,λC

λc,λ′c
(z, k⊥C) . (3)

While the hadronic process (A,SA) + (B,SB) → C + X takes place, according to our choice, in the (XZ)cm plane,
all the elementary processes involved, A(B) → a(b) + X, ab → cd and c → C + X do not, since all parton and hadron
momenta, pa, pb, pC have transverse components k⊥a, k⊥b, k⊥C . This “out of (XZ)cm plane” geometry induces
phases in the fragmentation process, in the distribution functions and in the elementary interactions, which have to
be taken into account. Thus, the independent helicity amplitudes for the elementary pQCD processes ab → cd, with
massless partons, can be written as [14]

M̂+,+;+,+ ≡ M̂0
1 eiϕ1 M̂−,+;−,+ ≡ M̂0

2 eiϕ2 M̂−,+;+,− ≡ M̂0
3 eiϕ3 , (4)

where the amplitudes M̂0
1,2,3 are the real planar amplitudes defined in the partonic ab → cd c.m. frame,

M̂0
1 ≡ M̂0

+,+;+,+ = M̂0
−,−;−,− M̂0

2 ≡ M̂0
−,+;−,+ = M̂0

+,−;+,− M̂0
3 ≡ M̂0

−,+;+,− = M̂0
+,−;−,+, (5)

as required by parity invariance. The phases ϕ1,2,3 are complicated functions of the polar and azimuthal angles of the
transverse momenta, k⊥a,k⊥b and k⊥C , and their explicit expressions can be found in Ref. [14]. The relations

M̂−,−;−,− = M̂∗
+,+;+,+ M̂+,−;+,− = M̂∗

−,+;−,+ M̂+,−;−,+ = M̂∗
−,+;+,−, (6)

follow from Eqs. (4), (5) and from the fact that the phases ϕi change sign by helicity inversion [14]. Note that the +
and − subscripts refer to (+1/2) and (−1/2) helicities for quarks, and to (+1) and (−1) helicities for gluons. There
are eight elementary contributions ab → cd which we have to consider separately

qaqb → qcqd , gagb → gcgd ,

qg → qg , gq → gq ,

qg → gq , gq → qg , (7)
gagb → qq̄ , qq̄ → gcgd ,

where q can in general be either a quark or an antiquark. The subscripts a, b, c, d for quarks, when necessary,
identify the flavour (only in processes where different flavours can be present); for gluons, these labels identify the
corresponding hadron (a → A, b → B, c → C). By performing the explicit sums in Eq. (3), we obtain the kernels for
each of the elementary processes. Note that the new aspect of our calculation is the appearance of the phases which
is a reflection of the noncollinear kinematics.

The computation of the denominator/numerator of ALL in Eq. (1) requires the evaluation of the kernels [Σ(+, +) ±
Σ(+,−)] respectively. The expressions for the sums of kernels, which are relevant for the unpolarized cross-section,
are given in [14]. Here we give in detail the expressions for the differences. They are calculated from the general
kernel given in Eq. (3). In the following certain terms are underlined: these are terms which vanish after integration
over the angles of the momenta k⊥a, k⊥b, k⊥C in Eq. (2), as required by parity invariance; we shall further comment
on that at the end of this Section. φH

C is the azimuthal angle of the hadron C in the parton c helicity frame and its
expression in terms of the angles of k⊥C is given in Appendix A of Ref. [14]. Notice that all angular dependences
of the kernels are explicitly extracted and the parton distribution and fragmentation functions only depend on the
magnitudes of the transverse momentum vectors.

