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a b s t r a c t

After the initial discovery of the so-called ‘‘spin crisis in the parton model’’ in the 1980s,
a large set of polarization data in deep inelastic lepton–nucleon scattering was collected
at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and
in the resonance region have come from experiments at Jefferson Lab. These data, in
combinationwith the earlier ones, allowus to study in detail the polarized parton densities,
the Q 2 dependence of various moments of spin structure functions, the duality between
deep inelastic and resonance data, and the nucleon structure in the valence quark region.
Together with complementary data from HERMES, RHIC and COMPASS, we can put new
limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this
report, we provide an overview of our present knowledge of the nucleon spin structure
and give an outlook on future experiments. We focus in particular on the spin structure
functions g1 and g2 of the nucleon and their moments.
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1. Introduction

Themeasurement of a spin dependent observable is generally a daunting task, but with rich rewards, because spin seems
to have a scalpel-like ability to expose weaknesses and failures of theories. Witness the switch from S, T to V − A, which
led to the Weinberg–Salam electroweak theory, or the demise of Regge poles, which had successfully described hadronic
cross-sections and shrinking diffraction peaks, or the spin crisis in the partonmodel of deep inelastic scattering, supposedly
resolved by an anomalous gluon effect, now shown to be untenable, and, most recently, the realization that some of the
information, gathered for 40 years on the fundamental electromagnetic form factors of the nucleon, is unreliable.
In this review we attempt to survey the tremendous experimental and theoretical effort, mainly involving studies of

polarized lepton–hadron scattering and polarized proton–proton reactions, that has led to our present knowledge of the
internal spin structure of the nucleon,
Deep inelastic lepton–hadron scattering (DIS) has played a seminal role in the development of our present understanding

of the sub-structure of elementary particles. The discovery of Bjorken scaling in the late 1960s [1] provided the critical
impetus for the idea that elementary particles contain point-like constituents and for the subsequent invention of the
Parton Model. DIS continued to play an essential role in the long period of consolidation that followed, in the gradual
linking of partons and quarks, in the discovery of the existence of missing constituents, later identified as gluons, and in
the wonderful confluence of all the different parts of the picture into a coherent dynamical theory of quarks and gluons—
Quantum Chromodynamics (QCD). Polarized DIS, involving the collision of a longitudinally polarized lepton beam with a
longitudinally or transversely polarized target, provides a complementary and equally important insight into the structure
of the nucleon.
At first sight the theoretical treatment of the polarized case seems to mimic the unpolarized case, with the structure

functions F1,2(x) replaced by the polarized structure functions g1,2(x), and with parton densities q(x) replaced by polarized
densities 1q(x). But it turns out that the polarized case is much more subtle: there is an anomalous gluon contribution to
g1(x), and g2(x) has no interpretation at all in purely partonic language.
The latter insights were mainly inspired by the unexpected results of the European Muon Collaboration (EMC)

measurement of g1(x) in 1988 [2]. The first excitement caused by this experiment was its indication of the failure of a
sum rule due to Ellis and Jaffe based on the assumption that the contribution from strange quarks to g1 is negligible [3]. It
was soon realized, however, that there were more profound ramifications, which led to an intense scrutiny of the theory,
since they implied a ‘‘spin crisis in the parton model’’ [4]— the spins of the quarks seemed to provide only a tiny fraction of
the spin of the nucleon, in contrast to the situation in simple-minded constituent quarkmodels of hadrons, where the quark
spins account for a very large fraction of the proton spin. The crisis was believed to be resolved via a large polarized gluon
contribution.
Of course the parton model predates QCD. In the more general field-theoretic framework we know that Bjorken Scaling

[5], i.e. the fact that structure functions and parton densities depend only on x, cannot hold exactly, and these functions have
a Q 2 dependence which can be calculated perturbatively in QCD, resulting in some of the most stringent tests of the validity
of the theory. Moreover, because of the unfortunate need to renormalize the theory, the parton densities lose their simple
physical meaning, and their actual functional form depends upon the renormalization scheme employed.
At present the situation, as will be discussed, is full of interest.

• Measurements of the polarized gluon density suggest that it is much too small to resolve the spin crisis [6,7]. This almost
certainly implies that the partons possess orbital angular momentum, and it appears possible to estimate this, at least
for the quarks, via a study of deeply virtual Compton scattering on protons [8].
• More precise data expected from the COMPASS experiment at CERN and the pp program at RHIC will allow further
scrutiny of the validity of the above conclusion.
• There are now significant measurements of g2(x) which can be used to test the Wandzura–Wilczek approximation [9],
the Burkhardt–Cottingham sum rule [10], and the Efremov–Leader–Teryaev sum rule [11].
• Measurements at Jefferson Laboratory are probing the hitherto inaccessible region of large x, where there are intriguing
predictions about the behavior of the ratios 1q(x)/q(x), as well as the region of low Q 2, where higher twist effects are
important and where the issue of ‘‘duality’’ between the resonance and deep inelastic regions can be studied.
• By combining DIS datawith the growing reservoir of data on semi-inclusive DIS (SIDIS) it should become possible to learn
about the polarized sea densities1ū and1d̄ and to resolve the present disagreement between DIS and SIDIS about the
sign of the strange quark density1s(x)+1s̄(x).

The aim of this review is phenomenological, i.e., it tries to strike a reasonable balance between theory and experiment.
The theoretical treatment is thus conventional QCD and does not address interesting, and sometimes profound, matters like
the Chern–Simons current and non-perturbative effects such as instantons, axial ghosts, and the U(1) problem. These are
discussed in detail in the review of Anselmino, Efremov and Leader [12], and in the review of Bass [13], who also examines
the consequences of a fixed pole in the virtual-photon Compton amplitude.
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Fig. 1. Feynman diagram for deep inelastic lepton–hadron scattering.

1.1. Definitions and formalism

Consider the inelastic inclusive scattering of polarized leptons on polarized nucleons. We denote by m the lepton mass,
k (k′) the initial (final) lepton 4-momentum and s (s′) its covariant spin 4-vector, such that s · k = 0 (s′ · k′ = 0) and
s · s = −1 (s′ · s′ = −1); the nucleon mass isM and the nucleon 4-momentum and spin 4-vector are, respectively, P and S.
Assuming, as is usually done, one photon exchange (see Fig. 1), the differential cross-section for detecting the final polarized
lepton in the solid angle dΩ and in the final energy range (E ′, E ′+dE ′) in the laboratory frame, P = (M, 0), k = (E, k), k′ =
(E ′, k′), can be written as

d2σ
dΩdE ′

=
α2

2Mq4
E ′

E
LµνWµν (1)

where q = k− k′ and α is the fine structure constant.
The leptonic tensor Lµν (summed over the unobserved final lepton spin) is given by

Lµν(k, s; k′) =
∑
s′
[ū(k′, s′) γµ u(k, s)]∗ [ū(k′, s′) γν u(k, s)] (2)

and can be split into symmetric (S) and antisymmetric (A) parts under µ, ν interchange:

Lµν(k, s; k′) = 2{L(S)µν (k; k
′)+ iL(A)µν (k, s; k

′)} (3)

where

L(S)µν (k; k
′) = kµk′ν + k

′

µkν − gµν (k · k
′
−m2)

L(A)µν (k, s; k
′) = m εµναβ sα qβ . (4)

The unknown hadronic tensor Wµν describes the interaction between the virtual photon and the nucleon and depends
upon four scalar structure functions, the unpolarized functions F1,2 and the spin-dependent functions g1,2 (ignoring parity-
violating interactions). These must be measured and can then be studied in theoretical models, in our case in the QCD-
modified parton model. They can only be functions of the scalars q2 and q · P . Usually people work with

Q 2 ≡ −q2 and xBj ≡ Q 2/2q · P = Q 2/2Mν (5)

where ν = E− E ′ is the energy of the virtual photon in the lab frame. xBj is known as ‘‘x-Bjorken’’, and we shall simply write
it as x. We also refer to the invariant mass of the (unobserved) final state,W =

√
(P + q)2 =

√
M2 + 2Mν − Q 2.

Analogous to Eq. (3) one has

Wµν(q; P, S) = W (S)
µν (q; P)+ iW

(A)
µν (q; P, S). (6)

The symmetric part, relevant to unpolarized DIS, is given by

W (S)
µν (q; P) = 2

[
qµqν
q2
− gµν

]
F1(x,Q 2)+

2
Mν

[
Pµ −

P � q
q2
qµ

] [
Pν −

P � q
q2
qν

]
F2(x,Q 2). (7)

The antisymmetric part, relevant for polarized DIS, can be written as

W (A)
µν (q; P, s) = 2 εµναβ q

α

{
M2SβG1(ν,Q 2)+

[
MνSβ − (S · q) Pβ

]
G2(ν,Q 2)

}
(8)



Author's personal copy

4 S.E. Kuhn et al. / Progress in Particle and Nuclear Physics 63 (2009) 1–50

or, in terms of the scaling functions g1,2

g1(x,Q 2) = M2νG1(ν,Q 2), g2(x,Q 2) = Mν2G2(ν,Q 2), (9)

W (A)
µν (q; P, s) =

2M
P · q

εµναβ qα
{
Sβg1(x,Q 2)+

[
Sβ −

(S · q) Pβ

(P · q)

]
g2(x,Q 2)

}
. (10)

Note that these expressions are electromagnetic gauge-invariant:

qµWµν = 0. (11)

In the Bjorken limit, or deep inelastic regime,

− q2 = Q 2 →∞, ν = E − E ′ →∞, x fixed (12)

the structure functions F1,2 and g1,2 are known to approximately scale, i.e., vary very slowlywith Q 2 at fixed x—in the simple
parton model they scale exactly; in QCD their Q 2 evolution can be calculated perturbatively.
Differences of cross-sections with opposite target spins are given by[

d2σ
dΩ dE ′

(k, s, P,−S; k′)−
d2σ
dΩ dE ′

(k, s, P, S; k′)
]
=

α2

2Mq4
E ′

E
4L(A)µν W

µν(A). (13)

After some algebra (for a detailed derivation see [12]), one obtains from Eqs. (13) and (10) expressions for the following
polarized cross-section differences (note that here, and in the following, we have included the lepton mass terms that are
usually ignored):

• For the lepton and target nucleon polarized longitudinally, i.e. along or opposite to the direction of the lepton beam, the
cross-section difference under reversal of the nucleon’s spin direction (indicated by the double arrow) is given by

d2σ
→
⇐

dx dy
−
d2σ

→
⇒

dx dy
=
16πα2

Q 2

[(
1−

y
2
−
y2(M2x2 +m2)

Q 2

)
g1 −

2M2x2y
Q 2

g2

]
. (14)

• For nucleons polarized transversely in the scattering plane, one finds

d2σ→⇑

dx dy
−
d2σ→⇓

dx dy
= −

16α2

Q 2

(
2Mx
Q

)√
1− y−

M2x2y2

Q 2

[
y
2

(
1+

2m2y
Q 2

)
g1 + g2

]
. (15)

Here we have used

y ≡
ν

E
=
P · q
P · k

. (16)

In principle, these two independent observables allow measurement of both g1 and g2 (as has been done at SLAC and in
Jefferson Lab’s Halls A and C), but the transverse cross section difference is generally smaller because of kinematic factors
and therefore more difficult to measure. Only in the past few years has it been possible to gather precise information on g2,
which turns out to be usually smaller than g1 in DIS.
Since experimental results are often presented in the form of asymmetries, which are the ratios of cross-section

differences to the unpolarized cross-section, we comment here briefly on the latter. The unpolarized cross-section is given
by

d2σunpold
dx dy

=
4πα2

x y Q 2

{
xy2

(
1−

2m2

Q 2

)
F1 +

[
1− y−

M2x2y2

Q 2

]
F2

}
. (17)

It is a non-trivial task to obtain separate information on F1 and F2 and usually data are presented for F2 and Rwhere

R ≡ [1+ γ 2]

(
F2
2xF1

)
− 1 (18)

and

γ 2 =
4M2x2

Q 2
. (19)

For a longitudinally polarized target the measured asymmetry is

A‖ ≡
dσ
→
⇐
− dσ

→
⇒

2 dσunpold
(20)
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and for a transversely polarized target the measured asymmetry is

A⊥ ≡
dσ→⇑ − dσ→⇓

2dσunpold
. (21)

It is customary to introduce the (virtual) photon–nucleon asymmetries A1,2,

A1 =
g1 − γ 2g2
F1

(22)

and

A2 = γ
[g1 + g2
F1

]
. (23)

From Eqs. (14), (15) and (17), it follows that

A‖ = D (A1 + ηA2) (24)

and

A⊥ = d(A2 − ξA1) (25)

where

D =
y[(1+ γ 2y/2)(2− y)− 2y2m2/Q 2]

y2(1− 2m2/Q 2)(1+ γ 2)+ 2(1+ R)(1− y− γ 2y2/4)
(26)

d =

[
[1+ γ 2y/2(1+ 2m2y/Q 2)]

√
1− y− γ 2y2/4

(1− y/2)(1+ γ 2y/2)− y2m2/Q 2

]
D (27)

η = γ
[1− y− y2(γ 2/4+m2/Q 2)]

(1− y/2)(1+ γ 2y/2)− y2m2/Q 2
(28)

ξ = γ
1− y/2− y2m2/Q 2

1+ γ 2y/2(1+ 2m2y/Q 2)
. (29)

Measurements of both A⊥ and A‖ yield the values of g1 and g2 directly (given a parametrization of R and F1), but in practice
the majority of experiments in the past have only measured A‖. These experiments have been interpreted as measurements
of g1, neglecting or correcting for g2. Although it turns out that g2 is small, there is no a priori reason for this, so it is safer to
neglect some quantity for which we know an upper bound, e.g. we could utilize |A⊥| ≤ 1, but a better approach is to utilize
the (virtual) photon–nucleon asymmetries. The point is that there exists a restrictive bound on A2 (for the history of this
see [14,15]):

|A2| ≤
√
R (1+ A1)/2. (30)

Replacing g2 in terms of g1 and A2 yields

A‖
D
= (1+ γ 2)

[
g1
F1

]
+ (η − γ ) A2, (31)

where η − γ is typically very small. Most experiments either use a parametrization for A2 or neglect the A2 terms in
Eqs. (24) and (31) altogether, leading to the approximations

A1 ≈
A‖
D
≈ (1+ γ 2)

[
g1
F1

]
(32)

to evaluate g1 and then utilize the bound Eq. (30) to estimate the error involved.
Strictly speaking, all of the above, from Eq. (7) onwards, applies only to a spin 1/2 target. For targets with higher spin,

like the deuteron, the hadronic tensor contains many more structure functions. But in all the practical cases of interest the
target nucleus may be considered as a weakly bound system of essentially independent nucleons, with a small correction
for binding effects, and the nuclear asymmetries are then expressed in terms of the asymmetries on protons and neutrons.
For a detailed analysis of this issue, and formulae relating measured asymmetries on deuterium and on 3He to the nucleon
structure functions, see Section 2.1.4 of [12]. For the more general theory of DIS on spin 1 targets, see [16,17].
Note that in the abovewe have kept terms of orderM2/Q 2 and smaller. They are sometimes necessary in order to extract

the correct experimental values of the structure functions from the measured asymmetries. However, very often, the QCD
analysis of the structure functions is carried out at leading twist only, ignoring higher twist terms, i.e. of orderM2/Q 2. This
is clearly inconsistent in those cases, for example the Jefferson Lab experiments, where the above terms are important.
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1.2. Experiments

When Bjorken proposed his famous sum rule [5] 40 years ago, he considered it ‘‘useless’’ since the experimental
technology needed to test it appeared far from reach. It required substantial advances in both polarized target and polarized
beam technology before the first double-polarization lepton scattering experiment could begin [18]. The first round of
experiments at SLAC [18–21] using polarized electrons impinging on a polarized proton target seemed to confirm the
expectations of the naive quark parton model (namely, that most of the proton spin was carried by its quark helicities).
However, the range in x covered was rather limited, and the data had large errors and were taken at fairly low Q 2.
Nevertheless, these experiments started the exploration of the nucleon spin structure, not only in the DIS region, but also
in the region of the nucleon resonances [20].
The EMC collaboration [2] used the (naturally polarized) muon beam at CERN, with much higher beam energy, together

with a large polarized proton target, to extend the covered range down to significantly lower x ≈ 0.01. Together with the
earlier SLAC data, their results seemed to indicate that little to none of the proton spinwas due to the helicities of the quarks.
This violated the Ellis–Jaffe sum rule [3] within the simple quark–parton picture assuming that SU(3) is a good symmetry
and the strange (sea) quark contribution to the nucleon spin could be ignored. The final data from the EMC experiment are
published in [22].
This puzzling result spurred the rapid development of several new experiments that had the goal to verify the data on the

proton with greater precision and, most importantly at the time, test the Bjorken sum rule [5] by probing the spin structure
of the neutron as well. This last goal required the use of targets containing polarized neutrons, for which two very different
technologies were developed.
One possibility is to use polarized deuterons as a target composed of equal amounts of polarized protons and neutrons,

from which neutron information can be extracted by comparison with pure proton targets (taking nuclear binding effects
like the deuteron D-state into account). This method follows closely the example of polarized proton target technology,
which typically involves chemical compounds (like alcohols or ammonia) rich in hydrogen (either 1H for protons or 2H = D
for deuterons) which are seeded with paramagnetic centers (with unpaired electrons), cooled to cryogenic temperatures
(1 K or lower) and immersed in a strong magnetic field (usually several T). The unpaired electrons are polarized to nearly
100% in the field, and this polarization is transferred to the hydrogen nuclei via the process of Dynamic Nuclear Polarization

Fig. 2. Typical solid state polarized proton or deuteron target for electron scattering experiments. The cell containing the frozen ammonia (15NEH3 or
15NED3) is at the center of a Helmholtz-type magnet generating a homogeneous field of about 5 T. A 4He evaporation refrigerator (a liquid helium bath in a
low-pressure environment) cools the target material to about 1 K. 140 GHz microwaves irradiate the target material to dynamically polarize the hydrogen
nuclei. The polarization is measured by a resonant NMR circuit (the obtained signal vs. frequency is sketched in the top right). Polarized targets for muon
beams are typically much longer and can be cooled to lower temperatures.
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Fig. 3. Typical gaseous 3He target for electron scattering experiments. The glass cell containing pressurized (≈ 10 atm) 3He gas is at the center of a
Helmholtz magnet generating a homogeneous field of 25 G. The cell is connected to a second, heated volume where the 3He is polarized by spin-exchange
collisions with alkali atoms, the latter being pumped by high-intensity lasers. The polarization is measured either via an NMR circuit (consisting of RF drive
coils and NMR signal pickup coils) or using the EPR method.

