
IOP PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 36 (2009) 015007 (12pp) doi:10.1088/0954-3899/36/1/015007

Intrinsic parton motion soft mechanisms and the
longitudinal spin asymmetry ALL in high energy
pp → πX

M Anselmino1, M Boglione1, U D’Alesio2,3, E Leader2,4, S Melis1,2 and

F Murgia3

1 Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino,
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Abstract

The longitudinal double spin asymmetry ALL in the reaction pp → πX has
been measured at RHIC with extremely interesting consequences. If the gluon
polarization in a proton were as big as needed to resolve the famous ‘spin crisis’
then ALL would be large and positive. Latest RHIC results indicate that ALL is
small and disfavour large positive values of the gluon polarization. We examine
whether the soft mechanisms (Collins, Sivers, Boer–Mulders), essential for
generating transverse single spin asymmetries, have any significant influence
on ALL, and whether they could alter the conclusion that the gluon polarization
is necessarily small. It turns out that the contribution from these effects is
essentially negligible.

1. Introduction

Large transverse single spin asymmetries (up to 40%) have been observed in a multitude of
reactions for over three decades, whereas such asymmetries are tiny (�1%) in the standard
leading twist QCD parton model. To explain the size of these asymmetries Sivers and Collins
[1, 2] introduced new soft mechanisms, utilizing, as an essential ingredient, the intrinsic
transverse momentum of partons [3]. Later other similar mechanisms were shown to be
possible, for example the Boer–Mulders mechanism [4, 5].

Although these mechanisms were invented in order to produce transverse asymmetries,
it turns out that they also contribute to the longitudinal double spin asymmetries and to the
total cross-section [6]. For the latter, it has been shown that the effect of the soft functions
is negligible. However, it was found that intrinsic transverse momentum per se significantly
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affects the value of the cross-section [7]. That this should be the case at lower energies had
already been noted by Field and Feynman [8], and later by Vogelsang and Weber [9] on the
grounds that taking into account intrinsic k⊥ is a particular method of including higher twist
corrections.

For the longitudinal asymmetries, the question is much more delicate, for the following
reason. One of the most important reactions measured at RHIC is the double spin longitudinal
asymmetry ALL, which has been found to be very small, and which has been used, based on a
leading twist collinear treatment, to confirm the growing belief that the gluon polarization is
far too small to explain the ‘spin crisis in the parton model’ [10].

Given that ALL is so small, and that the implications of this are so important, we felt it
necessary to check whether the soft mechanisms can have a significant impact, in particular
whether they could influence the above conclusion about the gluon polarization. We have also
checked for any significant sensitivity in ALL to intrinsic transverse momentum.

The plan of this paper is the following. In section 2 we briefly recall the formalism used
for our calculation, which includes the full non-collinear kinematics of the scattering process.
In section 3 we present the ‘kernels’ for the calculation of each partonic contribution to the
polarized cross-sections. In section 4 we show and discuss our phenomenological results for
the longitudinal double spin asymmetry in inclusive neutral pion production at RHIC. Finally,
in section 5 we draw our conclusions.

2. Formalism

Here we simply sketch the main aspects of the formalism; for details of the approach we refer
to [6]. The longitudinal double spin asymmetry ALL for the reaction pp → πX is defined as

ALL = dσ ++ − dσ +−

dσ ++ + dσ +− = dσ ++ − dσ +−

2dσunp
, (1)

where the labels refer to the helicities of the protons.
The general expression for the differential cross-sections for the polarized hadronic

process (A, SA) + (B, SB) → C + X is given by

ECdσ (A,SA)+(B,SB)→C+X

d3pC

=
∑

a,b,c,d,{λ}

∫
dxa dxb dz

16π2xaxbz2s
d2k⊥a d2k⊥b d3k⊥Cδ(k⊥C · p̂c)

× J (k⊥C)ρ
a/A,SA

λa,λ
′
a

f̂ a/A,SA
(xa,k⊥a)ρ

b/B,SB

λb,λ
′
b

f̂ b/B,SB
(xb,k⊥b)

× M̂λc,λd ;λa,λb
M̂∗

λ′
c,λd ;λ′

a ,λ
′
b
δ(ŝ + t̂ + û)D̂

λC,λC

λc,λ
′
c
(z,k⊥C), (2)

which involves a (factorized) convolution of all possible hard elementary QCD processes,
ab → cd, with soft partonic polarized distribution and fragmentation functions. In
equation (2) ŝ, t̂ and û are the Mandelstam variables for the partonic reactions. The detailed
connection between the hadronic and the partonic kinematical variables is given in full in
appendix A of [6]. A discussion of some technical details, like, e.g., the infrared regulators
related to small partonic scattering angles, can be found, for example, in [7].