• qaqb → qcqd contribution

[Σ(+, +)− Σ(+,−)]qaqb→qcqd =

∆f̂a
sz/+(xa, k⊥a)∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
2 |2 − |M̂0

3 |2
]

D̂C/c(z, k⊥C)

+

[
∆f̂a

sx/+(xa, k⊥a)∆f̂ b
sx/+(xb, k⊥b) cos(ϕ3 − ϕ2)
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+∆f̂a
sy/A(xa, k⊥a)∆f̂ b

sx/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]
(2 M̂0

2 M̂0
3 ) D̂C/c(z, k⊥C)

− f̂a/A(xa, k⊥a)∆f̂ b
sx/+(xb, k⊥b) M̂0

1 M̂0
3 sin(ϕ1 − ϕ3 + φH

C ) ∆N D̂C/c↑(z, k⊥C) . (8)

Notice that we have used the relations ∆f̂a
sy/+(xa, k⊥a) = ∆f̂a

sy/A(xa, k⊥a) and f̂a/+(xa, k⊥a) = f̂a/A(xa, k⊥a),
see Appendix B of Ref. [14]. The channels qq̄ → qq̄ etc. are formally identical to qq → qq with amplitudes defined
properly in Ref. [14].

• gagb → gcgd contribution

[Σ(+,+)− Σ(+,−)]gagb→gcgd =

∆f̂a
sz/+(xa, k⊥a)∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
2 |2 − |M̂0

3 |2
]

D̂C/g(z, k⊥C)

+

[
∆f̂a

T2/+(xa, k⊥a)∆f̂ b
T2/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+∆f̂a
T1/A(xa, k⊥a)∆f̂ b

T2/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]
(2 M̂0

2 M̂0
3 ) D̂C/g(z, k⊥C)

+ f̂a/A(xa, k⊥a)∆f̂ b
T2/+(xb, k⊥b) M̂0

1 M̂0
3 sin(ϕ1 − ϕ3 + 2φH

C )∆N D̂C/T g
1
(z, k⊥C) (9)

• qq̄ → gg contribution

[Σ(+,+)− Σ(+,−)]qq̄→gg =

− ∆f̂a
sz/+(xa, k⊥a) ∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

2 |2 + |M̂0
3 |2

]
D̂C/g(z, k⊥C)

+

[
∆f̂a

sx/+(xa, k⊥a)∆f̂ b
sx/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+∆f̂a
sy/A(xa, k⊥a) ∆f̂ b

sx/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]
(2 M̂0

2 M̂0
3 ) D̂C/g(z, k⊥C) (10)

• gagb → qq̄/q̄q contribution

[Σ(+, +)− Σ(+,−)]gagb→qq̄/q̄q =

− ∆f̂a
sz/+(xa, k⊥a)∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

2 |2 + |M̂0
3 |2

]
D̂C/c(z, k⊥C)

+

[
∆f̂a

T2/+(xa, k⊥a) ∆f̂ b
T2/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+∆f̂a
T1/A(xa, k⊥a)∆f̂ b

T2/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]
(2 M̂0

2 M̂0
3 ) D̂C/c(z, k⊥C) (11)

• qg → qg contribution

[Σ(+, +)− Σ(+,−)]qg→qg =

∆f̂a
sz/+(xa, k⊥a)∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
2 |2

]
D̂C/c(z, k⊥C) (12)

• gq → qg contribution

[Σ(+,+)− Σ(+,−)]gq→qg =

∆f̂a
sz/+(xa, k⊥a) ∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
3 |2

]
D̂C/c(z, k⊥C)

− f̂a/A(xa, k⊥a)∆f̂ b
sx/+(xb, k⊥b) M̂0

1 M̂0
3 sin(ϕ1 − ϕ3 + φH

C )∆N D̂C/c↑(z, k⊥C) (13)
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• qg → gq contribution

[Σ(+,+)− Σ(+,−)]qg→gq =

∆f̂a
sz/+(xa, k⊥a)∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
3 |2

]
D̂C/g(z, k⊥C) (14)

+ f̂a/A(xa, k⊥a)∆f̂ b
T2/+(xb, k⊥b) M̂0

1 M̂0
3 sin(ϕ1 − ϕ3 + 2φH

C )∆N D̂C/T g
1
(z, k⊥C)