(DNP), by employing microwave radiation of the proper frequency to induce coupled electron–nucleon spin transitions.
This technique typically achieves a proton polarization of 80%–90% and a deuteron polarization of 30%–50%, both of which
can be measured using a Nuclear Magnetic Resonance (NMR) system. Fig. 2 shows an example of such a target. In the case
of deuteron targets, one can also use 6LiD compounds, where both the lithium nucleus and the deuteron are polarized to
increase the fraction of events from polarized nucleons (the so-called dilution factor).
A complementary approach uses polarized 3He nuclei to gain information on the neutron, since to first order the 3He

nucleus can be considered as a bound state of a proton–proton pair (with their spins anti-aligned) and an unpaired neutron
carrying almost all of the nuclear spin. Again, nuclear corrections to this picture are important, but the advantage is that one
does not have to subtract a large contribution from polarized protons to extract the neutron results. The most widely used
version of this target uses a glass vessel containing pressurized 3He gas mixed with a trace amount of an alkali atom vapor
(typically rubidium) that can be electron-spin polarized via optical pumping with circularly polarized laser light. The 3He
nuclei are polarized through spin exchange collisionswith the alkali atoms. A typical example is shown in Fig. 3. Polarizations
of up to nearly 50% have been achieved in these targets, which can withstand much larger beam currents than the solid-
state DNP targets. As an example, the polarized 3He target used in JLab Hall A [23], with a 15µA electron beam on an 40 cm
long, 10 atm 3He target, achieved a luminosity of 1036 cm−2 s−1. Recently, a new development of a hybrid technique [24],
using a mixture of rubidium and potassium atoms, has significantly increased the spin-exchange efficiency and, in turn,
increased the target polarization up to 60% for the high density target. Further improvement to over 70% polarization has
been achieved for this target by using recently available narrow-width lasers. The high luminosity and high polarization
allowmeasurements of the spin structure functions with very high statistical precision. The target polarization is measured
with both NMR and EPR (electron para-magnetic resonance) methods to a precision of 3%. Since the holding field is low,
it is relatively easy to point the polarization in any direction in the horizontal plane using two pairs of Helmholtz coils. At
Jefferson Lab, the addition of a new pair of vertical coils recently allowed the target also to be polarized along the vertical
direction, enabling the study of transverse spin.
The successor collaboration to EMC at CERN, called SMC (Spin Muon Collaboration), used large dynamically polarized

cryogenic deuteron [25] and proton [26] targets to extract information on the neutron and to improve on the statistics
and the kinematic reach of the EMC result. They also pioneered the use of semi-inclusive data, where a leading hadron is
identified in coincidence with the scattered lepton, to get more information on the contribution of various quark flavors to
the nucleon spin [27]. The complete data set collected by the SMC resulted in precise inclusive results both at the highest
momentum transfer Q 2 [28] and at the lowest quark momentum fraction x accessible to fixed target experiments [29].
The E142 collaboration at SLAC was the first to use a 3He gas target with high luminosity to directly access the neutron

spin structure functions gn1 and g
n
2 [30,31]. Together with the EMC and SMC experiments, the results showed that the

Bjorken sum rule including perturbative QCD (pQCD) corrections appeared to be valid. E142 was followed by a series
of additional experiments at SLAC that used all three nuclear targets, proton, deuteron and 3He, to accumulate a highly
precise data set on spin structure functions in the deep inelastic region. Instrumental for achieving ever higher precision
was a significant improvement in the polarization (to over 80%) and intensity of available electron beams from strained
GaAs cathodes irradiated with circularly polarized laser light. By using several electron beam energies and a set of up to 3
spectrometers, the E143 [32–34] and the E155 [35,36] collaborations collected data on the proton and the deuteron over
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Fig. 4. Layout of the HERMES experiment at HERA/Desy (Hamburg, Germany). The stored electron or positron beam traverses an open storage cell fed by
an atomic beam source with polarized H, D or 3He. The scattered leptons (and leading hadrons) are detected in a large acceptance spectrometer consisting
of wire chambers, scintillator hodoscopes, ring-imaging Cherenkov (RICH) and transition–radiation (TRD) detectors, and an electromagnetic calorimeter.

a wide range of momentum transfer Q 2 at several values of x, which were used to study scaling violations for polarized
structure functions. The E154 collaboration [37,38] added more neutron data at similar kinematics, using a polarized 3He
target. The E143 collaboration also published the first precision results at lower Q 2 and in the nucleon resonance region
(W ≤ 2 GeV) [39]. The spin structure functions gp,n,d2 were measured with high precision by rotating the target polarization
for all 4 experiments from a longitudinal to a perpendicular orientation to the beam [34,40,41].
The most innovative approach to measuring DIS structure functions came from the HERMES collaboration (see Fig. 4)

which used positrons or electrons circulating in one of the HERA rings at DESY together with internal low-density gas
targets fed directly from atomic beam sources [42,43]. The target atoms are polarized using hyperfine transitions induced
by radio frequency fields and Stern–Gerlach type separation with magnetic sextupoles. The atomic beam is injected into a
thin, windowless tube through which the beam circulates. This method yields a pure polarized target without any dilution
from unpolarized materials. The polarization of the beam is accomplished by utilizing the Sokolov–Ternov effect (the
spontaneous vertical polarization through spin-dependent synchrotron radiation of leptons in a storage ring). Spin rotators
turn the polarization into the longitudinal direction at the target. The scattered electrons, as well as hadrons produced
in coincidence, were detected by a large acceptance forward spectrometer. This setup allowed the HERMES collaboration
not only to independently measure the inclusive spin structure functions g1 and g2 (for final results see [44]), but also
semi-inclusive structure functions for flavor-tagging [45]. In addition, they collected a large data set on related reactions of
interest, from Deeply Virtual Compton Scattering (DVCS) [46] and transverse spin structure functions [47] to a first direct
measurement of the gluon polarization [48].
After the shutdown of the HERA ring, there are now three laboratories left where experiments studying the spin structure

of the nucleon continue: CERN,with the SMC-successor experiment ‘‘COMPASS’’; BNL (on Long Island, NY)with the polarized
proton–proton collision program at RHIC; and the Thomas Jefferson National Accelerator Facility (‘‘Jefferson Lab’’ or JLab) in
Newport News, VA, with an ongoing program of electron scattering in all 3 experimental halls.
The COMPASS experiment (see Fig. 5) uses the secondary (naturally polarized) muon beam at CERN together with large

polarized deuteron and hydrogen targets to extend the kinematic reach and precision of SMC, and, as its main purpose, to
extract information on the gluon polarization. This latter goal has been pursued bymeasuring both the production of hadron
pairs with high transverse momentum [6] and by detecting charmed mesons in the final state (which are predominantly
produced via photon–gluon fusion). Indirect information on the gluon contribution to the nucleon spin also comes fromNLO
analyses of inclusive DIS data, where the large kinematic lever arm offered by COMPASS makes an important contribution.
First results on the deuteron have been published [49–51] and the COMPASS experimental program will continue in the
foreseeable future.
Another novel approach to studying the spin structure of the nucleon uses high-energy collisions of counter-circulating

proton beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL, Long Island, NY). Polarized
protons are injected into a series of accelerators that finally fill both RHIC rings, where energies up to 100 GeV (250 GeV in
the future) can be reached (see Fig. 6). Siberian snakes rotate the proton spins to avoid depolarizing resonances, while spin
rotators can select the desired spin direction at the interaction points.
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Fig. 5. Layout of the COMPASS experiment at CERN (Geneva, Switzerland).

Fig. 6. Layout of the RHIC accelerator complex at BNL (Long Island, NY).

At present, there are two large experiments (PHENIX and STAR) that use polarized proton collisions to study the gluon
helicity contribution 1G to the nucleon spin. The observables used so far include meson production with high transverse
momentum pT as well as jet production, both probing the gluons through quark–gluon and gluon–gluon interactions in
the initial state. First results from these experiments have been published [52–55] and will be discussed in Section 2.3.
By orienting the proton spins perpendicular to the beam direction, both experiments can also study reactions sensitive to
transverse spins.
Finally, for the last 10 years a large program using electron scattering to study the spin structure of nucleons has been

underway at Jefferson Lab (JLab). This program has utilized the highest polarization electron beams (over 85%)with energies
from 0.8 GeV to close to 6 GeV and all three species of polarized targets (p, d and 3He) to study spin-dependent structure
functions both in the DIS regime as well as in the nucleon resonance region (and even on nuclei). This program is ongoing in
all three experimental halls and will be continued once the energy upgrade to 12 GeV of the JLab accelerator is completed
in 2014. In the following we give some of the experimental details for all three halls; the results achieved so far will be
discussed in the relevant sections 2.3–4.
The spin structure program in JLab’s Hall A is focussed on the neutron, using a polarized 3He target (Fig. 3) as an effective

polarized neutron target. The target polarization direction can be oriented longitudinal or transverse to the beam direction.
Measurements of polarized cross-sections and asymmetries in the two orthogonal directions allow a direct extraction of
g1, g2, A1 and A2. A series of high precision experiments [56–65] measured g1 and g2 in a wide range of kinematics, from
very low Q 2(≈0.01 GeV2) up to 5 GeV2 and from the elastic peak to the DIS region (W ≈ 3 GeV). A pair of High Resolution
Spectrometers (HRS) are used to detect the scattered electrons. TheHRShave angular acceptances of≈6msr andmomentum
acceptances of ≈9%. Their angular range is 12.5◦–160◦ and can reach as low as 6◦ with the addition of a septum magnet.
The high luminosity of 1036 cm−2 s−1 allowed for precision measurements at numerous HRS momentum and angular
settings to cover a wide swath in the (Q 2,W )-plane. The electron detector package consists of vertical drift chambers (for
momentum analysis and vertex reconstruction), scintillation counters (for data acquisition trigger), gas Cherenkov counters
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Fig. 7. Schematic of the CEBAF Large Acceptance Spectrometer (CLAS) with the polarized target at its center. Charged particle tracks are measured with
three layers of drift chambers, while electrons (track in upper half) can be identified using a set of Cherenkov counters, time-of-flight scintillators and a
electromagnetic calorimeter.

and lead–glass shower calorimeters (for particle identification). TheHRS optical property and acceptance have been carefully
studied. Absolute cross sections are measured to a level of 2%–3% precision. Asymmetries are measured to a level of 4%–5%
precision,mostly due to the uncertainties from the beamand target polarizationmeasurements. The spin structure functions
g1 and g2 are extracted using polarized cross section differences in which contributions from unpolarized materials, such as
target windows and nitrogen, cancel. Corrections for the two protons in 3He are still needed since they are slightly polarized
due to the D state ( 8%) and S′ state (1.5%) of the 3He wave function [66]. Corrections for binding and Fermi motion are
applied using state-of-the-art 3He calculations [67,68]. Uncertainties due to the nuclear corrections have been studied [67].
In the region of DIS and for the extraction of moments, the uncertainties are usually small, typically less than 5%.
The EG1–EG4 series of experiments in JLab’s Hall B (see Fig. 7) has as its goal to map out the asymmetry A1 and the spin

structure function g1 of both nucleons over the largest, continuous kinematic range accessible. It makes use of the CEBAF
Large Acceptance Spectrometer (CLAS) in Hall B that covers an angular range of about 6◦ to over 140◦ in polar angle and
nearly 2π in azimuth [69]. Because of the open geometry and the toroidal magnetic field (maintained by 6 superconducting
coils evenly distributed in azimuth), one can simultaneously detect scattered electrons over a wide kinematic range, as well
as secondary produced hadrons (nucleons, pions and kaons) for semi-inclusive or exclusive channels. By combining runs
with several different beam energies from 1 to 6 GeV, a continuous coverage in Q 2 from 0.015 to 5 GeV2 and in final state
massW , from the elastic peak (W = 0.94 GeV) to the DIS region (W ≈ 3 GeV), has been achieved. Inclusive results from
the EG1 experiment have been published [70–73].
The relatively low luminosity limit of this open detector (about 1034 cm−2 s−1) is rather well matched to the luminosity

limits typical for solid state, dynamically polarized targets. EG1–EG4 took data on both hydrogen (15NH3) and deuterium
(15ND3). So far, only targets polarized along the beam direction have been utilized (because of the difficulty to combine a
large transverse magnetic field with the open geometry of CLAS), which necessitates (minor) corrections of the measured
asymmetries for the unobserved contribution fromA2 (see Eq. (31)). A fit to theworld data onA2 andonunpolarized structure
functions R and F1 [74,75] is used to extract the desired spin structure function information from themeasured asymmetries.
In addition to the structure function g1(x,Q 2), the CLAS data have also yielded new results on resonance excitation and decay
(via exclusive π+, π0 and π− channels) [76,77], on deeply virtual Compton scattering [78], and on single and double spin
asymmetries in semi-inclusive hadron production [79].
The first experiment completed in Hall C used a standard DNP ammonia target (15NH3 and 15ND3) and the existing high

momentum spectrometer (HMS) for a detailed look at the resonance region at intermediate Q 2 ≈ 1.3 GeV2. This is the only
experiment at JLab on the proton and the deuteron where both longitudinal and transverse double spin asymmetries were
measured, allowing an unambiguous separation of the structure functions A1 and A2 or g1 and g2 up to a final state missing
mass ofW ≈ 2 GeV. First results have been published [80].

2. Spin-dependent parton density functions

2.1. The simple parton model

The parton model was invented [81] long before QCD to explain the fact that the unpolarized structure functions F1,2
apparently scale, i.e., do not decrease with Q 2, in contrast to the elastic form factors which decrease rapidly [1]. The partons
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Fig. 8. The nucleon viewed as a collinear beam of partons.

Fig. 9. Parton model description of DIS.

Fig. 10. Visualization of the longitudinally polarized parton density1q(x). The upper arrows show the spin direction.

were conceived of as effectively massless, point-like constituents of the nucleon, which interact electromagnetically like
leptons, and it was argued that a nucleon, in a frame where it is moving very fast, could be viewed as a ‘‘beam’’ of collinear
partons, as shown in Fig. 8. The partons are characterized as having momentum p = x′P and covariant spin vector s.
The interaction with the hard photon is then visualized as in Fig. 9, in which the lepton–quark scattering is treated

analogously to elastic lepton–lepton scattering. Requiring the final quark to be on mass shell, i.e. (p + q)2 = 0, selects the
value x′ = x.
For unpolarized DIS one finds the scaling result expressed in terms of the number density q(x) of quarks and q̄(x) of

antiquarks

F1(x,Q 2) =
1
2

∑
j

e2j [ qj(x)+ q̄j(x)] (33)

where the sum is over flavors j, ej is the charge of the quark, and the Callan–Gross relation [82] yields

F2(x) = 2xF1(x). (34)

For longitudinally polarized DIS one obtains

g1(x) =
1
2

∑
j

e2j [1qj(x)+1q̄j(x)] (35)

with

1q(x) = q+(x)− q−(x) (36)

where q±(x) are the number densities of quarks whose spin orientation is parallel or antiparallel to the longitudinal spin
direction of the proton (see Fig. 10). In terms of these, the usual (unpolarized) parton density is

q(x) = q+(x)+ q−(x). (37)

Concerning the second spin structure function, there aremany different, inconsistent results for g2(x) in the literature. In
fact there is no unambiguous way to calculate g2 in the simple parton model. For an explanation of the problem see Section
3.4 of [12].
The only reliable result is the Wandzura–Wilczek relation [9]

g2(x) ' −g1(x)+
∫ 1

x

g1(x′)
x′

dx′ (38)

which was originally derived as an approximation in an operator product expansion approach, but which has recently been
shown to be derivable directly in the simple parton model [83]. It is discussed further in Sections 2.6 and 3.
Let us rewrite the expression for g1, Eq. (35), in terms of linear combinations of quark densities which have specific

transformation properties under the group of flavor transformations SU(3)F :

1q3 = (1u+1u)− (1d+1d) (39)

1q8 = (1u+1u)+ (1d+1d)− 2(1s+1s) (40)

1Σ = (1u+1u)+ (1d+1d)+ (1s+1s). (41)
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These transform respectively as the third component of an isotopic spin triplet, the eighth component of an SU(3)F octet,
and a flavor singlet. Then

g1(x) =
1
9

[
3
4
1q3(x)+

1
4
1q8(x)+1Σ(x)

]
. (42)

Taking the first moment of this yields, for protons,

Γ
p
1 ≡

∫ 1

0
g1(x)dx =

1
9

[
3
4
a3 +

1
4
a8 + a0

]
(43)

where

a3 =
∫ 1

0
dx1q3(x)

a8 =
∫ 1

0
dx1q8(x)

a0 = 1Σ ≡
∫ 1

0
dx1Σ(x). (44)

Now the hadronic tensor Wµν is given by the Fourier transform of the nucleon matrix elements of the commutator of
electromagnetic currents Jµ(x):

Wµν(q; P, S) =
1
2π

∫
d4x eiq·x〈P, S|[Jµ(x), Jν(0)]|P, S〉. (45)

In hard processes, x2 ' 0 is important, so we can use the Wilson Operator Product Expansion (OPE). This gives moments
of g1,2 in terms of hadronic matrix elements of certain operators multiplied by perturbatively calculable Wilson coefficient
functions. This is discussed in more detail in Section 3.1. The ai in Eq. (44) turn out to be hadronic matrix elements of an
octet of quark SU(3)F axial-vector currents J

j
5µ (j = 1, . . . , 8) and a flavor singlet axial current J

0
5µ (see Eqs. (82), (84) and

(85)). The octet of currents is precisely the one that controls theweak decays of the neutron and of the octet hyperons, which
implies that the values of a3 and a8 are known from β-decay measurements:

a3 ≡ gA = 1.2670± 0.0035 a8 = 0.585± 0.025. (46)

Hence a measurement of Γ1, Eq. (43), can be considered as giving the value of the flavor singlet a0.
It should be noted that the connection with hadronic matrix elements of local operators is strictly only valid if the

moments include the elastic contribution, which appears as a delta-function at x = 1. However in deep inelastic scattering
the elastic contribution is completely negligible, so the experimentally tabulatedmoments do not include an elastic term, as
can be seen in the discussion of the extrapolation to x = 1 given in Sections 2.4 and 2.5. However, in dealing with inelastic
scattering at lowQ 2, especially in the resonance region, it is important to distinguish betweenmoments including the elastic
contribution, for which the notation will remain Γ and those not including an elastic contribution which will be denoted Γ̄ .
Now we can put the startling result of the European Muon Collaboration [2] into context: Knowing the values of a3 and

a8, the EMC measurement implied

aEMC0 ' 0. (47)

But in the naive parton model

a0 = 1Σ = a8 + 3(1s+1s) (48)

where1Σ is given by Eq. (41).
In 1974 Ellis and Jaffe [3] had suggested that one could ignore the contribution from the strange quarks, i.e., from1s+1s̄,

implying that

a0 ' a8 ' 0.59. (49)

Thus the EMC result Eq. (47) is in gross contradictionwith Ellis–Jaffe. It was this contradictionwhich at first aroused interest
in the EMC result, but it was soon realized that their result had far more serious consequences.
Consider the physical significance of1Σ(x). Since q±(x) count the number of quarks of momentum fraction xwith spin

component ± 12 along the direction of motion of the proton (say the z-direction), the total contribution to Jz coming from
the spin of a given flavor quark is

〈Sz〉 =
∫ 1

0
dx

{(
1
2

)
q+(x)+

(
−1
2

)
q−(x)

}

=
1
2

∫ 1

0
dx1q(x). (50)
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Fig. 11. QCD generalization of parton model.