Let us simply recall here, for a better understanding, the physical meaning of the different
factors in equation (2):

• ρ
a/A,SA

λa,λ
′
a

is the helicity density matrix of parton a inside the polarized hadron A, with spin

state SA; it describes the parton polarization. f̂ a/A,SA
(xa,k⊥a) is the number density

(or distribution) of unpolarized partons a inside the polarized hadron A, SA: each parton
carries a light-cone momentum fraction xa and a transverse momentum k⊥a . Similarly
for parton b inside hadron B with spin SB .
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• The polarized cross-sections for the elementary partonic process (a, sa) + (b, sb) →
(c, sc) + d are expressed in terms of products of the helicity amplitudes M̂λc,λd ;λa,λb

.

• The factor D̂
λC,λC

λc,λ
′
c
(z,k⊥C) describes, again in the helicity basis, the fragmentation process

c → C +X, according to which a polarized parton c fragments into an unpolarized hadron
C carrying a light-cone momentum fraction z and a transverse momentum k⊥C .

• J (k⊥C) is a kinematical factor, numerically very close to 1 for RHIC kinematics. All
details can be found in [6]. Throughout this paper, we work in the AB c.m. frame,
assuming that hadron A moves along the positive Zcm-axis and hadron C is produced in
the (XZ)cm plane, with (pC)Xcm

> 0.

Equation (2) is written in a factorized form, separating the soft, long distance from the
hard, short distance contributions. The hard part is computable in perturbative QCD, while
information on the soft one has to be extracted from other experiments or modelled. As already
mentioned and discussed in [7, 6], such a factorization with non-collinear kinematics has never
been formally proven. Indeed, studies of factorization [11–14], comparing semi-inclusive deep
inelastic scattering (SIDIS) and Drell–Yan reactions have indicated unexpected modifications
of simple factorization, and the situation for single inclusive particle production in hadron–
hadron collisions is not yet resolved. Thus, our approach can only be considered as the natural
extension of the collinear case and a reasonable phenomenological model. Of course, the
perturbative calculation of the hard part is only reliable if the hard scale—in this case the
square of the transverse momentum of the final hadron, p2

T —is large enough. It turns out
that the data on unpolarized cross-sections in hadronic collisions at low-intermediate energy
scales suggest [7] an average value of k2

⊥ ≡ |k⊥|2 � 0.64 (GeV/c)2 for the intrinsic transverse
momentum of the parton distributions. On the other hand, both unpolarized hadronic cross-
sections at RHIC energies [15] and the Cahn effect in SIDIS [16] are rather well reproduced by
using

〈
k2
⊥
〉 � 0.25 (GeV/c)2. We shall therefore study how the contributions to ALL depend

on the value of
〈
k2
⊥
〉
.

3. Kernels

As we can see from equation (2), the computation of the cross-section corresponding to any
polarized hadronic process (A, SA)+(B, SB) → C +X requires the evaluation and integration,
for each elementary process a + b → c + d, of the general kernel

�(SA, SB)ab→cd =
∑
{λ}

ρ
a/A,SA

λa,λ
′
a

f̂ a/A,SA
(xa,k⊥a)ρ

b/B,SB

λb,λ
′
b

f̂ b/B,SB
(xb,k⊥b)

× M̂λc,λd ;λa,λb
M̂∗

λ′
c,λd ;λ′

a ,λ
′
b
D̂

λC,λC

λc,λ
′
c
(z,k⊥C). (3)

While the hadronic process (A, SA) + (B, SB) → C + X takes place, according to our
choice, in the (XZ)cm plane, all the elementary processes involved, A(B) → a(b) + X, ab →
cd and c → C + X do not, since all parton and hadron momenta, pa,pb,pC have transverse
components k⊥a,k⊥b,k⊥C . This ‘out of the (XZ)cm plane’ geometry induces phases in the
fragmentation process, in the distribution functions and in the elementary interactions, which
have to be taken into account. Thus, the independent helicity amplitudes for the elementary
pQCD processes ab → cd, with massless partons, can be written as [6]

M̂+,+;+,+ ≡ M̂0
1 eiϕ1 M̂−,+;−,+ ≡ M̂0

2 eiϕ2 M̂−,+;+,− ≡ M̂0
3 eiϕ3 , (4)

where the amplitudes M̂0
1,2,3 are the real planar amplitudes defined in the partonic ab → cd

c.m. frame,
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M̂0
1 ≡ M̂0

+,+;+,+ = M̂0
−,−;−,− M̂0

2 ≡ M̂0
−,+;−,+ = M̂0

+,−;+,−
M̂0

3 ≡ M̂0
−,+;+,− = M̂0

+,−;−,+,
(5)

as required by parity invariance. The phases ϕ1,2,3 are complicated functions of the polar and
azimuthal angles of the transverse momenta, k⊥a,k⊥b and k⊥C , and their explicit expressions
can be found in [6]. The relations