• gq → gq contribution

[Σ(+,+)− Σ(+,−)]gq→gq =

∆f̂a
sz/+(xa, k⊥a) ∆f̂ b

sz/+(xb, k⊥b)
[
|M̂0

1 |2 − |M̂0
2 |2

]
D̂C/g(z, k⊥C) . (15)

The physical content of the above expressions is interesting. First note the complete formal symmetry between the
qq → qq kernel in Eq. (8) and the gg → gg kernel in Eq. (9). These kernels contain the largest variety of contributions,
and the kernels for all the other partonic processes can be formally read off from these by the suppression of certain
terms.

In the second line of both expressions, Eq. (8) and Eq. (9), we recognize the product of the k⊥-dependent helicity
distributions, ∆f̂q

sz/+(xq, k⊥q) ≡ ∆q(xq, k⊥q) and ∆f̂g
sz/+(xg, k⊥g) ≡ ∆g(xg, k⊥g) for quarks and gluons respectively,

and the unpolarized fragmentation function D̂C/c(z, k⊥C), with no azimuthal phases. In the third line of Eq. (8) we
have two parton distribution functions ∆f̂q

sx/+(x, k⊥) referring to quarks transversely polarized, along the x-axis, inside
longitudinally polarized nucleons, coupled to the unpolarized fragmentation function. Analogously, in the third line of
Eq. (9) we have two parton distribution functions ∆f̂g

T2/+(x, k⊥) which are related to the linear polarization of a gluon
inside a longitudinally polarized nucleon. Correspondingly the fourth line of Eq. (8) refers to one quark transversely
polarized along the x-axis inside a longitudinally polarized nucleon and the other, ∆f̂q

sy/A(x, k⊥), transversely polarized
along the y-axis inside an unpolarized nucleon – the latter is the Boer-Mulders function – coupled to the unpolarized
fragmentation function. Analogously, in the fourth line of Eq. (9) we have ∆f̂g

T2/+(x, k⊥) and the “Boer-Mulders-

like” gluon function, ∆f̂g
T1/A(x, k⊥), referring to a linearly polarized gluon inside an unpolarized nucleon. For a more

complete explanation of the physical meaning of these functions see Appendix B of [14]. Finally, the last line of
Eq. (8) contains the Collins fragmentation function, ∆N D̂C/c↑(z, k⊥C), coupled to an unpolarized parton density and
a transversely polarized one. In the case of the gluon, in the last line of Eq. (9), there appears a gluonic analogue
of the Collins fragmentation function, ∆N D̂C/T g

1
(z, k⊥C), describing the fragmentation of a linearly polarized gluon

into an unpolarized hadron.
Ignoring the underlined terms which vanish upon integration, we see that compared to the standard collinear ap-

proach, we have extra contributions involving quarks polarized transversely along their x-axis in a longitudinally
polarized nucleon, appearing in Eqs. (8), (10) and contributions involving linearly polarized gluons inside a longi-
tudinally polarized nucleon, appearing in Eqs. (9), (11). Notice that the processes in Eqs. (12)-(15), initiated by
quark-gluon elementary scattering, get contributions only from the usual terms, which survive in the collinear case.

The reason why the underlined terms in Eqs. (8)-(15) vanish upon angular integration is the parity invariance of the
strong interactions; the demonstration of their vanishing requires a detailed study of the kinematics. One can show,
considering the relationship between the angular integration variables appearing in k⊥a, k⊥b, k⊥C in Eq. (2) and the
phase variables ϕ1,2,3 and φH

C [14], that a parity transformation implies ϕi → −ϕi (i = 1, 2, 3) and φH
C → −φH

C . Thus
the odd sin terms in Eqs. (8)-(15) must vanish if parity is conserved. We have numerically checked that this is indeed
the case.