It follows that

a0 = 2〈Squarksz 〉 (51)

where 〈Squarksz 〉 is the contribution to Jz from the spin of all quarks and antiquarks.
Naively, in a non-relativistic constituentmodel onewould have expected all of the proton spin to be carried by the spin of

its quarks. In a more realistic relativistic model one expects 2〈Squarksz 〉 ≈ 0.6, which, as first noted by Sehgal [84], is actually
close to the value obtained by neglecting the strange contribution in Eq. (48), but quite far from the EMC value Eq. (47)
for a0.
It was this discrepancy between the contribution of the quark spins to the angularmomentumof the proton, asmeasured

in DIS and as computed in both non-relativistic and relativistic constituent models of the proton, that was termed a ‘‘spin
crisis in the parton model’’ [4]. It should be noted, however, that Thomas and co-workers have developed a constituent
model, a more sophisticated version of the Cloudy Bag model, in which the nucleon is visualized as made up of valence
quarks and a pion cloud, and the wave function includes the effect of single gluon exchange between the valence quarks.
The pion cloud and the strength of the one gluon exchangewere treated phenomenologically, determined from fits to various
different static properties of the hadron octet and decuplet, and it was not clear if, or to what extent, double counting was
taking place. However, lattice studies of the mass-splitting between the1 and the nucleon [85] suggest that the pion cloud
contributes very little to the splitting and thus allows a fairly reliable estimate of the value of the phenomenologically
determined gluon coupling strength. It then turns out that the contribution of the quark spins to the angular momentum of
the proton, in its rest frame, is1Σ ≈ 0.35, which is not too far frommost recent experimental results. Thus in this approach
there is no significant ‘‘spin crisis’’. For a review of this work see [86].

2.2. The parton model in QCD

The parton model is a heuristic picture, much like the impulse approximation in nuclear physics, and predates QCD.
Once QCD is accepted as the theory of strong interactions, with quark and gluon fields as the fundamental fields, there will
be interaction-dependent modifications of the simple parton model formulae for DIS. The theory is invariant under color
gauge transformations, but the physical content of individual Feynman diagrams does depend upon the gauge, and it turns
out that a parton-like picture emerges in the light-cone gauge A+ = 0where Aµ is the gluon vector potential. The description
of nucleon structure becomes much more complicated, involving a set of twelve functions, and the parton model number
densities q(x),1q(x) (and the analogue for transversely spinning nucleons1Tq(x), which is not relevant for the longitudinal
spin structure) are only the principal, so-called ‘‘leading twist’’ members of this set. In this review, we shall only deal with
q(x) and1q(x). The reaction is visualized as in Fig. 11, where the top ‘‘blob’’ involves a hard interaction (the photon is highly
virtual) and the bottom ‘‘blob’’ involves non-perturbative soft interactions.
The main impact of the QCD interactions will be twofold:

(1) to introduce a mild, calculable logarithmic Q 2 dependence in the parton densities
(2) to generate a contribution to g1 arising from the polarization of the gluons in the nucleon

We shall not go into the technical details, but simply indicate the physical source of these effects.
(1) QCD corrections and evolution
In Fig. 12 we show the Born term for the interaction of the virtual photon with a quark (the hard blob), and the simplest

correction terms, a vertex correction and a diagram where a gluon is radiated from the active quark before it interacts with
the photon.
Unfortunately these correction terms are infinite. The infinity is caused by collinear divergences which occur because of

the masslessness of the quarks and which are removed by a process known as factorization. In this process the reaction is
factorized (separated) into a hard and soft part and the infinity is absorbed into the soft part, which in any case cannot be
calculated and has to be parametrized and studied experimentally.
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Fig. 12. Example of QCD correction terms (b) to the Born approximation (a).

The point at which this separation is made is referred to as the factorization scale µ2. Schematically, one finds terms of
the form αs ln Q

2

m2q
which one splits as follows

αs ln
Q 2

m2q
= αs ln

Q 2

µ2
+ αs ln

µ2

m2q
(52)

and one then absorbs the first term on the right hand side into the hard part and the second into the soft part. µ2 is an
arbitrary number, like the renormalization scale, and, in an exact calculation, physical results cannot depend on it. However
it does mean that what we call the parton density has an extra label µ2 specifying our choice. Moreover, since we never
calculate to all orders in perturbation theory, it can make a difference what value we choose. It turns out that an optimal
choice is µ2 = Q 2, so the parton densities now depend on both x and Q 2 i.e. we have q(x,Q 2) and 1q(x,Q 2), and perfect
Bjorken scaling is broken. But the variation with Q 2 is gentle (logarithmic), and can be calculated via what are called the
evolution equationswhich will be discussed later.
It turns out to be crucial in handling these divergences to use the technique of dimensional regularization, which is

straightforward in the unpolarized case, but which runs into ambiguities in the polarized case. As a consequence there are
several different factorization schemes in use and it is crucial, when presenting results on the parton densities, to specify
which scheme is being utilized.
At present there are three schemes in use:
(i) The Vogelsang, Mertig and van Neerven scheme [87,88],MS − MNV (usually just abbreviated asMS). In this scheme

a3 and a8 are independent of Q 2.
(ii) The AB scheme of Ball, Forte and Ridolfi [89], which, in addition, has the first moment

1Σ =

∫ 1

0
dx1Σ(x,Q 2) (53)

independent of Q 2.
(iii) The JET scheme of Carlitz, Collins andMueller [90], Anselmino, Efremov and Leader [12] and Teryaev andMüller [91],

andwhich is identical to the Chiral Invariant scheme of Cheng [92]. In this scheme a3 and a8 are independent of Q 2 as is1Σ ,
but it can be argued that the JET scheme is superior to the others in that all hard effects are included in Hµν (see Fig. 11).
Of course, if one could work to all orders in perturbation theory it would make no difference which scheme one used,

but given that we work to leading order (LO), next to leading order (NLO), and in some cases to NNLO, the choice of scheme
can be of importance.
For the polarized densities the evolution equations are

d
d lnQ 2

1q(x,Q 2) =
αs(Q 2)
2π

∫ 1

x

dy
y
{1Pqq(x/y)1q(y,Q 2)+1PqG(x/y)1G(y,Q 2)} (54)

d
d lnQ 2

1G(x,Q 2) =
αs(Q 2)
2π

∫ 1

x

dy
y
{1PGq(x/y)1q(y,Q 2)+1PGG(x/y)1G(y,Q 2)}, (55)

where1G(x) is analogous to1q(x)

1G(x) = G+(x)− G−(x). (56)

The1P are the polarized splitting functions and are calculated perturbatively

1P(x) = 1P (0)(x)+
αs

2π
1P (1)(x) (57)
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Fig. 13. NLO amplitude for the q→ q̄ transition.

Fig. 14. NLO contributions to the splitting function for a q→ q̄ transition.

Fig. 15. QCD diagram leading to the anomalous gluon contribution.

where the superscripts (0) and (1) refer to LO and NLO contributions. For details about these the reader is referred to [87].
A pedagogical introduction to scheme dependence can be found in Section 11.8 of [93]. For a more complete set of relations
between the densities and Wilson coefficients in the various schemes, see [94].
Note that in LO flavor combinations like qf −qf ′ (e.g., u(x)−d(x)) and valence combinations like qf − q̄f (e.g., u(x)− ū(x))

are non-singlet and evolve in the same way, without the 1G term in Eq. (54). (There is no splitting in LO from a q to a q̄,
nor from, say, a u to a d.) However, in NLO flavor non-singlets like u(x) − d(x) and charge-conjugation non-singlets like
u(x) − ū(x) evolve differently. The origin of this difference can be seen in Figs. 13 and 14. Fig. 13 shows an NLO amplitude
for a quark to split into a q̄.
Fig. 14 shows two possible contributions to 1Pqq̄ from taking the modulus squared of this amplitude. In (a) the

contribution is pure flavor singlet and involves only gluon exchange,whereas in (b) the contribution is non-singlet. However,
if we try to do something similar for a flavor changing splitting function e.g.1Pdu we find that we cannot construct the non-
singlet diagram.
The expression for g1(x,Q 2) now becomes

g1(x,Q 2) =
1
2

∑
flavors

e2q

{
1q(x,Q 2)+1q̄(x,Q 2)+

αs(Q 2)
2π

×

∫ 1

x

dy
y
{1Cq(x/y) [1q(y,Q 2)+1q̄(y,Q 2)] +1CG(x/y)1G(y,Q 2)}

}
(58)

where1CG and1Cq are Wilson coefficients evaluated from the hard part calculated beyond the Born approximation. Note
that very often the evolution equations are written using the convolution notation, for example,

1Cq ⊗1q ≡
∫ 1

x

dy
y
1Cq(x/y)1q(y). (59)

(2) The gluon contribution to g1
Fig. 15 demonstrates a NLO gluon-initiated contribution to DIS.
In the Bjorken limit, for the longitudinal polarized case, this turns out to involve the gluonic version of the famous Adler

[95], and Bell and Jackiw [96] anomalous triangle diagram shown in Fig. 16. The net result is that there is an anomalous
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Fig. 16. Feynman diagram responsible for the anomaly.

gluonic contribution to the flavor singlet a0 [90,97–99]

agluons0 (Q 2) = −3
αs(Q 2)
2π

∫ 1

0
dx1G(x,Q 2)

≡ −3
αs(Q 2)
2π

1G(Q 2). (60)

Note that the factor 3 corresponds to the number of light flavors i.e. u, d, s. Heavy flavors do not contribute.
So, there exists potentially a gluonic contribution to the first moment of g1:

Γ
gluons
1 (Q 2) = −

1
3
αs(Q 2)
2π

1G(Q 2)! (61)

This result is of fundamental importance. It implies that the simple parton model formula Eq. (44) for a0 (and hence for Γ
p
1 ) in

terms of the1qf could be considered as incomplete. Instead,

a0 = 1Σ − 3
αs

2π
1G. (62)

However, it should be noted that there is a subtlety concerning Eq. (62). It turns out that the result actually depends on
the factorization scheme utilized. Eq. (62) is correct in the AB and JET schemes, but the gluon contribution to a0 is zero in the
MS scheme. Now the spin crisis emerged from comparing the size of 1Σ with what would be expected if the quark spins
dominated the nucleon’s angular momentum. But in NLO, in theMS scheme,1Σ varies with Q 2, so one could argue that it
cannot be directly interpreted as the spin contribution of the quarks. It is the invariant AB or JET value of1Σ which should
be interpreted directly as a spin.
The fundamental conclusion is that the small measured value of a0 does not necessarily imply that the physically

meaningful, invariant 1Σ is small. This discovery was hailed as a resolution of the spin crisis. We shall see later that this
seems to be a false hope.

2.3. Experimental determination of polarized parton densities

From the discussion in the previous two sections, it is clear that the bulk of information on polarized parton densities in
the nucleon comes from charged lepton scattering experiments in the deep inelastic (DIS) region, with final state masses
larger than W = 2 GeV and momentum transfers in excess of Q 2 = 1 GeV2. As described in Section 1.2, a vast amount
of data on the inclusive spin structure function g1(x,Q 2) has been accumulated by lepton scattering experiments at SLAC,
CERN, DESY and Jefferson Lab. The Particle Data Group’s compilation [100] of these data plotted vs. x are shown in Fig. 17 on
the left side, while the right side displays theQ 2 dependence of gp1 (x,Q

2) for several fixed x bins. The observedmild violation
of scaling is sensitive to the polarized gluon density (see Sections 2.2 and 2.5). In Section 2.4 we highlight in particular the
new data taken at high values of x, where valence quarks dominate the measured spin structure functions. In that region,
valence parton densities can be uniquely determined from DIS data on the proton and the neutron.
Inclusive data alone, however, are not able to distinguish the contributions from quark and antiquark densities. One

approach to gather additional information has been to use semi-inclusive lepton scattering (SIDIS), where in addition to the
scattered lepton one detects a leading hadron (typically a pion or kaon) in the final state. Struck quarks of different flavors
have varying probabilities to produce those final state hadrons, as expressed through the various fragmentation functions.
These are principally extracted from e+e− collision experiments, and still have considerable uncertainties (in particular for
kaons). By comparing the asymmetries of semi-inclusiveπ+, π− andK+, K− production fromprotons andneutrons, one can
try to separate out the contributions from all quark flavors. This approach was pioneered by the SMC collaboration [27] and
the most detailed data set stems from the HERMES collaboration [45,102], as shown in Fig. 18. The COMPASS collaboration
has also measured semi-inclusive channels [51].
While the virtual photon in deep inelastic lepton scattering couples directly to the quarks (via their electric charges),

gluons can only be probed indirectly in this reaction. Their main influence is in the gentle (logarithmic) evolution of the
quark densities with Q 2 (see the r.h.s. of Fig. 17), as outlined in Section 2.2. The resulting violation of Bjorken scaling can be
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Fig. 17. World data on the polarized structure function xg1(x) for the proton, deuteron and neutron in the DIS region (W > 2 GeV), taken by different
experiments, at several different values of Q 2 , as compiled by the Particle Data Group [100] (left panel). The proton data are also shown versus Q 2 , for
several bins in x [101] (right panel; the dashed lines just connect the data to guide the eye). Note that much of the data at very small x is for Q 2 < 1 GeV2 .

Fig. 18. World data on polarized parton densities1q(x) extracted from semi-inclusive DIS data, as compiled by the Particle Data Group [100].

exploited to extract the contribution of gluons to the nucleon momentum and spin. This has been spectacularly successful
in the case of unpolarized DIS, where (thanks to the existence of the lepton–nucleon collider HERA) the range of Q 2 that has
been accessed experimentally exceeds 5 orders ofmagnitude for some (fixed) values of x. The situation ismuchmore difficult
in the case of polarized structure functions; so far, only fixed target experiments have measured double spin observables in
lepton–nucleon scattering. The highestQ 2 available are of order 100 GeV2 (using themuon beam at CERN). Recent data from
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Fig. 19. Results (some preliminary) on the gluon polarization1G/G extracted (at leading order) from photon–gluon fusion processes. (Data compiled by
the COMPASS collaboration [103]).

COMPASS [49] have dramatically improved the precision of g1 at relatively high Q 2 for the deuteron which is an isoscalar
target and thereforemore sensitive to gluon contributions. For themaximum lever-arm inQ 2, it is important to push for high
precision at both extremes of the Q 2 range. In this context, new deuteron results from Jefferson Lab [72] play an important
role.
For a direct approach, it is highly desirable to measure observables that are more closely linked to the polarized gluon

density in the nucleon, e.g. virtual or real photon–gluon fusion (see Fig. 15) in semi-inclusive lepton scattering or photon
absorption,with two quarks in the final state stemming from the splitting of a gluon. In order to distinguish this process from
the more copious direct quark diagrams, one has to select either events in which the final state hadrons or jets carry large
transverse momentum pT or where the final state quark has a heavy flavor (e.g., charm) unlikely to stem from the nucleon
itself. This approach has been used by HERMES and COMPASS and was to be employed by the (unfortunately terminated)
SLAC experiment E161.
The existing results (including preliminary data) are shown in Fig. 19. The new HERMES data point (inverted triangle)

is extracted from high-pT virtual photon production of a single hadron, while the COMPASS data points come from high-pT
hadron pairs or jets and from open charm production data (D0 and D∗; indicated by the star symbol in Fig. 19). These data
put some restrictions on the magnitude of the polarized gluon density 1G(x) in the moderate x region to which they are
sensitive but still have rather large statistical errors. Also, at present no NLO analyses of these data exist, and backgrounds
from ‘‘ordinary’’ SIDIS processes as well as ‘‘resolved photon’’ contributions have to be taken into account.
An alternate route has been employed in the polarized proton collision program at BNL, using the Relativistic Heavy Ion

Collider (RHIC). One selects final state signatures like hadrons, jets or even direct photons with large transverse momentum
that indicate an underlying hard interaction between two constituents from the two colliding protons. The cross section for
the production of this final state can be expressed as a convolution of the parton densities of the two initial protons with
the hard parton–parton scattering cross section and the final state fragmentation function (see, e.g., [104]). There is good
agreement between the NLO pQCD predictions and data for the unpolarized cross section [54], suggesting that pQCD can be
applied reliably to such reactions.
For the double spin asymmetry, one divides the cross section difference for opposite proton spins by the sum.

The result depends on products of polarized parton densities; depending on the kinematics one is mostly sensitive to
quark–quark, quark–gluon or gluon–gluon subprocesses. While this quadratic dependence does not allow a ‘‘naive’’ direct
extraction of polarized parton distributions (not even in LO), the observed asymmetry can be compared to predictions from
parametrizations of quark and gluon densities. Fig. 20 shows the preliminary results from PHENIX (π0 production, [105])
and STAR (jet production, [106]) for the double spin asymmetry ALL versus transversemomentum pT , comparedwith several
model calculations based on the GRSV parametrization [108] of polarized parton densities. One clearly can see a preference
for the curves labeled ‘‘1G = 0’’ while some of the more extreme possibilities (1G = ±G) can be excluded. However,
depending on the particular overall shape of the polarized gluon distribution with x, non-zero values of the overall first
moment of1G are not excluded.
The most comprehensive analysis of all DIS, SIDIS and pp data so far has been conducted by de Florian, Sassot, Stratmann

and Vogelsang [104]. The authors find good agreement between all data sets, which together yield a preference for the
integral over 1G(x) from x = 0.05 to x = 0.2 to be close to zero. For a definite answer on the question ‘‘what is the
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Fig. 20. Double spin asymmetries in high pTπ0 production (PHENIX [105], left panel) and jet-production (STAR preliminary [106], right panel) from
proton–proton collisions at 200 GeV center-of-mass energy at mid-rapidity. The various curves shown are the NLO pQCD predictions from several versions
of the polarized gluon density parametrizations from Vogelsang et al. [107].

contribution 1G to the nucleon spin’’ we need additional data that can better constrain the higher and lower x region, to
pin down both the shape and overall magnitude of1G(x). These data will be forthcoming from future experiments at JLab
(precision measurements of DIS on the deuteron, both at 6 GeV and at 12 GeV beam energy) and the continuation of the
COMPASS experiment at CERN, as well as higher precision data for different center-of-mass energies and different final state
channels from RHIC.
In Section 2.5, we survey the status of the polarized parton densities extracted from all the data described above.