M̂−,−;−,− = M̂∗
+,+;+,+ M̂+,−;+,− = M̂∗

−,+;−,+ M̂+,−;−,+ = M̂∗
−,+;+,−, (6)

follow from equations (4), (5) and from the fact that the phases ϕi change sign by helicity
inversion [6]. Note that the + and − subscripts refer to (+1/2) and (−1/2) helicities for
quarks, and to (+1) and (−1) helicities for gluons. There are eight elementary contributions
ab → cd which we have to consider separately

qaqb → qcqd, gagb → gcgd,

qg → qg, gq → gq,

qg → gq, gq → qg,

gagb → qq̄, qq̄ → gcgd,

(7)

where q can in general be either a quark or an antiquark. The subscripts a, b, c, d for quarks,
when necessary, identify the flavour (only in processes where different flavours can be present);
for gluons, these labels identify the corresponding hadron (a → A, b → B, c → C). By
performing the explicit sums in equation (3), we obtain the kernels for each of the elementary
processes. Note that the new aspect of our calculation is the appearance of the phases which
is a reflection of the non-collinear kinematics.

The computation of the denominator/numerator of ALL in equation (1) requires the
evaluation of the kernels [�(+, +) ± �(+,−)], respectively. The expressions for the sums of
kernels, which are relevant for the unpolarized cross-section, are given in [6]. Here we give in
detail the expressions for the differences. They are calculated from the general kernel given in
equation (3). In the following certain terms are underlined: these are terms which vanish after
integration over the angles of the momenta k⊥a,k⊥b,k⊥C in equation (2); we shall further
comment on that at the end of this section. φH

C is the azimuthal angle of the hadron C in the
parton c helicity frame and its expression in terms of the angles of k⊥C is given in appendix A
of [6]. Note that all angular dependences of the kernels are explicitly extracted and the parton
distribution (PDF) and fragmentation (FF) functions only depend on the magnitudes of the
transverse momentum vectors.

• qaqb → qcqd contribution

[�(+, +) − �(+,−)]qaqb→qcqd

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
2

∣∣2 − ∣∣M̂0
3

∣∣2]
D̂C/c(z, k⊥C)

+

[

f̂ a

sx/+(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+ 
f̂ a
sy/A

(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b) sin(ϕ3 − ϕ2)

](
2M̂

0
2M̂

0
3

)
D̂C/c(z, k⊥C)

− f̂ a/A(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b)M̂

0
1M̂

0
3 sin

(
ϕ1 − ϕ3 + φH

C

)

ND̂C/c↑(z, k⊥C). (8)

Note that we have used the relations 
f̂
a

sy/+(xa, k⊥a) = 
f̂
a

sy/A
(xa, k⊥a) and

f̂ a/+(xa, k⊥a) = f̂ a/A(xa, k⊥a), see appendix B of [6]. The channels qq̄ → qq̄ etc.
are formally identical to qq → qq with amplitudes defined properly in [6].
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• gagb → gcgd contribution

[�(+, +) − �(+,−)]gagb→gcgd

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
2

∣∣2 − ∣∣M̂0
3

∣∣2]
D̂C/g(z, k⊥C)

+

[

f̂ a

T2/+(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+ 
f̂ a
T1/A

(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b) sin(ϕ3 − ϕ2)

](
2M̂

0
2M̂

0
3

)
D̂C/g(z, k⊥C)

+ f̂ a/A(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b)M̂

0
1M̂

0
3 sin

(
ϕ1− ϕ3 + 2φH

C

)

ND̂C/T g

1
(z, k⊥C) (9)

• qq̄ → gg contribution

[�(+, +) − �(+,−)]qq̄→gg

= −
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

2

∣∣2
+

∣∣M̂0
3

∣∣2]
D̂C/g(z, k⊥C)

+

[

f̂ a

sx/+(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+ 
f̂ a
sy/A

(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]

× (
2M̂

0
2M̂

0
3

)
D̂C/g(z, k⊥C) (10)

• gagb → qq̄/q̄q contribution

[�(+, +) − �(+,−)]gagb→qq̄/q̄q

= − 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

2

∣∣2
+

∣∣M̂0
3

∣∣2]
D̂C/c(z, k⊥C)

+

[

f̂ a

T2/+(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b) cos(ϕ3 − ϕ2)

+ 
f̂ a
T1/A

(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b) sin(ϕ3 − ϕ2)

]