Another simple, but interesting example of such a vanishing can be obtained by considering, within the same
formalism, the expression of the kernels for the longitudinal single spin asymmetry AL, which we know must vanish
in a parity conserving theory. The kernels themselves are not zero, but under integration do vanish. This is another
very stringent test of the correctness of our formalism. For AL, for the partonic channel qaqb → qcqd, we have for the
numerator of the longitudinal single spin asymmetry the following expression:

[Σ(+, 0)− Σ(−, 0)]qaqb→qcqd =

∆f̂a
sx/+(xa, k⊥a)∆f̂ b

sy/B(xb, k⊥b) (2M̂0
2 M̂0

3 ) sin(ϕ3 − ϕ2) D̂C/c(z, k⊥C)

−∆f̂a
sx/+(xa, k⊥a) f̂b/B(xb, k⊥b) sin(ϕ1 − ϕ3 + φH

C ) M̂0
1 M̂0

2 ∆N D̂C/c↑(z, k⊥C) , (16)

and, again, all terms – being odd functions of ϕi and φH
C – vanish, as they should, upon angular integration.
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IV. PHENOMENOLOGY: ALL AT RHIC

The longitudinal double spin asymmetry ALL for inclusive neutral pion production in proton-proton scattering has
been measured at RHIC in various runs by the PHENIX and STAR Collaborations. Their first published experimental
data [19, 20] showed results for ALL at mid rapidity compatible with large negative values. This was quite puzzling,
since ALL is a positive quantity in the collinear parton model, at least at low pT where it is dominated by gg → gg
elementary scattering processes, see Eq. (9) in which it can be shown that |M̂0

1 |2−|M̂0
2 |2−|M̂0

3 |2 > 0. More recent and
precise data from both collaborations [21, 22] exclude the possibility of a large and negative ALL: in two subsequent
RHIC runs, 5 and 6 (results from Run 6 have only been presented as “preliminary” [23, 24]), they confirm and
reinforce the statement that ALL is very small and compatible with zero over the whole pT range they cover, from 1
to 8 GeV/c approximately.

Next to leading order QCD calculations of ALL in a collinear configuration have previously shown that the present
data disfavour large positive values for ∆g and definitely exclude scenarios where ∆g is as large as the unpolarized
gluon distribution function, g, at low scale [25]. Instead they are in better agreement with the predictions obtained by
assuming ∆g = 0 or even ∆g = −g at the initial scale [25]. A recent statistical analysis shows that the PHENIX Run
5 data are compatible with both ∆g = 0 and the “standard” GRSV parametrization [26] at 12% and 20% confidence
level respectively, while it rules out the ∆g = −g hypothesis [23]. Instead, its newest update, which includes the
preliminary data from PHENIX Run 6, favours the ∆g = 0 scenario over the standard GRSV with 44% confidence
level, against 0.25% [24]. (Note that in this Section we have adopted the common, short-hand notation ∆fq

sz/+ ≡ ∆q

and ∆fg
sz/+ ≡ ∆g for the helicity distribution functions, while fq/p ≡ q and fg/p ≡ g for the unpolarized distribution

functions, for quarks and gluons respectively).
Our goal is to explore whether the mechanisms induced by the presence of partonic intrinsic transverse momenta,

obtained in a general and fully non-collinear kinematics, could affect the above conclusions, based on the analysis of
ALL in the collinear configuration, i.e. taking into account only the terms proportional to ∆q(x) and ∆g(x). Could
the “new” contributions shown in Eqs. (8)-(11) turn the longitudinal double asymmetry ALL into a very small (or
even slightly negative) quantity without the need to assume ∆g to be zero or negative?