2.4. Measurements of spin structure in the valence region

The properties of nucleon structure functions in the high-x region are of special interest, because this iswhere the valence
quark contributions are expected to dominate. With minimal sea quark and explicit gluon contributions, it is a clean region
to test our understanding of nucleon structure. Relativistic constituent quark models [109,86] should be applicable in this
region and perturbative QCD [110] can be used to make predictions in the large x limit.
To first approximation, the constituent quarks in the nucleon are described by SU(6) wave functions with orbital angular

momentum of zero. SU(6) symmetry leads to the following predictions [111]:

d(x)/u(x) = 1/2; 1u(x)/u(x) = 2/3; 1d(x)/d(x) = −1/3; Ap1(x) = 5/9; and An1(x) = 0. (63)

Relativistic Constituent Quark Models (RCQM) with broken SU(6) symmetry, e.g., the hyperfine interaction model [109],
lead to a dominance of ‘quark–diquark’ configurations with the spectator-diquark spin S = 0 at high x. This implies that as
x→ 1:

d/u→ 0; 1u/u→ 1; 1d/d→−1/3; Ap1 → 1; and An1 → 1. (64)

In these RCQMmodels, relativistic effects lead to a non-zero quark orbital angular momentum and reduce the valence quark
contributions to the nucleon spin from 1 to 0.6–0.75.
Another approach is leading-order pQCD [110], which assumes the quark orbital angularmomentum to be negligible and

leads to hadron helicity conservation. For a nucleon with helicity+1/2

q±(x)→ (1− x)2n−1+(1∓1) (65)

as x→ 1, where n = 2 is the number of spectators. The exponent for q+ is therefore 3, while the strength of q− is suppressed
by an extra factor of (1− x)2 at large x. This, plus SU(6), leads to:

d/u→ 1/5; 1u/u→ 1; 1d/d→ 1; Ap1 → 1; and An1 → 1 (66)

in agreement with [112]. Eq. (65) cannot hold at all Q 2, since evolution causes the power of (1 − x) to grow like loglogQ 2
at large Q 2, but Eq. (66) should hold at all Q 2.
Not only are the limiting values at x = 1 important, but also the behavior as x approaches 1, which is sensitive to the

dynamics in the valence quark region. A new approach [113] in pQCD, including quark orbital angular momentum (and
therefore not requiring hadron helicity conservation), shows a different behavior at large x region while keeping the same
limiting values at x = 1. In particular, the approach of1d/d towards unity only sets in at a significant larger x than predicted
by hadron helicity conservation (see below).
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Fig. 21. An1 (left panel) and A
p
1 (right panel) results from JLab Hall A E99-117 [61,62] and CLAS EG1b [72] experiments (filled circles), compared with the

world data and theoretical predictions (see text for details).

Experimentally, it is difficult to access the high-x region because most high-energy experiments so far lacked the
necessary luminosity and fine-enough resolution in x. This situation has dramatically changed with the advent of the high-
current, moderate energy continuous electron beam at Jefferson Lab.
JLabHall A experiment E99-117 [61,62]measured the neutron asymmetryAn1with high precision in the x region from0.33

to 0.61 (Q 2 from2.7 to 4.8GeV2). Asymmetries from inclusive scattering of a highly polarized 5.7GeVelectron beamonahigh
pressure (>10 atm) (both longitudinally and transversely) polarized 3He target were measured. Parallel and perpendicular
asymmetries were extracted. After taking into account the beam and target polarizations and the dilution factor, they were
combined to form A

3He
1 . Using a recent model [68], nuclear corrections were applied to extract A

n
1. The results on A

n
1 are

shown in the left panel of Fig. 21. The experiment greatly improved the precision of data in the high-x region, providing
the first evidence that An1 becomes positive at large x, a clear evidence for SU(6) symmetry breaking. The results are in good
agreement with the LSS 2001 pQCD fit to previous world data [114] (solid curve) and the statistical model [115] (long-
dashed curve). The trend of the data is consistent with the RCQM [109] predictions (the shaded band). The data disagree
with the predictions from the leading-order pQCDmodels [110] (short-dashed and dash-dotted curves). These data provide
crucial input for the global fits to the world data to extract the polarized parton densities and the extractions of higher-twist
effects.
New results for Ap1 and A

d
1 from the Hall B EG1b experiment [72] are also available. The data cover the Q

2 range of
1.4–4.5 GeV2 for x from 0.2 to 0.6 with an invariant mass larger than 2 GeV. The results on Ap1 are shown in the right panel
of Fig. 21. The precision of the data improved significantly over that of the existing world data. Similar data also exist on the
deuteron and once again exhibit a trend to exceed the asymmetries predicted by SU(6) (Eq. (63)) at large x. In addition to
the prediction by the RCQM model [109] (again indicated by the shaded band), several curves based on different scenarios
of SU(6) symmetry breaking as presented in the paper by Close and Melnitchouk [116] are also shown in the right panel
of Fig. 21. These scenarios are based on duality arguments and include final state helicity-1/2 dominance (dashed curve),
spin-1/2 dominance (dotted) and symmetric wave function suppression (dash-dotted), which is closest to the data.
The polarized quark distribution functions1u/u and1d/d in the high-x region were first extracted, in the leading-order

approximation, from the Hall A neutron data and the world proton data (left panel of Fig. 22) [61,62]. A recent leading-order
extraction used the CLAS EG1b proton and deuteron data [72] as well. The results are shown in the right panel of Fig. 22,
along with predictions from leading-order pQCD [110] (dashed curves) and a pQCD fit (solid line) including quark orbital
angular momentum contributions [113]. The results of1d/d are in significant disagreement with the predictions from the
leading-order pQCD model assuming hadron helicity conservation. Data agree better with the fit including quark-orbital
angular momentum contributions, suggesting that the quark orbital angular momentummay play an important role in this
kinematic region.

2.5. Status of polarized parton densities

From measurements of g1(x,Q 2) at various values of x and Q 2, one can, in principle, via Eq. (58), extract the quark and
gluon polarized parton densities. We shall first consider general issues related to the determination of the parton densities
and then discuss what is known about the densities themselves.
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Fig. 22. 1u/u (upper side of both panels) and 1d/d (lower side of both panels) results from JLab Hall A E99-117 [61,62] (left panel) and from CLAS
EG1b [72] (right panel), compared with the world data and theoretical predictions (see text for details).

(1) General properties of the parton densities

• In DIS, one can only obtain information on the combinations 1q(x,Q 2) + 1q̄(x,Q 2), i.e., there is no information at all
about the 1ū and 1d̄ sea quarks, though 1s + 1s̄ is determined. Nonetheless, in presenting results, some authors use
conventions such as1ū = 1d̄ = 1s̄, or variants thereof, in order to show results for the valence quarks. It is important
to bear in mind that these results are not physical and are entirely convention-dependent.
• To determine 1ū and 1d̄ one needs to study semi-inclusive deep inelastic scattering or semi-inclusive hadron–hadron
reactions, where, however, one also needs information about fragmentation functions.
• Because the gluon has zero electric charge it does not couple directly to the photon, so it contributes in Eq. (58) only in
NLO. However, as shown in Eq. (54), it also plays a role in the evolution of the parton densities, but since the evolution
is only logarithmic and the lever arm in Q 2 of present day experiments is relatively small (much smaller than in the
unpolarized case), there is considerable uncertainty about the form and magnitude of1G(x,Q 2).
• The parametrizations assumed for the1q(x) at some value of Q 2 follow general intuition based on the parton model. In
particular, if the q+,−(x) are regarded as positive number densities then, via Eqs. (36) and (37) one imposes the positivity
condition

|1q(x)| ≤ q(x). (67)

It can be shown that if positivity holds at some Q 20 , then it is preserved under evolution to larger values of Q
2 [117,

15], but care must be taken since there are fits to the unpolarized data with parton densities which are negative at
Q 2 = 1 GeV/c2 [118]! This is possible because in the unpolarized case one has the luxury of using only data typically
with Q 2 ≥ 4 GeV/c2, by which point the density has evolved into a positive one.
• There is some guidance as to the behavior as x → 1. Perturbative QCD arguments [112] suggest that quark densities
vanish like a power of (1− x)which depends on the helicity; see the discussion in Section 2.4. In practice the exponents
of (1− x) are left as free parameters to be determined in the fit to the data, and tend to come out close to the expected
values.
• What the behavior should be as x → 0 is not very clear. Based on the correspondence between x → 0 in the structure
functions, and energy ν → ∞ in virtual-photon Compton scattering, one would expect the power of x to be controlled
by the leading Regge intercept i.e.

g1(x) ∼ x−α (68)

where α is the intercept of the a1(1260) meson Regge trajectory in the isovector channel, and the f1(1285) meson
trajectory in the isoscalar channel [119]. These intercepts are not well known (see discussion in [13]). Roughly

−0.4 ≤ αa1 ≈ αf1 ≤ −0.18.

However, we know that for unpolarized DIS the effective power α increases with Q 2 for the range of x explored thus far,
contrary to the Regge picture, and this is explained as due to QCD evolution (soft Pomeron vs. hard Pomeron). Bass [120]
suggests that something similar might be expected for the polarized case.
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Fig. 23. Comparison of gp1 ± g
n
1 .

Study of the small x behavior of the DGLAP evolution equations [121] yields parton densities that grow more rapidly
than any power of ln(x0/x) (where x0 is the upper limit where the treatment is valid), and the growth rate increases with
Q 2. On the other hand summation of double logarithmic terms at small x, which are not included in DGLAP, leads to the
expectation Cs x−as and Cns x−ans for the singlet and non-singlet contributions to g1 respectively (The coefficients C are
sensitive to the structure of the parton densities). This was originally studied in [122,123] using a constant, non-running
value of αs and later by Ermolaev, Greco and Troyan [124] using a running coupling. Both approaches give the same
structure with as > ans, but with somewhat different numerical values of the powers of x. In [124] the intercepts are

as ≈ 2 ans ≈ 0.86,

implying that the singlet flavor combination (gp1 + g
n
1 ) should diverge more rapidly than the non-singlet combination

(gp1 − g
n
1 ) as x goes to zero. Thus one would expect

|gp1 + g
n
1 | ≥ |g

p
1 − g

n
1 | as x→ 0. (69)

The only data on both flavor combinations at extremely small x values and Q 2 ≥ 1 GeV2 are from the SMC
experiment [125] shown in Fig. 23, where precisely the opposite trend is visible. COMPASS data on the deuteron further
confirm the smallness of the flavor singlet (see Fig. 17). Further information will become available when COMPASS
publish their new data on gp1 . However, as experiments probe smaller and smaller x, there ought to be a dramatic change
in the trend of the data, or else the theoretical arguments are incomplete. Indeed Blümlein and Vogt [126] suggest that
corrections for sub-leading terms could significantly change these results. (A more detailed discussion can be found in
Section 11.8 of [93]; for possible connections to the infrared renormalon model see the work of Kataev [127]).
It is also argued [110] that

1G(x)
G(x)

∝ x as x→ 0. (70)

Again, in practice, the power of x is taken as a parameter to be determined by the fit to the data.
• As explained in Section 2.2 there is, alas, no absolute physical meaning to parton densities in QCD. One has to specify
in what factorization scheme they are determined. Although the differences between densities in different schemes are
proportional to αs(Q 2), these differences can be surprisingly large for the smaller densities e.g.1s(x)|MS ≈ 21s(x)|JET at
Q 2 = 1 GeV/c2 [94].
• Although there has been a tremendous increase in the amount and quality of polarized data in the past few years, it is
still usual to impose, rather than test, the various sum rules (Bjorken, SU(3)flavour ) which should be satisfied by the quark
densities. For a discussion of sum rule tests, see Section 3.2.
• It is important to appreciate that the QCD formula for g1(x,Q 2), Eq. (58), is a leading twist (LT) expression, i.e. it neglects
terms of order M2/Q 2. For experiments at relatively low values of Q 2 the expression Eq. (58) must be supplemented
by higher twist (HT) terms. There are two types of HT terms: target mass corrections, which are purely kinematical, and
dynamical corrections. The target mass corrections can be calculated exactly and were first given in a closed form for g1
by Piccione and Ridolfi [128]. For a new approach, see also [129]. The details and Q 2 evolution of the dynamical HT terms
are not known, so they are simply parametrized in the form h(x)/Q 2, with h(x) determined, after applying the target
mass corrections, from experiment at a few values of x. For access to the literature see [130].
• It is well known that parton densities extracted in LO and NLO sometimes differ significantly, and one may therefore
worry about the effect of NNLO etc. corrections. Some indication of the reliability of the NLO approximation can be
obtained via the LSS Transformation Test [94]. In each order of perturbative QCD there exist transformation formulae
relating parton densities in different factorization schemes. Let us indicate this symbolically for two schemes, A and B:

1q(x)|B = TB←A1q(x)|A. (71)
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Fig. 24. Comparison of HT terms in g1 and F1 (left panel) and higher twist terms for protons and neutrons extracted from data (right panel).

Suppose now that TB←A is known to NLO accuracy, and the parton densities are extracted from the data, independently,
in NLO, using schemes A and B, with results1q(x) |dataA,B , respectively. If the densities can be extracted reliably in NLO i.e.
NNLO effects are unimportant, then one should find

1q(x) |dataB = TB←A1q(x) |dataA . (72)

Any failure of this equality is a measure of the importance of NNLO effects. Thus the ratio

1q(x) |dataB − TB←A1q(x) |dataA
1q(x) |dataB + TB←A1q(x) |dataA

gives some indication of the reliability of the parton densities.

A detailed discussion of many of the above issues can be found in [131].
(2) Extraction of parton densities from DIS
Following upon the remarkable EMC experiment in 1988, there have been many new data on polarized DIS and many

QCD analyses. We shall only be concerned with the recent analyses which have included all or most of the present world
data, namely, Leader, Sidorov and Stamenov (LSS’05 and LSS’06) [7,130], Alexakhin et al. (COMPASS’06) [49], Hirai, Kumano
and Saito (AAC’03) [132], Blümlein and Böttcher (BB) [133] and Glück, Reya, Stratmann and Vogelsang (GRSV2000) [108].
We shall also comment on the ground-breaking paper of de Florian, Sassot, Stratmann and Vogelsang (DSSV) [104] which
analyzed simultaneously data on DIS, SIDIS and pion production in polarized pp collisions at RHIC, and on the work of Hirai
and Kumano (AAC’08) [134] who analyzed data on DIS and on pion production at RHIC. Details of the parametrizations etc.
can be found in the papers cited and also on the Durham HEP databases website [135].
One of the problems in any analysis is to decide whether to use the lowest twist (LT) expression Eq. (58) or to include

higher twist (HT) terms. This is not just a question of the kinematic region in a given experiment, but also of what quantity
one fits. Thus long ago we discovered empirically that HT terms cancelled out in the ratio g1F1 . Put

gEXP1 = g
LT
1 + g

HT
1 F EXP1 = F

LT
1 + F

HT
1 .

Then [g1
F1

]EXP
≈
gLT1
F LT1

[
1+

gHT1
gLT1
−
FHT1
F LT1

]
≈
gLT1
F LT1

(73)

provided there is a cancellation between g
HT
1
gLT1
and F

HT
1
F LT1
.

The left panel of Fig. 24 which compares HT terms for g1 [130] and for F1 [136] demonstrates the validity of this for
x ≥ 0.15, but clearly indicates that ignoring HT terms in the ratio g1F1 below x = 0.15 is incorrect. The HT terms for g1
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Fig. 25. Comparison of LSS’06 (with shaded error band), DSSV and AAC’08 (MS) x(1u+1ū) and x(1d+1d̄) densities.

Fig. 26. Impact of CLAS’06 and COMPASS’06 data on the uncertainties in x(1u+1ū) and x(1d+1d̄) of the LSS’05 analysis.

determined in [130] are shown in the right panel of Fig. 24 using 5 bins in x. (The results change negligibly if 7 bins are
utilized.)
A more subtle problem relates to the kinematic relations between various quantities. The exact relations between A‖, A1

and g1 includeHT terms involving γ 2, both in Eq. (32) and in the expression forD, Eq. (26). If it is safe to ignore HT terms in g1,
F1 is it safe to ignore them in these kinematic relations as well? DSSV assume it is, whereas LSS insist that if γ 2 is significant
such terms must be kept in the kinematic relations. The validity of the latter viewpoint is borne out by the empirical fact
(accidental?) that HT terms can be ignored in g1F1 in the region x ≥ 0.15, where, in some cases, γ

2 is non-negligible. Thus the
DSSV analysis, which treats g1F1 in LT, but ignores γ

2, may be unreliable in those regions where γ 2 is important. This issue is
particularly important for data from HERMES and JLab.

• The light quark densities. There is broad agreement between the various analyses for the1u(x)+1ū(x) and1d(x)+1d̄(x)
parton densities. Generally the constraint Eq. (66) has not been enforced in the parametrizations used for the d quark.
Early data demanded negative values of 1d(x) + 1d̄(x) and continued to do so even when the measured region was
extended to x = 0.6 at Jefferson Laboratory [61,72]. These data are discussed in detail in Section 2.4. Note that a fit [137]
using the Brodsky, Burkardt and Schmidt type parametrization [110], which respects Eq. (66), led to a 1d(x) + 1d̄(x)
which became positive just beyond x = 0.6. With the 12 GeV upgrade at Jefferson it should be possible to explore out
to x = 0.8 and to settle the matter. Fig. 25 shows a comparison between the LSS’06, DSSV and AAC’08 1u + 1ū and
1d + 1d̄ densities. It is seen that the agreement is impressive, although the d-quark polarization 1d(x)/d(x) is still
rather uncertain at high x (see also Section 2.4).
In Fig. 26we show the impact of the CLAS’06 and COMPASS’06 data on the uncertainties in x(1u+1ū) and x(1d+1d̄)

which had been found in the LSS’05 analysis. The uncertainties are estimated by the usual Hessian method, utilizing
1χ2 = 1. It should be borne in mind that these uncertainties, and all those to follow, must be treated with caution. They
are calculated relative to a chosen analytical form for the parametrization of the parton density and do not at all reflect
possible uncertainties in the form of parametrization.
• The polarized strange quark density. This is a highly controversial issue at present. All analyses of purelyDIS data have found
negative values for1s(x)+1s̄(x). Fig. 27 shows the impact of the CLAS’06 and COMPASS’06 data on the uncertainty in
the LSS’05 determination of x(1s(x)+1s̄(x)).
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Fig. 27. Impact of CLAS’06 and COMPASS’06 data on uncertainties in the LSS’05 determination of x(1s(x)+1s̄(x)). For curve labels see Fig. 26.

An important quantity is the first moment

1S ≡
∫ 1

0
dx[1s(x)+1s̄(x)]. (74)

LSS’06 [130] give for its value

1SMS = −0.126± 0.010 at Q 2 = 1GeV2 (75)

and in [138] it was shown that a positive value for the first moment would imply a huge breaking of SU(3)F invariance,
far greater than the±10% breaking estimated by Ratcliffe [139]. Nonetheless analyses of SIDIS data for kaon production
have suggested positive values of 1s(x) + 1s̄(x) for x ≥ 0.03. A hint of this first emerged in the HERMES analysis of
2004/5 [140] and was confirmed by the more precise data reported in [102] where the first moment for the measured
range 0.02 ≤ x ≤ 0.6 was given as

1S = 0.037± 0.019(stat.)± 0.027(sys.). (76)

One could argue that the HERMES results should not be taken too seriously, since the analyses were carried out in LO and
relied on derived quantities called purities, whose accuracymay have been overestimated. However, the recent combined
analysis of DIS, SIDIS and pp→ π0 or jet+X by the DSSV group [104], which is anMS NLO, LT analysis, also finds positive
values for 1s(x) + 1s̄(x) for x ≥ 0.03, yet ends up with a negative first moment 1S = −0.114 at Q 2 = 10GeV2. This
is achieved by1s(x)+1s̄(x) becoming negative below roughly x = 0.02. But there are essentially no data in the latter
region, which suggests this must be caused by the need to satisfy the SU(3)F symmetry condition Eq. (46). DSSV state
that they do not impose SU(3)F symmetry, and they multiply the RHS of Eq. (46) by (1 + εSU(3)) where εSU(3) is a free
parameter. However, a χ2 bias against large values of εSU(3) is built into the minimization procedure1 which explains the
turning negative of1s(x)+1s̄(x), although this is not stated in the quoted paper.
The recent AAC’08 analysis [134], based on theworld data onDIS plus theπ0 production data fromRHIC (incorporated

at LO), also finds a negative strange quark density. Fig. 28 compares the LSS’06 version of1s+1s̄with that of DSSV and
AAC’08. Note that the shape appears somewhat different in the various DIS analyses. The origin of this has been traced
to the different choices of unpolarized densities used in the imposition of positivity [141], as can be seen in the figure.
It is thus clear that the origin of the positive values for1s(x)+1s̄(x) lies entirely in the SIDIS data. Itmay be significant

that both the HERMES and DSSV analyses utilize the recent de Florian, Sassot and Stratmann [142] set of fragmentation
functions, which are surprisingly different from earlier sets of fragmentation functions, especially for kaons. COMPASS
are studying the dependence of 1s(x) + 1s̄(x) on the choice of fragmentation functions. A preliminary report can be
found in the talk of R. Windmolders at the SPIN2008 Conference.
Finally, there is an intriguing question as towhether the standard collinear analysis should be applied to the SIDIS data.

The point is the following. What we mean by any q(x,Q 2) or 1q(x,Q 2) actually involves an integral over the intrinsic
transverse momentum kt of the quark up to a maximum k2t ≈ Q

2. If, as is the case for some of the SIDIS data, the
magnitude of the transverse momentum of the detected hadron is less than Q , then it is perhaps incorrect to analyze
the data using the conventional collinear densities. Indeed, Bass [143] has shown that for that part of the strange quark
density generated via photon–gluon fusion the sign of 1S is sensitive to the upper limit in the k2t integration, but the
overall effect is much too small to be relevant.

1 Private communication fromWerner Vogelsang.
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Fig. 28. LSS’06, DSSV and AAC’08 (MS) versions of x(1s+1s̄).

• The flavor singlet first moment 1Σ . All the modern global analyses obtain compatible values for1Σ . In theMS scheme,
where a0(Q 2) = 1Σ(Q 2) they find at Q 2 = 4 GeV2:

LSS’06 COMPASS’06 AAC’08 DSSV
0.24± 0.04 0.29± 0.01 0.25± 0.05 0.24

For reasons which are not understood these values are somewhat lower than the values obtained directly from Γ d1 as
discussed in Section 3.2.
• The polarized gluon density. In Section 2.2 we explained how the ‘‘spin crisis in the parton model’’ could be alleviated by
generating the experimentally small value of a0 through a cancellation between relatively large values of 1Σ and 1G
(see Eq. (62)). Present day estimates are a0 ≈ 0.2. Thus demanding1Σ ≈ 0.6 requires, for the first moment,

1G ≈ 1.7 at Q 2 = 1GeV2. (77)

The question is whether this is compatible with what we know about the polarized gluon density.
There are three ways to access1G(x): via polarized DIS, and via the measurement of the asymmetry ALL both in SIDIS

production of charmed quarks or high pT jets, and in semi-inclusive polarized pp reactions at RHIC. Here we will only
discuss DIS. The latter approaches have been treated in Section 2.3.
In determining the parameters of the polarized gluon density from fits to the data on g1(x,Q 2), it should be

remembered, as already mentioned, that the main role of the gluon is in the evolution with Q 2, but that the range of
Q 2 is very limited, so the determination of1G(x) is imprecise.
For a long time all analyses seemed to indicate that 1G(x) was a positive function of x. LSS used a very simple

parametrization

x1G(x) = ηgAgxag [xG(x)] (78)

where Ag is fixed so that the first moment of 1G is given by ηg . In the minimization procedure there was nothing to
stop ηg from being negative. Yet the best χ2 values always corresponded to positive1G(x). With the inclusion of recent

Fig. 29. Comparison of the three types of LSS’06 (MS) x1G(x).
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Fig. 30. Left: a compilation of earlier results for x1G(x); right: present situation.

Fig. 31. Impact of CLAS’06 and COMPASS’06 data on uncertainties in the LSS’05 determination of x1G(x). For curve labels see Fig. 26.

data, LSS’06 [130] find equally good fits with positive, negative and sign-changing1G(x), provided higher twist terms are
included. The latter are particularly demanded by the CLAS’06 data [72]. Fig. 29 compares the LSS’06 positive, negative
and sign-changing versions of1G(x).
Also the COMPASS’06 analysis [49], even though HT terms are not included, finds acceptable negative1G(x) fits, but

has some peculiarities (linked to the fact that the flavor combinations 1q3,8 and 1Σ are parametrized, rather than the
individual quark densities), which suggest it may not be very physical. The DSSV analysis finds a sign-changing 1G(x),
while the AAC’08 analysis finds both positive and sign-changing densities. In the left hand panel of Fig. 30 we show
various results for1G(x) as of a couple of years ago. The right panel shows the present situation. In Fig. 31 we show the
impact of the CLAS’06 and COMPASS’06 data on the uncertainty in the LSS’05 determination of x1G(x).
Regarding the present data, in all fits, and irrespective of the form of the gluon density, themagnitude is always found

to be very small. Typically one has |1G| ≈ 0.29± 0.32,much smaller than the desired 1.7 ! As discussed in Section 2.3,
all the present data on SIDIS and pp reactions are perfectly compatible with this very small magnitude for1G and cannot
distinguish between the various sign possibilities.

2.6. The spin structure function g2

The spin structure function g2, unlike g1 and F1, does not have an intuitive interpretation in the simple quark–parton
model. To understand g2 properly, it is best to start with the operator product expansion (OPE)method (see also Sections 2.1,
2.5, 3.1 and 3.4). In the OPE, neglecting quark masses, g2 can be cleanly separated into a twist-2 and a higher twist term:

g2(x,Q 2) = gWW2 (x,Q 2)+ gH.T .2 (x,Q 2) . (79)

The leading-twist term can be determined from g1 as [9]

gWW2 (x,Q 2) = −g1(x,Q 2)+
∫ 1

x

g1(y,Q 2)
y

dy (80)
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Fig. 32. Results for g2 of the proton and the deuteron (top-left panel) and the neutron (top-right panel) as a function of x from SLAC [41] and JLab Hall
A [62,63], in comparison with gWW2 (solid curves). The left panel also shows bag model calculations of Stratmann [147] (dash-dot-dot) and Song [148] (dot)
and the chiral soliton models of Weigel [149,150] (dash dot) and Wakamatsu [151] (dash). The bottom plot shows results for gn2 from JLab Hall A [63] as a
function of Q 2 at an x value around 0.2, in comparison with gWW2 and models.

(this holds also with the inclusion of TM corrections [144]), and the higher-twist term gH.T .2 (x,Q 2) arises from quark–gluon
correlations. Therefore, g2 provides a clean way to study higher-twist effects.
Experimentally, g2 can be extracted from combinedmeasurements of both the longitudinal and the transverse target spin

cross section differences (Eqs. (14) and (15) in Section 1.1), or the corresponding asymmetries A‖, A⊥. These measurements
demand high precision and large luminosity, since the factors multiplying g2 tend to be relatively small in DIS kinematics.
Several experiments [31,40,145,146] therefore took only enough statistics on the transverse target configuration to reduce
the systematic error on g1 due to the unknown contribution from g2 below the statistical error, yielding only crude
information on g2 itself.
Two experiments at SLAC, E143 and E155 [34,41] took dedicated data to measure g2 and the virtual photon asymmetry

A2 (see Eq. (23)) with more precision. The most extensive data set in the DIS region comes from the second run of E155,
both for the proton and the deuteron, with g2 for the neutron extracted from the difference. The general trend of these data
follows the Wandzura–Wilczek form (Eq. (80)), but some deviations are seen for the proton, especially at small x. The data
on A2 show that this asymmetry is indeed rather small, well below the limit given in Eq. (30).
Fig. 32 shows the SLAC results on the proton, deuteron (top-left panel) and neutron (top-right panel) as a function of x.

Also shown on the top-right panel of Fig. 32 are recent JLab neutron results with polarized 3He fromHall A E99-117 [62] and
E97-103 [63]. E97-103 is a dedicated precision measurement of gn2 in the DIS region at low Q

2 to study its Q 2 dependence.
It covered five different Q 2 values from 0.58 to 1.36 GeV2 at x ≈ 0.2. Results on the Q 2 dependence of gn2 are given in
the bottom panel of Fig. 32. The light-shaded area in the plot gives the leading-twist contribution, obtained by fitting world
data [133] and evolving to theQ 2 values of this experiment. The systematic errors are shownas thedark-shaded area near the
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horizontal axis. The precision reached is more than an order of magnitude improvement over that of the SLAC data [41]. The
difference of g2 from the leading twist part (gWW2 ) is due to higher-twist effects and is sensitive to quark–gluon correlations.
The measured gn2 values are consistently higher than g

WW
2 . For the first time, there is a clear indication that higher-twist

effects become significantly positive at Q 2 below 1 GeV2, while the bag model [147] and Chiral Soliton model [150,151]
predictions of higher-twist effects are negative or close to zero. The gn1 data obtained from the same experiment agree with
the leading-twist calculations within the uncertainties.

2.7. Spin structure in the resonance region

While most measurements of spin structure functions initially focused on the deep-inelastic region, more recently
experiments have also collected a truly massive data set on g1 and g2 in the region W < 2 GeV, the nucleon resonance
region, over a wide range in Q 2. Because the (resonant) final state in this kinematic region can have a strong influence on
scattering matrix elements, these data are less suitable for a direct interpretation within the framework of perturbative
QCD (Section 2.2). On the other hand, they can reveal new and important information on the internal structure of nucleon
resonances and their excitation by the electromagnetic probe. Combining proton, deuteron and neutron targets, one can
separate the various spin–isospin channels that lead to the excitation of overlapping resonances as well as non-resonant
(multi-) meson production.
For a given resonance, the (electro- or) photo-excitation strength can, in general, be given in terms of three helicity ampli-

tudes, namely A3/2(Q 2) (transverse photons leading to final state helicity 3/2), A1/2(Q 2) (transverse photons leading to final
state helicity 1/2) and S1/2(Q 2) (longitudinal photons). These amplitudes are directly related to the photon asymmetries,

Fig. 33. Data on the spin structure functions g1 (filled circles) and g2 (open squares) vs. x in the resonance region, for 3He (approximately a neutron target),
from Jefferson Lab’s Hall A. Statistical errors are shown as error bars, while the systematic errors are indicated by the shaded bands. The average Q 2 for
each data set is indicated in the figure.
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Fig. 34. Data on the spin structure functions g1 of the proton vs. x in the resonance region and beyond, from Jefferson Lab’s Hall B. Statistical errors are
shown as error bars, while the systematic errors are indicated by the shaded bands. The average Q 2 for each data set is indicated in the figure. The curves
are from a phenomenological parametrization of the data. A similarly complete data set exists also for the deuteron.

viz.

A1 =
|A1/2 |2−|A3/2 |2

|A1/2 |2+|A3/2 |2
(81)

A2 =
√
2
Q
q∗

S∗1/2A1/2
|A1/2 |2+|A3/2 |2

.

Here, q∗ is the (virtual) photon 3-momentum in the rest frame of the resonance. As a consequence, electromagnetic
excitation of spin-1/2 resonances will have an asymmetry A1 = 1 since the amplitude A3/2 cannot contribute. Vice versa,
for resonances like the delta (with spin 3/2) that are predominantly excited viaM1 transitions, one has A3/2 ≈

√
3A1/2 and

therefore A1 ≈ −0.5. By studying theQ 2 dependence of these asymmetries for a givenmass range, one can gain information
on the relative strength of overlapping resonances (and non-resonant background) as well as, for spin-3/2 resonances, the
transition from A3/2 dominance at lowQ 2 to the asymptotic A1/2 dominance expected from helicity conservation in collinear
pQCD.
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Fig. 35. Data on the spin structure functions g1 and g2 of the proton versus x in the resonance region, for an average Q 2 of 1.3 GeV2 , from Jefferson Lab’s
Hall C (dark filled symbols) and other experiments (as indicated). Statistical errors are shown as error bars, while the systematic errors are indicated by
the shaded bands.

Measurements of spin structure functions in the resonance region are also required for the evaluations of moments
(Section 3), since in most cases the integrals must be evaluated up to x = 1, which includes the resonance and elastic
region, particularly at more moderate Q 2. As an example, for Q 2 = 3 GeV2, half of the x range, 0.5 < x < 1, lies in the
resonance region. These measurements are also very important to study the onset of duality for spin structure functions,
see Section 4. Finally, higher order QED radiative corrections to allmeasurements (even in the DIS region) have contributions
from the resonance region, making good knowledge of spin structure functions at low W imperative for accurate
interpretation.
The first experiment to measure double spin observables at SLAC was also the first to take data in the resonance

region [20]. The next dedicatedmeasurement was by the E143 collaboration [39], who used a lower beam energy of 9.7 GeV
to cover the resonance region at Q 2 = 0.5 GeV2 and 1.2 GeV2. These data showed that the asymmetry A1 is indeed negative
in the 1 region at moderate Q 2, while it rises rapidly to rather large values in the second resonance region (dominated by
the S11 and D13 resonances).
Since then, experiments in all three halls at Jefferson Lab have collected a vast data set on all inclusive spin structure

functions throughout the resonance region, for proton, deuteron and 3He targets, spanning several orders of magnitude in
Q 2 (from 0.015 to 5 GeV2). Figs. 33–35 show some samples from this data set. Double spin asymmetries in the resonance
region were also measured at MIT Bates with the BLAST detector [152] on the proton and the deuteron at 0.85 GeV beam
energy. The kinematic region covered ranges from Q 2 = 0.08 − 0.38 GeV2 and from the elastic peak to W = 1.33 GeV.
More data in the region of the1(1232) resonance were also obtained at NIKHEF for Q 2 = 0.11 GeV2 [153].
The data in Fig. 33 are from experiment E94-010 in Jefferson Lab’s Hall A [57]. Both spin structure functions g1 and

g2 were extracted directly from cross section differences for polarized electrons scattering off a 3He target polarized both
along and transverse to the beam (see Eqs. (14) and (15)). These data approximate the spin structure functions for a free
neutron, although nuclear corrections were not applied. One can clearly see the strongly negative response of g1 in the
1(1232) resonance region (high x). The structure function g2 is close to the negative of g1, which implies that A2, which is
proportional to g1 + g2, is close to zero.
Fig. 34 shows a sample from the vast data set collected with CLAS during the EG1 experiment [72] on the spin structure

function g1 for the proton and the deuteron. g1 was extracted from measurements of the asymmetry A‖ (see Eq. (31)) over
a range in x covering both the resonance and deep inelastic regions, for over 25 bins in Q 2. As Q 2 increases over 2 orders
in magnitude, the asymmetry (and therefore g1) changes from a predominantly negative value (A3/2-dominance) to the
strongly positive DIS limit for nearly all x except in the region of the1(1232) resonance.
Finally, we show in Fig. 35 the data from the ‘‘RSS’’ experiment in Hall C [80]. This experiment measured g1 and g2 in

the resonance region for one bin in Q 2, centered around 1.3 GeV2, for both proton and deuteron, using transversely and
longitudinally polarized targets. The g1 data ‘‘oscillate’’ around the deep inelastic curves (from various NLO fits), while g2 is
in rough agreement with the Wandzura–Wilczek form (not shown).

3. Sum rules and spin polarizabilities

3.1. Moments of spin structure functions

Moments of structure functions are a powerful tool to study fundamental properties of nucleon structure, like the total
momentum fraction carried by quarks or the total contribution of quark helicities to the spin of the nucleon. While a
complete description of structure functions based on fundamental QCD principles may be unattainable for now, moments
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of structure functions can be directly compared to rigorous theoretical results, like sum rules, lattice QCD calculations and
chiral perturbation theory. The original ‘‘spin crisis’’ was directly due to a discrepancy between the data and an approximate
‘‘sum rule’’ by Ellis and Jaffe [3]. On the other hand, a detailed measurement of the Q 2-evolution of the Bjorken sum rule [5]
provides a significant test of pQCD in the spin sector.
As mentioned in Section 2.1, via the Operator Product Expansion (OPE) the moments of g1,2 can be related to hadronic

matrix elements of current operators. The moments are given as a sum, ordered according to the twist τ = (dimension −
spin) of the current operators, beginning with the lowest twist τ = 2. Each additional unit of τ produces a factor of order
ΛQCD
Q , and is thus less important in the highQ

2 regime. Strictly speaking, the higher twist terms aremixed upwith correction

terms of order M
2

Q 2
, of purely kinematic origin (target mass corrections), which can be calculated exactly, so as to expose the

HT terms of dynamic origin. Some of the twist 2 terms are directlymeasurable in other processes. Twist 3 and higher terms
can sometimes be determined from combinations of measured quantities.2

After a long series of manipulations one finds expressions for the nth moment
∫ 1
0 dx x

n−1 g1(x,Q 2) for n = 1, 3, 5, . . . of
g1 and the nth moment

∫ 1
0 dx x

n−1 g2(x,Q 2) for n = 3, 5, 7, . . . of g2, in terms of hadronic matrix elements of certain local
operators. (For details see Section 22.2 of [156]).
The most important case is the first moment, n = 1, of g1, where the operators involved are the octet of well known

axial-vector currents which control neutron and hyperon β-decay:

J i5µ = ψ̄γµγ5

(
λi

2

)
ψ (i = 1, 2, . . . , 8), (82)

where the λj are the usual Gell-Mann matrices and ψ is a column vector in flavor space

ψ =

(
ψu
ψd
ψs

)
. (83)

The flavor singlet current, which does not play a role in β-decay, is

J05µ = ψ̄γµγ5ψ. (84)

The relation of the hadronic matrix elements to the first moments a3 ≡ gA, a8, a0 of the flavor combinations of quark
densities introduced in Eqs. (44) is

〈P, S|J35µ|P, S〉 = Ma3Sµ

〈P, S|J85µ|P, S〉 =
M
√
3
a8Sµ

〈P, S|J05µ|P, S〉 = 2Ma0(Q
2)Sµ. (85)

The Q 2 dependence of a0 arises because the singlet current has to be renormalized and it is customary and convenient to
choose Q 2 as the renormalization scale.
At leading twist the expression for Γ p,n1 , valid for Q

2
� M2, can be written

Γ
p,n
1 =

1
12

[(
±a3 +

1
3
a8
)
ENS(Q 2)+

4
3
a0(Q 2)ES(Q 2)

]
, (86)

where the coefficient functions are given, for 3 active flavors, by

ENS(Q 2) = 1−
(αs
π

)
− 3.58

(αs
π
)2 − 20.22

(αs
π

)3
· · · (87)

and in theMS scheme

ES(Q 2) = 1−
(αs
π

)
− 1.096

(αs
π

)2
· · · . (88)

Note that the singlet coefficient here multiplies a0(Q 2) and not the invariant quantity referred to in various papers as â0,
g(0)A |inv and1Σ |invariant , which are the value of a0(Q

2) as Q 2 →∞.
There exist important sum rules for the moments of g1,2 which we now discuss.