To answer this question, we study ALL at RHIC, for the PHENIX kinematics:
√

s = 200 GeV and |η| < 0.35
(numerical calculations are performed at η = 0) and evaluate each separate contribution to ALL, according to
Eqs. (8)-(15). Since we have no knowledge of the parton densities ∆f̂q

sx/+ and ∆f̂g
T2/+ we maximize them in order

to see whether, in principle, they can have a significant effect on ALL. We thus use for them the corresponding
unpolarized parton densities and adjust the signs so that all contributions add up. Notice that we retain the full
phase structure of each term, crucial for our purposes.

For the helicity distributions we have used the sets GRSV2000 [26] and LSS05 [27]. The unpolarized cross-section
and the maximized contributions to the numerator of ALL have been calculated using the GRV98 set [28] and the
MRST01 set [29] respectively. For the fragmentation functions we have used the KKP set [30]. The transverse
momentum dependence has been included by means of a factorized Gaussian smearing, for all the parton distribution
and fragmentation functions

f̂(x, k⊥) = f(x)
e−k2

⊥/〈k2
⊥〉

π〈k2
⊥〉

, (17)

D̂(z, k⊥C) = D(z)
e−k2

⊥C/〈k2
⊥C〉

π〈k2
⊥C〉

, (18)

with a constant and flavour independent parameter
√
〈k2
⊥〉 ≡ k0, assumed to be the same for all quark flavours and for

gluons; we shall study the effect of changes in the value of k0. Guided by our previous work, we compared the results
obtained using three different values for k0: k0 = 0.8 GeV/c from studies on the unpolarized pp scattering cross-
sections and single spin asymmetries [13], k0 = 0.5 GeV/c from fitting the Cahn effect in SIDIS [31], and k0 = 0.01
GeV/c to recover the collinear configuration. For the fragmentation functions, we take 〈k2

⊥C〉 = 〈k2
⊥〉 everywhere,

unless differently stated. Indeed we have checked that variations in 〈k2
⊥C〉 induce negligible changes in ALL.

We have evaluated the contribution of the various terms to ALL in the non-collinear approach. As already antici-
pated, we find that the contributions from gluon-gluon elementary scattering processes dominate at small values of pT ,
while they become progressively less relevant for growing pT ’s, as qg scattering contributions take over and become
dominant for pT > 8 GeV/c. The contribution from the collinear helicity distribution functions coming from channels
involving only quarks and anti-quarks in the initial state is negative; however it is much smaller in magnitude than
those corresponding to gluon-gluon and quark-gluon initial states, over the whole pT range.

It turns out that the new “non collinear” soft contributions containing the PDF’s ∆f̂q
sx/+(x, k⊥) and ∆f̂g

T2/+(x, k⊥),
even if maximized, are negligible. Therefore, we conclude that there is no way for the extra contributions induced by
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Figure 1: ALL for the process pp → π0X at
√

s = 200 GeV and η = 0, plotted as function of pT , calculated with different

choices of
p〈k2

⊥〉 ≡ k0 in the PDF/FFs, compared to PHENIX data, Run 5 [22]. The solid line corresponds to the choice
k0 = 0.01 GeV/c in both PDFs and FFs. The dashed line corresponds to k0 = 0.8 GeV/c in PDF/FFs. The PDF sets are
LSS05 [27] and MRST01 [29], the FF set is KKP [30] and the factorization scale is Q = pT . Notice that the changes in ALL

induced by varying the value of 〈k2
⊥〉 are much smaller than those obtained by choosing different sets of distribution functions

and/or factorization scales, see Fig. 2.

the presence of partonic intrinsic transverse momenta to alter the size of ALL. This result does not depend on the
choice of k0.

As a further interesting issue we have studied the dependence of the usual leading contributions on k⊥ and on the
choice of the PDF set and of the factorization scale. In this study we have not taken into account the (negligible)
contributions from the new soft functions.