2 The reader is warned that the notation in the literature on this subject is in a state of anarchy, with identical symbols often being used for significantly
different quantities in different papers. Thus G1,2 sometimes means M3 times our G1,2 , but perhaps more bizarre is the use of the symbol ν for P · q in
[154,155].
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• The Bjorken sum rule. Using only isospin invariance Bjorken [5] showed that as Q 2 →∞,∫ 1

0
dx [gp1 (x,Q

2)− gn1 (x,Q
2)] =

gA
6

[
1−

(αs
π

)
− 3.58

(αs
π

)2
− 20.22

(αs
π

)3
· · ·

]
, (89)

where the square bracket on the RHS contains the perturbative corrections Eq. (87), for 3 active flavors, to Bjorken’s
original result gA/6. The sum rule is quite rigorous, involving only the assumption of isospin invariance, and inspired
Feynman to say that its failure would signal the demise of QCD.
• The Efremov, Leader, Teryaev sum rule. The ELT sum rule [11] is also a rigorous result, following from the OPE, and states
that ∫ 1

0
dx x [gV1,f (x)+ 2g

V
2,f (x)] = 0, (90)

whereV implies valence contribution and the result holds for each flavor f . It was originally thought reasonable to assume
that the sea-quark densities are the same in protons and neutrons, in which case Eq. (90) can be written as a kind of
analogue to the Bjorken sum rule∫ 1

0
dx x [gp2 (x)− g

n
2 (x)] =

1
2

∫ 1

0
dx x [gn1 (x)− g

p
1 (x)]. (91)

However, the above assumption is tantamount to assuming 1ū = 1d̄ in a proton, which, at least for the unpolarized
antiquark densities, is not a good approximation. For further interesting sum rules of this type see [144,157].
• The Burkhardt–Cottingham sum rule. The BC sum rule [10]∫ 1

0
dx g2(x) = 0 (92)

does not follow from the OPE, although it looks as if it does, because the nth moment of g2 is proportional to (n−1); but,
as mentioned, the OPE result for g2 only holds for n ≥ 3.
The BC sum rule is based on an assumption about the asymptotic behavior of a particular virtual Compton amplitude

(see discussion below). The argument is not watertight and it may be that

g2(x)→
1
x2

as x→ 0, (93)

thus making the integral in Eq. (92) diverge. For a detailed discussion of this issue, see Section 5.2 of [12]. Note that the
Wandzura–Wilczek approximation to g2, Eq. (38) automatically satisfies the BC sum rule∫ 1

0
dx gWW2 (x) = 0. (94)

• Higher twist corrections.
At lower values of Q 2 higher twist contributions become important. Of particular interest is Γ1(Q 2), which can be

expanded, for Q 2 > Λ2QCD, in inverse powers of Q
2 (twist expansion)

Γ1(Q 2) = µ2(Q 2)+
µ4(Q 2)
Q 2

+
µ6(Q 2)
Q 4

+ · · · (95)

with µ2, the leading twist term, given by Eq. (86).
The evolution in Q 2 of the µn(Q 2) can, in principle, be calculated in perturbative QCD, but results are known only

for µ2, and it is usual, therefore, to ignore the Q 2 dependence of µ4,6. The functions µn are related to matrix elements
of operators of twist τ ≤ n; the occurrence of operators with twist lower than n is a kinematic effect, a consequence of
target mass corrections.
We consider now the structure of the higher twist (i.e., 1/Q 2) corrections to Γ1(Q 2) as defined in Eq. (95). As

mentioned µ4(Q 2) contains both target mass (TM) corrections and genuine dynamical higher twist contributions. The
TM corrections for g1,2(x,Q 2)were given in [128]. For the first moment they yield

µTM4 (Q
2) =

2M2

9

∫ 1

0
dx x2 [5g1(x,Q 2)+ 6g2(x,Q 2)] (96)

g2, as discussed in Section 2.6, contains a twist-2 (and kinematic twist-3) part, gWW2 , given in Eq. (80), and a dynamic
twist-3 part given by g2 − gWW2 . Writing

g2 = gWW2 + (g2 − gWW2 ) (97)
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one finds, after a little algebra, that

µTM4 (Q
2) =

2M2

9

{∫ 1

0
dx x2 g1(x,Q 2)+ 6

∫ 1

0
dx x2 [g2(x,Q 2)− gWW2 (x,Q 2)]

}
. (98)

The twist-2 combination of moments is usually referred to as a2 and the twist-3 as d2. More precisely

a2(Q 2) ≡ 2
∫ 1

0
dx x2 g1(x,Q 2) d2(Q 2) ≡ 3

∫ 1

0
dx x2 [g2(x,Q 2)− gWW2 (x,Q 2)]. (99)

There is also a genuine twist-4 contribution to µ4, written as 4M
2

9 f2, so that finally

µ4(Q 2) =
M2

9
[a2(Q 2)+ 4d2(Q 2)+ 4f2(Q 2)]. (100)

The twist-4 part f2 cannot be written in terms of moments of the standard scaling functions. In terms of operator matrix
elements it is defined by

f2(Q 2)M3Sµ =
1
2

∑
flavors

e2f 〈P, S | gψ̄f G̃
µν γν ψf |P, S 〉 (101)

where G̃µν = (1/2)εµναβGαβ with the sign convention ε0123 = +1. (Note that in some papers the normalization of the
covariant spin vector is taken to be S2 = −M2, in which caseM2 will appear on the LHS of Eq. (101).)
The first correct expressions for d2 and f2 were given by Ji and Unrau [155] and by Ehrnsperger, Mankiewicz and

Schäfer [158]. (Note that in Ji’s paper the twist-4 term in Eq. (100) appears with aminus sign. This is because his coupling
g in the operator in Eq. (101) has the opposite sign to the usual convention i.e. he uses for the covariant derivative acting
on quark fields Dµ = ∂µ + igAµ.)
Since µ4, a2 and d2 can be measured, Eq. (100) yields a measurement of the twist-4 matrix element f2. Both d2 and f2

can then be compared to non-perturbative QCD calculations.
Finally, it is of some interest to consider the color electric and color magnetic polarizabilities of the nucleon [159].

They are defined by

χE2M3S = 〈N, S | ja × Ea |N, S 〉 χB2M3S = 〈N, S | j0aBa |N, S 〉 (102)

where S is the rest frame spin vector of the nucleon and jµa is the quark current. Ea and Ba are the color electric and
magnetic fields respectively. The color polarizabilities can be expressed in terms of d2 and f2 as

χE =
2
3
(2d2 + f2) χM =

1
3
(4d2 − f2). (103)

• Extrapolation to low Q 2: the Gerasimov, Drell, Hearn sum rule. The twist expansion does not converge for very small
Q 2. Thus to study polarized structure functions in the low Q 2 region it is necessary to make contact with soft, non-
perturbative physics i.e. to study the relation to Compton scattering with real, or almost real photons. In this region care
must be exercised in defining moments of structure functions. As already mentioned in Section 2.1 relations between
moments of structure functions and matrix elements of operators are only valid if the moments include the elastic
contributions located at x = 1. In the deep inelastic region the elastic contributions are negligible and are not included
in experimental estimates of the moments, but at low Q 2, in the resonance region, the distinction is important. Thus
moments in the latter region, without an elastic contribution will be labeled Γ̄ .
The GDH sum rule [160,161] concerns Compton scattering with real photons, i.e., with Q 2 = 0, and follows from

the fact that the value of the forward spin-flip amplitude, f2(ν), at ν = 0, calculated to order e2, is given by low energy
theorems, and from the assumption that the dispersion relation for it does not require subtractions. This leads to∫

∞

0

dν
ν
[σA(ν)− σP(ν)] = −

2π2α
M2

κ2 (104)

where κ is the anomalous magnetic moment of the nucleon. The σA,P are the total cross-sections for the absorption of a
circularly polarized photon by a proton polarized with spin antiparallel/parallel to the photon spin.
Since, to order e2, the cross-sections are zero below the pion production threshold ν0 (see below), and following the

convention used by experimentalists, we write Eq. (104) in the form

I(0) ≡
∫
∞

ν0

dν
ν
[σA(ν)− σP(ν)] = −

2π2α
M2

κ2. (105)

In the language of DIS the above cross-section difference is referred to as σTT and Eq. (105), generalized to non-zero Q 2,
is usually written

lim
Q 2→0

ĪTT (Q 2) = −κ2/4 (106)
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where

ĪTT (Q 2) = M2
∫
∞

ν0(Q 2)

dν
ν2
[νMG1(ν,Q 2)− Q 2G2(ν,Q 2)] (107)

=
2M2

Q 2
Γ̄TT (Q 2) (108)

with

ν0(Q 2) =
Q 2 +mπ (2M +mπ )

2M
(109)

and where Γ̄TT (Q 2) is the inelastic portion of the first moment

Γ̄TT (Q 2) ≡
∫ x0(Q 2)

0
dx
[
g1(x,Q 2)−

4M2x2

Q 2
g2(x,Q 2)

]
(110)

and x0(Q 2) is the threshold for pion production,

x0 =
Q 2

Q 2 +mπ (2M +mπ )
. (111)

Note that the generalization of I(0) in Eq. (105) to arbitrary Q 2 is then given by

I(Q 2) =
8π2α
M2

ĪTT (Q 2). (112)

The relevance of Eqs. (106) and (108) to deep inelastic scattering was first pointed out by Anselmino, Ioffe and
Leader [162], who noted that the first moment Γ̄ pTT (Q

2), which is a slowly (logarithmically) varying, positive function
in the DIS region, would have to change drastically in order to satisfy Eq. (106) at small Q 2. However [162] failed to
distinguish between the full moment Γ pTT (Q

2) and its inelastic version Γ̄ pTT (Q
2), and Ji [154] pointed out that there is a

significant difference between the extrapolation to Q 2 = 0 of the full and the inelastic moments. The reason is a non-
uniformity of the limits ν → 0 and Q 2 → 0 in the generalization of f2(ν) to Q 2 6= 0, namely,

lim
Q 2→0

lim
ν→0

f2(ν,Q 2) 6= lim
ν→0

lim
Q 2→0

f2(ν,Q 2). (113)

Thus whereas the RH limit does not inherit an elastic contribution from the Born terms in Compton scattering the LH one
does. And since the integrals involved in the moments above correspond to ν = 0 in f2(ν,Q 2), it is the LH limit which
must be used in the extrapolation to Q 2 = 0. Thus for the fullmoment Eq. (106) is altered to

lim
Q 2→0

ITT (Q 2) =
M2

Q 2
[F el1 (Q

2)+ F el2 (Q
2)]2 − κ2/4 (114)

where F el1,2 are the Dirac and Pauli elastic form factors normalized to

F el1p(0) = 1 F el1n(0) = 0 F el2p,n(0) = κp,n. (115)

In a similar way one can generalize to arbitrary Q 2 [154] the spin-dependent Compton amplitudes S1,2, normalized so
that

ImS1,2(ν,Q 2) = 2π G1,2(ν,Q 2). (116)

For S1 one obtains the dispersion relation

S1(ν,Q 2) = 4
∫
∞

ν0(Q 2)

G1(ν ′,Q 2)ν ′dν ′

ν ′2 − ν2
. (117)

Then

M3

4
S1(0,Q 2) = Ī1(Q 2) ≡ M2

∫
∞

ν0(Q 2)

dν
ν
MG1(ν,Q 2) (118)

=
2M2

Q 2
Γ̄1(Q 2) (119)

where Γ̄1(Q 2) is the inelastic portion of the first moment Γ1(Q 2)

Γ̄1(Q 2) ≡
∫ x0(Q 2)

0
dx g1(x,Q 2) (120)
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and

lim
Q 2→0

Ī1(Q 2) = −κ2/4. (121)

For the full moment,

lim
Q 2→0

I1(Q 2) =
M2

Q 2
F el1 (Q

2) [F el1 (Q
2)+ F el2 (Q

2)] − κ2/4. (122)

In theDIS region the elastic contribution to themoments is totally negligible. However in the extrapolation down through
the resonance region towards Q 2 = 0 it is vitally important to distinguish between the two cases.
We turn now to the Compton amplitude S2(ν)which underlies the BC sum rule. If one assumes that S2(ν,Q 2) satisfies

a superconvergence relation, i.e., that it vanishes as ν → ∞ fast enough so that both S2 and νS2 satisfy unsubtracted
dispersion relations, then one can show that∫

∞

0
ImS2(ν,Q 2)dν = 2π

∫
∞

0
G2(ν,Q 2)dν = 0 (123)

which leads to Eq. (92) for the full moment. From a knowledge of the elastic terms in S2(0,Q 2) one obtains an expression
for the inelastic integral

Ī2(Q 2) ≡
2M
Q 2

∫ x0(Q 2)

0
g2(x,Q 2)dx =

1
4
F el2 (Q

2)[F el1 (Q
2)+ F el2 (Q

2)]. (124)

For a discussion of the convergence properties of the amplitudes see Section 2.10 of [163].
• Generalization of the GDH approach. The above type of analysis, based on the dispersion relations for f2(ν,Q 2), S1,2(νQ 2),
has been generalized to all the amplitudes in virtual Compton scattering by Drechsel, Pasquini and Vanderhaeghen [164].
For very small energies, ν < ν0(Q 2), the amplitudes can be expanded in powers of ν2. The coefficients of the next-
to-leading terms are called generalized forward spin polarizabilities of the nucleon. They can be expressed in terms of
moments of the structure functions and can thus be measured. They are important because they reflect soft, non-
perturbative aspects of nucleon structure, and can be calculated, at least approximately, using various forms of chiral
perturbation theory and lattice methods. They thus provide benchmark tests for these theories. Here we shall simply
give the expressions for experimentally relevant polarizabilities. For details of the amplitudes etc, see [164].

γ0(Q 2) ≡ γTT (Q 2) = 2α
∫
∞

ν0

dν
ν4

[
νMG1(ν,Q 2)− Q 2G2(ν,Q 2)

]
(125)

=
16αM2

Q 6

∫ x0

0
x2
[
g1(x,Q 2)−

4M2x2

Q 2
g2(x,Q 2)

]
dx (126)

δ0(Q 2) ≡ δLT (Q 2) = 2α
∫
∞

ν0

dν
ν3

[
MG1(ν,Q 2)+ νG2(ν,Q 2)

]
(127)

=
16αM2

Q 6

∫ x0

0
x2
[
g1(x,Q 2)+ g2(x,Q 2)

]
dx. (128)

The comparison between theory and experiment is discussed in the next few sections.

3.2. First moment of g1 at high Q 2 and sum rules

After the EMC announced their surprising result [2], the next round of experiments at SLAC, CERN and DESY was focused
on the goal to measure the first moments of g1 for the proton, deuteron and neutron (3He) in the DIS region with increasing
precision. The main interest was to gain information on the contribution of quark helicities to the nucleon spin and to test
the Bjorken sum rule [5].
Experimentally, these integrals can only be measured over some finite range in x, since the limit x → 0 for finite Q 2

requires infinitely high energy transfers ν. In practice, all existing experiments accessing g1 are fixed target experiments,
with a lower limit of x of the order x = 0.004− 0.01 (if Q 2 ≥ 1 GeV2). Experimental results for the moments Γ1 therefore
include some extrapolation to x = 0, typically based on Regge phenomenology [120,165,166], NLO fits or some other
assumption about the functional form of the underlying quark densities. This extrapolation to the lower integral limit is
the largest source of theoretical uncertainty for the results obtained so far. Most experiments also use an extrapolation at
high x, since small statistics and limited momentum resolution prevent an accurate measurement in this kinematic region.
However, at sufficiently large Q 2, the contribution from this extrapolation is very small and well defined.
Table 1 lists the final results for the first moments measured at Q 2 ≥ 1 and evolved to a fixed Q 2 (as indicated) for

the more recent experiments. The quoted uncertainties include both statistical and systematic errors added in quadrature.
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Table 1
Results for the first moments of the spin structure functions g1 from different experiments. Each experiment evolved its data to a fixed value of Q 2 which
is indicated. The results for the deuteron are not corrected for its D-state, but are ‘‘per nucleon’’.

Q 2 (GeV2) Γ
p
1 Γ n1 Γ d1 Γ

p
1 − Γ

n
1 Ref.

10 0.120± 0.016 – 0.019± 0.015 0.198± 0.023 SMC [28]
3 – −0.033± 0.011 – – E142 [31]
3 0.133± 0.010 −0.032± 0.018 0.047± 0.007 0.164± 0.023 E143 [34]
5 – −0.056± 0.009 – 0.168± 0.010 E154a [38]
5 0.118± 0.008 −0.058± 0.009 – 0.176± 0.008 E155a [36]
2.5 0.120± 0.009 −0.028± 0.009 0.043± 0.004 0.148± 0.017 HERMESb [44]
3 – – 0.046± 0.006 – COMPASS [49]
5 Bjorken sum rule 0.182± 0.002
a From an NLO analysis.
b Over measured region x > 0.021 only.