As a first step, we have considered in more detail the dependence of ALL on the mean transverse momentum of the
PDFs. From Fig. 1 we can see that in general ALL depends very little on the different choices of k0; in particular,
ALL decreases when increasing the width of the gaussian, but compared to data this variation is quite negligible.
This result was somehow expected, as the k⊥ dependence is given by the same gaussian for all distribution and
fragmentation functions and at mid rapidity the M̂ amplitudes depend very mildly on k⊥. In general, ALL depends
much more on the choice of the PDF set or of the scale. In Fig. 2 we show ALL calculated in an almost collinear
configuration,

√
〈k2
⊥〉 = 0.01 GeV/c, and for two choices of scale, Q = pT and Q = p∗T /2, where p∗T is the transverse

momentum of the fragmenting parton in the partonic c.m. frame. Using the LSS05/MRST01 PDFs, the solid line
corresponds to Q = p∗T /2 and the dashed-dotted line to Q = pT . Using the GRSV2000/GRV98 PDFs, the dashed
line corresponds to Q = p∗T /2, and the dotted line to Q = pT . As it can be seen, the variations induced by different
choices of PDF set and scale are quite large, larger than those produced by changes in the k0 value; nevertheless, all
these curves are compatible with experimental data.

Furthermore, we have studied the dependence of ALL on the c.m. energy. The left panel of Fig. 3 shows ALL at√
s = 62.4 GeV and

√
s = 200 GeV at η = 0 calculated with

√
〈k2
⊥〉 ≡ k0 = 0.5 GeV/c. It is seen that ALL varies

considerably at fixed xT = 2 pT /
√

s, but remains very small. Notice that preliminary experimental data obtained by
the PHENIX Collaboration during a short run at

√
s = 62.4 GeV have been recently presented [23]: they confirm

that ALL actually becomes smaller at lower
√

s, but, with the present large errors, do not offer a realistic possibility
to distinguish among different possible scenarios for ∆g.

Even in the range of forward rapidities, ALL remains very small. In Fig. 3, right panel, we show ALL at three
different rapidity values, as a function of xF . Clearly, ALL quickly decreases when η becomes larger than one, making
it impossible to study any variations induced by different choices of PDF/FFs or by changes in k0.

To complete the picture we have examined a more general case in which the dependence on k⊥ of the helicity
distribution functions, ∆q and ∆g, are parametrized in terms of two different gaussians, namely

∆f̂sz/+(x, k⊥) = f̂+/+(x, k⊥)− f̂−/+(x, k⊥) = f+/+(x)
exp(−k2

⊥/〈k2
+〉)

π〈k2
+〉

− f−/+(x)
exp(−k2

⊥/〈k2
−〉)

π〈k2−〉
, (19)

to allow for a non-trivial interplay between f̂+/+ and f̂−/+ (f̂±/+ is the number density of partons with ± helicity
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Figure 2: ALL for the process pp → π0X at
√

s = 200 GeV and η = 0, plotted as function of pT , calculated with different PDF
sets and factorization scales. The solid line corresponds to the choice of PDFs LSS05/MRST01, while the factorization scale is
Q = p∗T /2, where p∗T is the transverse momentum of the fragmenting parton in the partonic c.m. frame. The dash-dotted line
corresponds to LSS05/MRST01 and Q = pT . The dashed line shows ALL as obtained using the PDF sets GRSV2000/GRV98
and with Q = p∗T /2. Finally the dotted line corresponds to the choice GRSV2000/GRV98 and Q = pT . The FF set is KKP.p〈k2

⊥〉 = 0.01 GeV/c for both PDF/FF. The experimental data are from the PHENIX collaboration at RHIC, Run 5 [22].