The results from different experiments are in agreement within uncertainties, after taking Q 2-evolution into account. The
possible exception is the deuteron result of SMC [28] which is significantly lower than all others; this is due to a strongly
negative contribution from the unmeasured low-x region which has since been ruled out by COMPASS data. In particular,
the Bjorken sum rule is confirmed to within 7%–15% of its value 0.182 ± 0.002 (evolved to the average Q 2 = 5 GeV2 of
the data listed in Table 1); by far the largest remaining uncertainty stems from the low-x convergence of the integral. This
agreement can be considered a successful test of Q 2-evolution and the value of the strong coupling constant αs.
COMPASS andHERMES used theirmost recent result on the deuteron to extract an ‘‘experimental estimate’’ of the singlet

axial charge a0 (which equals 1Σ in the MS scheme), yielding 1Σ ≈ 0.35 ± 0.06 for COMPASS (at Q 2 = 3 GeV2) and
1Σ ≈ 0.33 ± 0.04 for HERMES (evaluated at Q 2 = 5 GeV2). These numbers are somewhat higher than most recent NLO
analyses (see Section 2.5), but in agreement with similar analyses by other experiments. All results on Γ1 point towards a
negative contribution to the integral from strange quarks and antiquarks of order≈−0.1, while semi-inclusive results from
HERMES [45,102] are consistent with1s ≥ 0 in their measured range, see Sections 2.3 and 2.5.

3.3. The BC and ELT sum rules

While the first moment of g1 depends on Q 2 and changes significantly from the DIS region to the real photon point,
the Burkhardt–Cottingham sum rule for the first moment of g2 should apply at all values of Q 2 > 0, as long as the elastic
contribution is included in the integral. It can therefore be tested both by DIS data and at lower Q 2, where a significant
contribution to the integral comes from the nucleon resonance region.
The SLAC E155 data discussed in Section 2.6 yielded a first test of the sum rule for the proton and the deuteron. The

data were integrated over the measured region, 0.02 < x < 0.8 at Q 2 = 5 GeV2. The contribution from the unmeasured
large-x region is negligible. For the low-x expansion, one can use the assumption that g2 follows the Wandzura–Wilczek
form (Eq. (80)) which yields a result independent of our knowledge of g1 below x = 0.02. Under these assumptions, E155
found the integral for the proton to be−0.022± 0.008 and that for the deuteron as−0.002± 0.011, after averaging with
the data from E143. While the proton result appears to be inconsistent with the BC sum rule at the 2.75σ level, any firm
conclusion depends strongly on the behavior of g2 at small xwhich is not known with enough precision and may not follow
the Wandzura–Wilczek form.
The same data were also used to estimate the value for the ELT integral (Eq. (90)) using the approximation given in

Eq. (91), with the neutron structure functions inferred from the measured proton and deuteron ones. The integral over the
measured region is consistent with the expected value of zero, within errors of ±0.008. Here, the extrapolation to small x
is less critical because of the extra factor of x in the integral.
The most extensive measurement of the BC sum rule at smaller Q 2 comes from an experiment using a longitudinally

and transversely polarized 3He target in Hall A. The integral of Γ
3He
2 =

∫
g
3He
2 (Q 2)dx is plotted in the left panel of Fig. 36

for the measured region (from break-up threshold on up and covering the resonance region; solid circles). For comparison,
we also show a calculation using the MAID code [168] which is a unitary isobar model describing the nucleon resonance
region, with parameters fit to meson photo- and electro-production data. Added to the MAID result is an estimate of the pd
and ppn breakup contributions via a calculation of quasi-elastic single-proton knockout in the impulse approximation. The
open circles show the experimental results after adding an estimated DIS contribution. The solid squares correspond to the
results obtained after adding the elastic contributions for 3He and are in good agreement with the expected value of zero
within the systematic errors (indicated by the error bands for the experimental systematic error and the uncertainty on the
low-x extrapolation).
After applying some nuclear corrections, results for the neutron can be extracted from the 3He data. The result for Γ n2

is plotted in the right panel of Fig. 36 in the measured region (solid circles), while the open circles include the elastic
contribution and the open diamonds correspond to the results obtained after adding an estimatedDIS contribution assuming
g2 = gWW2 for the neutron. Taking the difference between proton and deuteron data from E155, one can estimate the result
for the neutron at high Q 2 (open square), which is consistent with zero but with a rather large error bar. The results from
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Fig. 36. Results for the BC sum Γ2(Q 2) for 3He [167] and the neutron [57]. The integrals over the measured region (filled circles) are compared with MAID
model calculations. Light (dark) shaded bands indicate experimental (extrapolation) systematic errors.

the Hall-A experiment for the neutron integral are the most precise data on the BC sum rule and are consistent with the
expectation of zero, within systematic errors. The MAID parametrization agrees with the general trend but is slightly lower
than the data in the measured (resonance) region, presumably because multi-pion final states are not included in the MAID
code.
The RSS experiment in Hall C [80] also took data on g2 for the proton and the deuteron, at an averageQ 2 of about 1.3 GeV2.

For the proton, they find a negative integral over the measured region (1 GeV < W < 2 GeV), but after adding the elastic
contribution and an estimate for the small-x part, they find a (preliminary) result for the BC sum very close to zero, with
(small) statistical and (dominant) systematical errors of about±0.005. This result is in disagreement with the SLAC result,
but the unmeasured region (x < 0.29) is rather large and Q 2 is significantly lower. Preliminary results on the deuteron are
slightly negative but consistent with zero within an error of about±0.015.

3.4. Higher moments and higher twist

While the moments of the structure function g1 provide information on the parton densities, the moments of g2 are
related to higher twist effects and provide information on quark–gluon interactions (correlations). The x2 moment of the
spin-structure functions given in Eq. (99),

d2 = 3
∫ 1

0
x2[g2(x)− gWW2 (x)]dx, (129)

is of special interest: at highQ 2 it is a twist-3matrix element and is related to the color polarizabilities [169], see Section 3.1.
It can be calculated in lattice QCD [170] and a number of theoretical models [147,150,151].
Experimentally, due to the x2 weighting, the contributions are dominated by the high-x region and the problem of low-x

extrapolation is avoided. The SLACE155data [41] allowed the first extraction of d̄p2 and d̄
n
2 (excluding the elastic contribution).

Combining E155 resultswith earlier SLACdata, at an averageQ 2 of 5GeV2, d̄p2 = 0.0032± 0.0017 and d̄
n
2 = 0.0079± 0.0048.

Combining these data with the JLab g2 from Hall A E99-117 [62] a new value for the third moment d̄n2 was extracted at an
average Q 2 of 5 GeV2. Compared to the previously published SLAC result [41], the uncertainty on d̄n2 has been improved
by about a factor of 2 (see Fig. 37). While a negative or near-zero value was predicted by lattice QCD and most models,
the new result for d̄n2 is positive. Also shown in Fig. 37 are the low Q

2 (0.1–1 GeV2) results for d̄n2 from another Hall A
experiment, E94-010 [57], which were compared to a Chiral Perturbation Theory calculation [171] and a prediction based
onMAID [172]. The elastic part, while negligible at high Q 2, is significant at low Q 2 (<1 GeV2) andwas subtracted from both
theoretical calculations. The MAID calculation represents the low-Q 2 data rather well, probably due to the x2-weighting
which suppresses the contribution of higher mass final states.
A new precision experiment to measure dn2 at an average Q

2 of 3 GeV2 is planned in Hall A in early 2009 [173]. Further
measurements [174] of dn2 at constant Q

2 ranging from 3 to 5 GeV2 are planned at JLab after the 12 GeV energy upgrade.
The Hall C RSS experiment [80] measured g2 on the proton and the deuteron and extracted d̄

p
2 = 0.0072 ± 0.0017 at a

Q 2 value of 1.3 GeV2. A more comprehensive measurement of gp2 and d
p
2 is scheduled in Hall C [175]. It will cover a wide Q

2

range from 2.5 to 6.5 GeV2.
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Fig. 37. Results for d̄n2(Q
2) from JLab Hall A [57,62] and SLAC [41], together with lattice QCD calculations [170].

Table 2
Results of µ4 , µ6 and µ8 at Q 2 = 1 GeV2 for proton, neutron and p–n. The uncertainties are first statistical then systematic.

Target Q 2 (GeV2) µ4/M2 µ6/M4 µ8/M6

Proton [176] 0.6–10.0 −0.065± 0.012± 0.048 0.143± 0.021± 0.056 −0.026± 0.008± 0.016
Neutron [59] 0.5–10.0 0.019± 0.002± 0.024 −0.019± 0.002± 0.017 0.00± 0.00± 0.03
p–n [179] 0.5–10.0 −0.060± 0.045± 0.018 0.086± 0.077± 0.032 0.011± 0.031± 0.019
p–n [180] 0.66–10.0 −0.039± 0.010± 0.026 0.084± 0.011± 0.024 0.047± 0.026

Table 3
Results of f2 , χE and χB at Q 2 = 1 GeV2 for proton, neutron and p–n. The uncertainties are first statistical then systematic.

Target f2 χE χB

p [176] −0.160± 0.028± 0.109 −0.082± 0.016± 0.071 0.056± 0.008± 0.036
n [59] 0.034± 0.005± 0.043 0.031± 0.005± 0.028 −0.003± 0.004± 0.014
p–n [179] −0.136± 0.102± 0.039 −0.100± 0.068± 0.028 0.036± 0.034± 0.017
p–n [180] −0.101± 0.027± 0.067 −0.077± 0.050 0.024± 0.028

The higher-twist contributions toΓ1 can be obtained by a fitwith anOPE series, Eq. (95), truncated to an order appropriate
for the precision of the data. The goal is to determine the twist-4 matrix element f2. Once µ4 is obtained, f2 is extracted by
subtracting the leading-twist contributions of a2 and d2 following Eq. (100). To have an idea how the higher-twist terms
(twist-6 and above) affect the twist-4 term extraction, it is necessary to study the convergence of the expansion and to
choose the Q 2 range in a region where the µ8 term is not significant. This study is made possible only with the availability
of the new low-Q 2 data from JLab.
Higher-twist analyses have been performed on the proton [176–178], the neutron [59] and the Bjorken sum (p–n) [179,

180]. Γ1 at moderate Q 2 was obtained from the JLab g1 data with details described in Section 3.5. For consistency, the
unmeasured low-x parts of the JLab and theworld data onΓ1 were re-evaluated using the same prescription [59]. The elastic
contribution, negligible above Q 2 of 2 GeV2 but significant (especially for the proton) at lower values of Q 2, was added using
the parametrization of Ref. [181]. The leading-twist term µ2 was determined by fitting the data at Q 2 ≥ 5 GeV2 assuming
that higher twists in this Q 2 region are negligible. Using the proton (neutron) data alone, and with input of a3(=gA) from
the neutron beta decay and a8 from hyperon decay (assuming SU(3) flavor symmetry), 1Σ = 0.15 ± 0.07 for the proton
analysis [176] and1Σ = 0.35± 0.08 for the neutron analysis [59] were obtained. Note that there is a difference of nearly
two standard deviations between these two results; this difference presumably comes from the different data sets used for
the two analyses.
The fit results using an expansion up to (1/Q 6) in determiningµ4 are summarized in Table 2. The extraction on p–nwas

performed twice: first [179] with the combined Hall A E94-010 neutron and Hall B EG1A proton data and then the second
time [180] with the EG1B proton and deuteron data. In order to extract f2, shown in Table 3, the target-mass corrections
a2 were evaluated using the Blümlein–Böttcher NLO fit to the world data [133] for the proton and a JLab fit to the world
neutron data, which includes the recent high precision neutron results at large x [61,62]. The d2 values used are from SLAC
E155 [41] (proton) and JLab E99-117 [62] (neutron).
The fits were repeated varying the minimum Q 2 threshold to study the convergence of the OPE series. The extracted

quantities have large uncertainties (dominated by the systematic uncertainty) but are stable with respect to the minimal
Q 2 threshold when it is below 1 GeV2. The results do not vary significantly when the µ8 term is added, which justifies a
posteriori the use of the truncated OPE series in the chosen Q 2 range. In the proton case, the elastic contribution makes a
significant contribution to the µ6 term at low Q 2 but this does not invalidate a priori the validity of the series since the
elastic contribution affects mainly µ6 and µ8 remains small compared to µ4. We notice the alternation of signs between
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Fig. 38. Results of the GDH sum I(Q 2) for 3He [167] (left) and for the neutron [56] (right). The 3He GDH results are compared with the MAID model plus
a contribution from quasi-elastic nucleon knock-out. The neutron GDH results are compared with χPT calculations of Ji [171] (dashed line) and Bernard
et al. [189] (shaded area). The MAID model calculation [172] is represented by a solid line. Data from HERMES [190] are also shown.

the coefficients. This leads to a partial suppression of the higher-twist effects andmay be a reason for quark–hadron duality
in the spin sector (see Section 4). We also note that the sign alternation is opposite for the proton and neutron. Following
Eq. (103), the electric and magnetic color polarizabilities were determined, see Table 3. We observe a sign change in the
electric color polarizability between the proton and the neutron. We also expect a sign change in the color magnetic polar-
izability. However, with the large uncertainty and the small negative value of the neutron χB, it is difficult to confirm this
expectation.
Additional data from JLab experiment EG1 are presently under analysis andwill significantly improve the precision of the

first moments Γ p1 and Γ
d
1 around Q

2
= 1 GeV2, which is the crucial region for the extraction of higher-twist contributions.

These data should therefore allow a more precise extraction of quantities like f2 and the color polarizabilities.

3.5. GDH sum rule and chiral expansion

In recent years the Gerasimov, Drell and Hearn (GDH) sum rule [160,161] at Q 2 = 0 has attracted much experimental
and theoretical [60,182] effort that has provided us with rich information. Experimental measurements of the GDH sum on
the proton and deuteron were performed at Mainz [183] and Bonn [184,185], and the contribution from the first resonance
region and below was also measured at LEGS [186]. The results show that the GDH sum rule is satisfied for the proton,
assuming a model [182] for the unmeasured regions. A review on the overall status of the GDH sum rule for real photons
has been published recently in this journal [187].
A generalized sum rule [188] connects the GDH sum rule with the Bjorken sum rule and provides a cleanway to compare

theories with experimental data over the entire Q 2 range. The (generalized) GDH sum rule and similar spin sum rules relate
the moments of the spin-structure functions to the nucleon’s static properties (e.g., its anomalous magnetic moment) and
to real or virtual Compton amplitudes (see Eqs. (116)–(122) and (125)–(127)), which can be calculated theoretically. Several
papers [60,164,182] provide comprehensive reviews on this subject.
Fig. 38 shows the extended GDH integrals I(Q 2) =

∫
∞

ν0
[σ1/2(Q 2) − σ3/2(Q 2)]dν/ν for 3He (left) and for the neutron

(right), which were extracted from Hall A experiment E94-010 [167,56], from break-up threshold for 3He and from pion
threshold for the neutron to W = 2 GeV. The uncertainties, when visible, represent statistics only; the systematics are
shown by the shaded bands. The solid squares include an estimate of the unmeasured high-energy part. The corresponding
uncertainty is included in the systematic uncertainty band.
The 3He results rise with decreasing Q 2. Since the GDH sum rule at Q 2 = 0 predicts a large negative value, a drastic

turnaround should happen at Q 2 lower than 0.1 GeV2. A simple model using MAID [172] plus quasi-elastic contributions
estimated from a PWIA model [191] indeed shows the expected turnaround. The data at low Q 2 should be a good testing
ground for few-body Chiral Perturbation Theory calculations.
The neutron results indicate a smooth variation of I(Q 2) to increasingly negative values as Q 2 varies from 0.9GeV2

towards zero. The data are more negative than the MAIDmodel calculation [172], again presumably due to the contribution
from multi-pion final states. (Since the calculation only includes contributions to I(Q 2) for W ≤ 2GeV, it should be
compared with the open circles.) The GDH sum rule prediction, I(0) = −232.8µb, is indicated in Fig. 38, along with
extensions to Q 2 > 0 using two next-to-leading order χPT calculations, one using the Heavy Baryon approximation
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Fig. 39. Results on Γ 1(Q 2) for p, d, n and p–n from JLab Hall A [57], CLAS EG1a [71] and EG1b [192], together with data from SLAC and HERMES. The
slopes at Q 2 = 0 predicted by the GDH sum rule are given by the red dotted lines. The solid (short-dashed) lines are the predictions from the Burkert–Ioffe
(Soffer–Teryaev) parametrizations [194,193]. The leading twist Q 2-evolution of the p–nmoment is given by the grey band. The insets show comparisons
with χPT calculations. The dot-dashed lines (green lines and bands) at low Q 2 are the next-to-leading order χPT predictions by Ji et al. [171] (Bernard
et al. [189]) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

(HBχPT) [171] (dashed line) and the other based on Relativistic Baryon χPT (RBχPT) [189]. The shaded band shows the
RBχPT calculation including resonance effects [189], which have an associated large uncertainty due to the resonance
parameters used.
In Fig. 39 we present the existing data set on the related quantity Γ̄1(Q 2) (Eq. (120)) at low to moderate Q 2. The upper

two panels show the data on the proton and the deuteron from EG1a [71] together with new results from the Hall B EG1b
experiment [192]. The bottom row shows published results for the neutron from Hall A [57] and for the proton–neutron
difference obtained by combining all of these data sets. Also shown are data from SLAC E143 [34] and E155 [36] as well as
from HERMES [44]. The inner error bars indicate the statistical uncertainties while the outer ones are the quadratic sums of
the statistical and systematic uncertainties, except for the lower-right panel where the systematic errors are indicated by a
shaded band.
AsQ 2 → 0, the slopes of Γ̄1 (shown as dotted lines in Fig. 39) and of Γ̄TT are the same, both given by theGDH sum rule (see

Eqs. (106)–(110), (120) and (121)). The behavior at low Q 2 can be calculated with χPT. We show results of calculations by
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Fig. 40. Results for αs,g1 [196] extracted from the generalized Bjorken sum, together with other world data on effective strong couplings.

Ji et al. [171] using HBχPT and by Bernard et al. [189] without and with the inclusion of vector mesons and 1 degrees
of freedom. The calculations are in reasonable agreement with the data at the lowest Q 2 values of 0.05–0.1 GeV2. At
moderate and large Q 2 data are compared with two phenomenological model calculations [193,194]. The model by Soffer
and Teryaev [193] assumes a smooth variation with Q 2 of the integral

∫
[g1(x)+ g2(x)]dx (which is constrained by DIS data

at large Q 2 and by sum rules at the photon point) and subtract the contribution from Γ̄2 (using the BC sum rule) to extract
Γ̄1(Q 2). The curve by Burkert and Ioffe [194] uses a parametrization of the resonance region (similar to MAID) and adds a
Vector Meson Dominance-inspired ansatz to connect the GDH sum rule at the photon point with the DIS data for Γ̄1. Both
models describe the data well.
The lower-right panel in Fig. 39 shows the moment of gp1 − g

n
1 , the Bjorken integral. This is of special interest because it

contains contributions only from the flavor non-singlet (or isovector) part, and the contribution from the1(1232) resonance
cancels [195]. The data at high Q 2 were used to test the Bjorken sum rule as described in Section 3.2. They were also used to
extract a value of the strong coupling constant, αs, assuming the validity of the sum rule. The leading-twist pQCD evolution
of the Bjorken sum rule is shown by the grey band. It tracks the data down to surprisingly low Q 2, which indicates an overall
suppression of higher-twist effects (see Section 3.4). The new JLab data at low Q 2 provide interesting information in the low
energy region, where the strong interaction is truly strong and non-perturbative.
A new attempt [196,197] was made to extract an effective strong coupling, αs,g1 in the low Q

2 region (Fig. 40). The
extracted αs,g1 , which by definition must converge towards a finite value as Q

2
→ 0, shows a clear trend of weakening Q 2

dependence with decreasing Q 2. With the GDH sum rule as a constraint at Q 2 = 0, a model fit to the extracted αs,g1 shows a
small Q 2 slope at the origin. This is consistent with a conformal behavior, which may be important for any attempt to apply
AdS/CFT [198] for the strong interaction in the low-energy region.
The generalized spin polarizabilities provide additional benchmark tests of χPT calculations, and their measurement is

an important step in understanding the dynamics of QCD in the low Q 2 region. Since they have an extra 1/ν2 weighting
compared to the first moments, these integrals have less contributions from the large-ν region and converge much faster,
which minimizes the uncertainty due to the unmeasured region at large ν.
Generalized spin polarizabilities have been evaluated with next-to-leading order χPT calculations [199,189]. One issue

in the χPT calculations is how to properly include the nucleon resonance contributions, especially the1(1232) resonance.
As was pointed out in [199,189], while γ0 is sensitive to resonances, δLT is insensitive to the1 resonance.
The first results for the neutron generalized forward spin polarizabilities γ0(Q 2) and δLT (Q 2)were obtained at Jefferson

Lab Hall A [58]. The results for γ n0 (Q
2) are shown in the top panel of Fig. 41. The statistical uncertainties are smaller than

the size of the symbols. The data are compared with a next-to-leading order (O(p4)) HBχPT calculation [199], a next-to-
leading order RBχPT calculation and the same calculation explicitly including both the 1 resonance and vector meson
contributions [189]. Predictions from the MAID model [172] are also shown. At the lowest Q 2 point, the RBχPT calculation
including the resonance contributions is in good agreementwith the experimental result. For theHBχPT calculationwithout
explicit resonance contributions, discrepancies are large even at Q 2 = 0.1 GeV2. This might indicate the significance of the
resonance contributions or a problem with the heavy baryon approximation at this Q 2. The higher Q 2 data point is in good
agreement with the MAID prediction, but the lowest data point at Q 2 = 0.1 GeV2 is significantly lower.
Results for γ0 on the proton have been recently submitted for publication [192]. They show significant disagreementwith

both χPT calculations [199,189]. An isospin separation of γ0 was performed and discussed in Ref. [180]. The isoscalar (γ
p+n
0 )
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Fig. 41. Results for the neutron spin polarizabilities γ0 (top panel) and δLT (bottom panel). Solid squares represent the results with statistical uncertainties.
The light bands represent the systematic uncertainties. The dashed curves represent the heavy baryon χPT calculation [199]. The dot-dashed curves and
the dark bands represent the relativistic baryon χPT calculation without and with [189] the1 and vector meson contributions, respectively. Solid curves
represent the MAID model [172].

and isovector (γ p−n0 ) combinations also disagree with χPT, in spite of the fact that for the latter the contribution from the
1(1232) resonance cancels.
Since δLT is insensitive to this resonance contribution for each nucleon individually, it was believed that δLT should be

more suitable than γ0 to serve as a testing ground for the chiral dynamics of QCD [199,189]. The bottom panel of Fig. 41
shows δLT compared to χPT calculations and theMAID predictions. While theMAID predictions are in good agreement with
the results, it is surprising to see that the data are in significant disagreement with the χPT calculations even at the lowest
Q 2, 0.1 GeV2. This disagreement (‘‘δLT puzzle’’) presents a significant challenge to the present Chiral Perturbation Theory.
Newexperimental data have been taken at very lowQ 2, down to 0.02GeV2 for theneutron (3He) [65] for both longitudinal

and transverse target polarizations, but only for longitudinal target polarization for the proton and the deuteron [200].
Preliminary results just became available for the neutron. Analysis is underway for the proton and deuteron data. These
results will provide benchmark tests of χPT calculations at the kinematics where they are expected to work. A new
proposal [201] was recently approved to measure gp2 with a transversely polarized proton target in the low Q

2 region. It
will provide an isospin separation of the spin polarizabilities to shed light on the ‘‘δLT ’’ puzzle.

4. Quark–hadron duality in spin structure

In the previous sections, we have interpreted spin structure function data and their integrals either in terms of quark and
gluon degrees of freedom (Sections 2.1–2.6 and 3.1–3.4) or in terms of low-energy effective theories (Sections 2.7 and 3.5).
While quarks and gluons are the fundamental degrees of freedom for the theory of strong interactions, QCD, a description
in terms of their hadronic composites (nucleon, nucleon resonances and light mesons) is often more economical at lower
resolution Q 2, where perturbative QCD is not applicable and calculations are extremely difficult. At intermediate resolution,
models like the constituent quark model may be able to describe some of the observed phenomena.
Both from a theoretical and a practical point of view, it is interesting to investigate where and how these different

pictures of the nucleon connect and overlap. In particular, if we can find a kinematic region where both the quark–parton
description and the hadronic description are found to be valid to some degree, we can potentially expand the kinematic
range of experiments that attempt to extract information on quarks in the nucleon. At the same time, we could gain new
insights on the transition from quasi-free quarks at short length scales to their confinement at larger distances.
Such ‘‘dual’’ descriptions of experimental data have been successful in cases including e+e− annihilation, semi-leptonic

heavy meson decays and lepton scattering; for a review see [202]. In particular, in the 1970s Bloom and Gilman [203] found
that the unpolarized structure function F2(x,Q 2) in the nucleon resonance region (W < 2 GeV) at moderate Q 2, when
averaged over suitable intervals in x, was quite close to the deep inelastic, scaling structure function F2(x) measured at
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Fig. 42. Data on the spin structure functions g1(x,Q 2) of the proton and the deuteron from Jefferson Lab’s Hall B (left panel) and its average over the
resonance region (right panel). Prominent resonances are indicated by arrows in the left panel. The hatched curves represent the range of extrapolated DIS
results from modern NLO fits (GRSV and AAC, see Section 2.5), evolved to the Q 2 of the data and corrected for target mass effects. The open circles in the
right panel include the elastic contribution, while the filled circles are only integrated overW > 1.08 GeV.

much higher Q 2 and W but the same average x. This finding has been confirmed and expanded in much greater detail by
measurements at Jefferson Lab [204]. The agreement between resonance region and high-Q 2 data is typically improved if
one accounts for targetmass effects and the logarithmicQ 2 evolution of deep inelastic structure functions. Nachtmann [205]
has shownhow to handle the finitemass of the nucleon target exactly; an approximatemethod simply employs themodified
Nachtmann scaling variable ξ = 2x/(1 +

√
1+ 4M2x2/Q 2). This has been extended to the polarized case by Piccione and

Ridolfi [128].
In the framework of the OPE, a quark–parton description of structure function moments at intermediate Q 2 should

in principle be always possible if one includes contributions of sufficiently high twists. This so-called global duality
then becomes simply the observation that these higher-twist contributions are either small or cancel in integrated
observables [206]. Experimentally, this seems to be the case for unpolarized structure functions of the proton; however,
it is non-trivial whether the same is true for polarized structure functions and for neutron structure functions. In particular,
the polarized structure function g1might not necessarily exhibit local duality (for a restricted range in x), since at lowQ 2 and
W it is dominated by the 1(1232) resonance, which should have a negative spin asymmetry A1 ≈ −0.5 (see Section 2.7),
while at large Q 2 and x one expects this asymmetry to approach unity (see Section 2.4). Therefore, a detailed study of the
limits of validity of duality for polarized structure functions is of great interest.
First measurements of spin structure functions in the resonance region [20,39] found that, with the exception of the

1(1232) resonance, duality seemed to hold approximately within errors, especially for the higher Q 2 data of E143 [39].
Early data from the Jefferson Lab EG1 programwith CLAS [70,71] confirmed that local duality does not work well at low Q 2,
with significantly higher statistics. The paper by Yun et al. [70] explicitly looked at the approach of the structure function
gd1 (ξ ,Q

2) towards the scaling limit for increasing Q 2 and found that this limit had not been reached yet up to Q 2 = 1 GeV2.
TheHERMES collaboration [207] averaged theirmeasured asymmetryAp1 over the resonance region 1GeV< W <2GeV for 5
different bins in x and Q 2 and found the results in reasonable agreement with DIS results, within their relatively large errors.
By far themost detailed study of duality in the spin structure function g1 has been published by the EG1 collaboration [73].

As shown in Fig. 42, one observes a clear trend of strong, resonant deviations from the scaling curve at lower Q 2, towards
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Fig. 43. New data on the spin structure functions g1(x,Q 2) of 3He in the resonance region from Jefferson Lab’s Hall A (solid circles, left panel), together
with NLO curves for a combination of proton and neutron g1 with proper polarization factors to mimic the nuclear spin structure function and evolved to
the Q 2 of the data. The right panel show these data (solid squares) averaged over the resonance region for 3He (top half) and corrected for nuclear effects
to get the partial integrals for the neutron (bottom half). The NLO curves shown represent the range of extrapolated DIS results from modern NLO fits
(Blümlein and Böttcher, GRSV, LSS and AAC, see Section 2.5), evolved to the Q 2 of the data and corrected for target mass effects.

a pretty good agreement at intermediate Q 2. The integral of g1 over the whole resonance region begins to agree with the
NLO results above Q 2 ≈ 1.7 GeV2. At lower Q 2, that integral rises above the NLO extrapolation if one includes the elastic
contribution. This shows that the elastic peak somewhat overcompensates the negative contribution from the 1(1232)
resonance; however, leaving out the elastic part of the integral leads to integral values much below the NLO curves. The
results on the proton and deuteron from EG1 [73] thus indicate amuch slower approach to ‘‘global’’ duality for the polarized
structure function g1 than has been observed for unpolarized structure functions.
A more detailed examination shows that g1 averaged over the first resonance region (1.08 < W < 1.38 GeV),

which includes the 1(1232) resonance, is substantially below the NLO expectations even to the highest Q 2 measured by
EG1 (5 GeV2). On the other hand, the three resonances (P11(1440), S11(1535),D13(1520)) in the second resonance region
(1.38 < W < 1.58 GeV) all have dominant A1/2 transition amplitudes already at rather modest Q 2, so that the averaged g1
in this region tends to overshoot the NLO limit. The cancellation of these two opposite effects, together with a rather quick
approach to ‘‘local duality’’ for the higher resonance region (W > 1.56 GeV), leads to the approach to global duality seen in
Fig. 42.
The data taken by the RSS collaboration in Hall C (see Section 2.7) corroborate these observations and add more precise

data points for Q 2 ≈ 1.3 GeV2. They find that the integral over their measured region, 1.09 GeV< W < 1.91 GeV, is about
17% ± 8% lower than the same integral over NLO evaluations of gp1 evolved to Q

2
= 1.3 GeV2, even after applying target

mass corrections.
Very recently, new results have become available from a duality study in Hall A, using a 3He target [64]. By combining

NLO fits for the spin structure functions gp1 and g
n
1 with the proper polarization factors, one can directly compare these fits

with the data on the nucleus 3He (left panel of Fig. 43). Once again, at the lowest Q 2 point the data oscillate around the NLO
curves and show a strong deviation in the region of the 1(1232) resonance at least out to Q 2 = 1.8 GeV2. At higher Q 2,
both the data and the NLO fits are very close to zero, in contrast to gp1 which is markedly positive for the extrapolated NLO
fits. The partial integrals (up toW = 1.91 GeV) of these data are shown in the right panel of Fig. 43). Except for the lowest
Q 2 point, good agreement with the integrals of NLO fits (both for 3He and directly for the neutron) is seen, confirming the
onset of duality around Q 2 = 1.7 GeV2 for both protons and neutrons.

5. Summary and outlook

After 30 years of dedicated experiments, we are beginning to accumulate a rather detailed picture of a fundamental
aspect of the nucleon, namely its spin structure. In spite of early worries (after the initial ‘‘spin crisis’’), it appears that
quark helicities do contribute a small but significant fraction of the (longitudinal) spin of the nucleon, up to one third. Most
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importantly, the fundamental Bjorken sum rule [5] and its perturbative QCD evolution seem to be at least consistent with
the data. In fact, none of the existing experiments show any features that would contradict pQCD in its realm of applicability.
Most pQCD-based analyses of the data agree fairly well on the contribution of various quark flavors to the proton spin,

although there is still some controversy on the role played by strange sea quarks. We also don’t know yet whether polarized
up and down anti-quark densities show the same difference as the unpolarized ones. On the other hand, new high-precision
data from Jefferson Lab constrain very nicely the polarized densities of valence up and down quarks at higher x. These
data indicate that relativistic quark models, with one-gluon exchange corrections [109], and augmented by pion cloud
contributions [208], yield a rather good description in the valence region where sea-quarks contribute little. The emergent
picture (also from recent NLO analyses, see Section 2.5) is one where valence quarks (1qV ≡ 1q − 1q̄) carry roughly
the expected fraction (∼60%) of the nucleon spin, while the (on average) negative helicity of sea quarks reduces this to
about 30%–35%. Future experiments [209–211] at Jefferson Lab, after the approved energy upgrade to 11–12 GeV, will
extend our knowledge of polarized quark densities out to x > 0.8 and will decisively test predictions from pQCD and
QCD-inspired models. These same experiments, as well as presently scheduled 6 GeV ones [212,213], will further improve
the precision with which we can study scaling violations and therefore extract polarized gluon and sea-quark densities.
Additional information on individual quark and antiquark flavor contributions to the nucleon spin will come from future
experiments at RHIC (in particular from directW± production at 500 GeV center-of-mass energy) and the new FAIR facility
in Darmstadt, Germany [214] as well as semi-inclusive measurements with COMPASS and at Jefferson Lab. Much additional
information on the small-x behavior of quark- and antiquark polarization densities could be gotten from the electron–ion
collider (EIC) that has recently been proposed [215], see below.
In addition to logarithmic violations of scaling, expected from pQCD, we also see some evidence for non-zero twist-3 and

twist-4 matrix elements; however, the overall higher twist corrections to moments of spin structure functions seem rather
modest even at fairly lowQ 2, indicating a partial cancellation of contributions fromdifferent orders in the twist expansion. At
these lower values of Q 2, we see a transition from partonic (quark and gluon) degrees of freedom to hadronic ones, without
any dramatic break in the rather smooth transition region. Thanks to the vast data set in the nucleon resonance region, we
can better constrain transition amplitudes and test this quark–hadron duality in detail. Averages over the resonance region
seem to agree fairly well with extrapolations of deep inelastic data over the same range in x, albeit not to quite as low Q 2 as
in the unpolarized case. Future measurements at Jefferson Lab with 6 GeV [175,173,216] and 12 GeV [174] beams will add
to our knowledge of higher-twist matrix elements, and of the second spin structure function g2 and its moments.
At the lower end of the Q 2 scale, the Gerasimov–Drell–Hearn sum rule at the real photon point seems to be well

confirmed. However, it is too early to state with certainty whether the effective theory of QCD at low energies, χPT, yields
a good description of the data very close to that point. Some tentative successes in describing the first moment Γ1 of g1 will
be tested very soon, when the new data on the neutron (3He), the proton and the deuteron collected in Halls A and B at
Jefferson Lab become available [65,200]. For the polarizabilities like γ0 and δLT , which are given by higher moments of g1,2,
the agreement at present is unsatisfactory; it may be necessary to go to a higher order in χPT before agreement is reached.
New data on these quantities will also be collected at Jefferson Lab [201].
One of the most important remaining open questions is the provenance of the remaining 2/3 of the nucleon spin that is

not carried by quark helicities. We know now that the gluon contribution cannot be very large, but its precise magnitude
and shape are not known yet, and it could still be an important fraction of the total. Improved statistics from the direct
measurements at RHIC and COMPASS will help, especially with expanded kinematics (higher and lower beam energies,
different rapidity and pT ranges, and new final state channels) which can begin to separate the low-x and high-x behavior
of1G.
Additional information will come from future experiments of the spin structure functions at both extremes of the Q 2

scale, including the upcoming Jefferson Lab experiments with the future 11 GeV beam [209], and further COMPASS data.
In this context, it is an interesting question whether future DIS measurements alone can distinguish between positive and
negative1G(x). They can, indeed, but this requires a very high energy lepton–nucleon collider like the EIC proposal [215].
This can be seen in Fig. 44 which shows gp1 (x) at very small x for 1 < Q

2 < 1000 GeV2 for the two signs of1G(x). Clearly
the behavior of gp1 (x) at small x and large Q

2 is quite different in the two cases.
A collider of the EIC typewould also have a dramatic effect in reducing the uncertainties in the polarized parton densities.

This is illustrated in Figs. 45 and 46 where it can be seen that the improvement even at moderate to large x, especially for
1s and1G, is remarkable.
Finally, the contribution from quark orbital angular momentum is also an important ingredient in the total spin balance

of the nucleon. While a direct measurement is not available, one can learn much about the transverse distribution and
motion of quarks from semi-inclusive measurements of single spin asymmetries. This is a fairly new field, with a very rich
potential and a rapidly growing body of experimental data, but lies outside the scope of this article. It will be addressed by
an upcoming review in this journal.
A second avenue towards a full accounting of the nucleon spin lies in measurements that are sensitive to Generalized

Parton Distributions (GPDs), in particular Deeply Virtual Compton Scattering (DVCS). Moments of certain combinations of
GPDs can be related to the total angular momentum (spin and orbital) carried by various quark flavors, as expressed in
Ji’s sum rule [8,218]. Again, seminal experiments in this area have already collected data that indicate that the necessary
assumption of factorization (and the validity of the handbag diagram) seems to be fulfilled, and even give some model-
dependent indication of the value of u- and d-quark angular momentum [219]. Future measurements at COMPASS and an



Author's personal copy

S.E. Kuhn et al. / Progress in Particle and Nuclear Physics 63 (2009) 1–50 47

Fig. 44. g1(x,Q 2) at various values of Q 2 attainable at EIC for positive and negative1G [217].

Fig. 45. Impact of two versions of EIC on the u and d uncertainties [217].

Fig. 46. Impact of two versions of EIC on the s and G uncertainties [217].

extensive program at the energy-upgraded Jefferson Lab will add substantially to this database. Ultimately, an electron–ion
collider could map out GPDs in detail at significantly lower x than fixed-target experiments.
In summary, the interest in the nucleon spin structure continues unabated, with many novel experimental and

theoretical approaches towards the ultimate understanding of all contributions to the nucleon’s spin. An extensive and
rich experimental program already lies ahead of us at existing facilities like CERN (COMPASS), RHIC and Jefferson Lab (both
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during the remaining years of 6 GeV running and in the new era of 11–12 GeV beams). Ultimately, this field would benefit
tremendously from a new collider of both polarized ions and polarized leptons, which is now in the planning stage.
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