 0
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 0.01
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η=0

√s=62.4 GeV
√s=200 GeV
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η=2 [1.6 Gev/c <pT<15.0 Gev/c]
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Figure 3: On the left panel, ALL is shown as a function of xT at rapidity η = 0, factorization scale Q = pT and two different
c.m. energies: the solid line corresponds to

√
s = 62.4 GeV while the dashed line to

√
s = 200 GeV. On the right panel, ALL is

plotted as function of xF at
√

s = 200 GeV and different values of rapidity, η = 1, 2, 3; here the factorization scale is Q = p∗T /2.
The PDF sets are LSS05 and MRST01, the FF set is KKP and k0 = 0.5 GeV/c for both PDF/FF.

inside a positive helicity parent proton). Notice that, for simplicity, we have assumed no flavour dependence: the same
〈k2

+〉 and 〈k2
−〉 parameters are used for any quark flavour and for gluons, in hadrons A and B. Once again we have

found that ALL is very little sensitive to different choices for the width parameters 〈k2
+〉 and 〈k2

−〉 at mid rapidity.
The consequences of using different gaussians for the two helicity components of the PDFs can be seen in Fig. 4 where
ALL is plotted as a function of xF at

√
s = 200 GeV and three different rapidities, η = 1 (left panel), η = 2 (central

panel) and η = 3 (right panel). Here we adopt
√
〈k2
⊥C〉 = 0.5 GeV/c for the FFs, while the four lines represent

four different choices for the parameters 〈k2
+〉 and 〈k2

−〉. It is immediately evident that variations in these parameters
induce very little change in ALL, except at larger rapidity, where, however, ALL is so small that it is probably beyond
experimental reach. Notice the scale of the pictures, many times smaller than that used in Figs. 1 and 2. It is also
interesting to point out that the curves that correspond to the choices 〈k2

+〉 = 〈k2
−〉 (which leads us back to the cases
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Figure 4: The longitudinal double spin asymmetry ALL plotted as function of xF at
√

s = 200 GeV and rapidities η = 1 (left
panel), η = 2 (central panel) and η = 3 (right panel). The factorization scale is Q = p∗T /2, where p∗T is the transverse momentum
of the fragmenting parton in the partonic c.m. frame. The four lines represent four different choices for the parameters 〈k2

+〉 and
〈k2
−〉: the solid line refers to 〈k2

+〉 = 〈k2
−〉 = 0.04 (GeV/c)2, the dashed line to 〈k2

+〉 = 0.36 (GeV/c)2, 〈k2
−〉 = 0.04 (GeV/c)2, the

dash-dotted line to 〈k2
+〉 = 0.04 (GeV/c)2, 〈k2

−〉 = 0.36 (GeV/c)2, and the dotted line refers to 〈k2
+〉 = 〈k2

−〉 = 0.36 (GeV/c)2.
The PDF sets are LSS05 and MRST01, the FF set is KKP. Here we adopt 〈k2

⊥C〉 = 0.25 (GeV/c)2 for the FFs. Notice that
the scale here is many times smaller than in Figs. 1 and 2.

previously considered) are basically indistinguishable, independently of the value assumed for the two widths.

V. CONCLUSIONS

We have examined, at leading order in perturbative QCD, the effect on the longitudinal double spin asymmetry ALL

of allowing the partons to have non-zero intrinsic transverse momentum, and of including in ALL the contributions
arising from the new soft functions that play a crucial role in transverse spin asymmetries. The study was carried out
in the hope that such effects might negate the conclusion that the very small measured values of ALL automatically
imply that the polarized gluon density is very small. Our study indicates that the contribution from these effects is
essentially negligible and we are forced, at the present stage, to accept the conclusion that the polarized gluon density
is much too small to explain the “spin crisis in the parton model” [32]. In fact, even in a fully non-collinear partonic
kinematics, the variations induced by changes in the parameter 〈k2

⊥〉 = k0 are very small, much smaller than those
generated by different choices of PDF sets and of the factorization scale. Finally, we have studied the behaviour of
the longitudinal double spin asymmetry ALL at different c.m. energies and at different rapidities, in a model in which
two different widths were assumed for the parallel and antiparallel-spin parton densities, f̂+/+ and f̂−/+: it turns out
that ALL remains small and positive in all cases, except at large rapidity where its magnitude is probably too small
to be measurable.
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