× (
2M̂

0
2M̂

0
3

)
D̂C/c(z, k⊥C) (11)

• qg → qg contribution

[�(+, +) − �(+,−)]qg→qg

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
2

∣∣2]
D̂C/c(z, k⊥C) (12)

• gq → qg contribution

[�(+, +) − �(+,−)]gq→qg

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
3

∣∣2]
D̂C/c(z, k⊥C)

− f̂ a/A(xa, k⊥a)
f̂ b
sx/+(xb, k⊥b)M̂

0
1M̂

0
3 sin

(
ϕ1 − ϕ3 + φH

C

)

ND̂C/c↑(z, k⊥C) (13)

• qg → gq contribution

[�(+, +) − �(+,−)]qg→gq

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
3

∣∣2]
D̂C/g(z, k⊥C)

+ f̂ a/A(xa, k⊥a)
f̂ b
T2/+(xb, k⊥b)M̂

0
1M̂

0
3 sin

(
ϕ1− ϕ3 + 2φH

C

)

ND̂C/T g

1
(z, k⊥C) (14)
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• gq → gq contribution

[�(+, +) − �(+,−)]gq→gq

= 
f̂ a
sz/+(xa, k⊥a)
f̂ b

sz/+(xb, k⊥b)
[∣∣M̂0

1

∣∣2 − ∣∣M̂0
2

∣∣2]
D̂C/g(z, k⊥C). (15)

The physical content of the above expressions is interesting. First note the complete
formal symmetry between the qq → qq kernel in equation (8) and the gg → gg kernel in
equation (9). These kernels contain the largest variety of contributions, and the kernels for all
the other partonic processes can be formally read off from these by the suppression of certain
terms.

In the second line of both expressions, equations (8) and (9), we recognize the
product of the k⊥-dependent helicity distributions, 
f̂

q

sz/+(xq, k⊥q) ≡ 
q(xq, k⊥q) and


f̂
g

sz/+(xg, k⊥g) ≡ 
g(xg, k⊥g) for quarks and gluons respectively, and the unpolarized

fragmentation function D̂C/c(z, k⊥C), with no azimuthal phases. In the third line of
equation (8) we have two parton distribution functions, 
f̂

q

sx/+(x, k⊥), referring to quarks
transversely polarized, along the x-axis, inside longitudinally polarized nucleons, coupled to
the unpolarized fragmentation function. Analogously, in the third line of equation (9) we have
two parton distribution functions, 
f̂

g

T2/+(x, k⊥), which are related to the linear polarization
of a gluon inside a longitudinally polarized nucleon. Correspondingly the fourth line of
equation (8) refers to one quark transversely polarized along the x-axis inside a longitudinally
polarized nucleon and the other, 
f̂

q

sy/A
(x, k⊥), transversely polarized along the y-axis inside

an unpolarized nucleon—the latter is the Boer–Mulders function—coupled to the unpolarized
fragmentation function. Analogously, in the fourth line of equation (9) we have 
f̂

g

T2/+(x, k⊥)

and the ‘Boer–Mulders-like’ gluon function, 
f̂
g

T1/A
(x, k⊥), referring to a linearly polarized

gluon inside an unpolarized nucleon. For a more complete explanation of the physical meaning
of these functions see appendix B of [6]. Finally, the last line of equation (8) contains the
Collins fragmentation function, 
ND̂C/c↑(z, k⊥C), coupled to an unpolarized parton density
and a transversely polarized one. In the case of the gluon, in the last line of equation (9),
there appears a gluonic analogue of the Collins fragmentation function, 
ND̂C/T g

1
(z, k⊥C),

describing the fragmentation of a linearly polarized gluon into an unpolarized hadron.
Ignoring the underlined terms which vanish upon integration, we see that compared

to the standard collinear approach, we have extra contributions involving quarks polarized
transversely along their x-axis in a longitudinally polarized nucleon, appearing in
equations (8), (10) and contributions involving linearly polarized gluons inside a longitudinally
polarized nucleon, appearing in equations (9), (11). Note that the processes in equations (12)–
(15), initiated by quark–gluon elementary scattering, get contributions only from the usual
terms, which survive in the collinear case.

The demonstration of the vanishing upon angular integration of the underlined terms in
equations (8)–(15) requires a detailed study of the kinematics and of the relationships between
the angular integration variables appearing in k⊥a,k⊥b,k⊥C in equation (2) and the phase
variables ϕ1,2,3 and φH

C [6]. We have also numerically checked that this is indeed the case.
Note that a parity transformation implies ϕi → −ϕi (i = 1, 2, 3) and φH

C → −φH
C . Thus

the odd sin terms in equations (8)–(15) must vanish if parity is conserved.
Another simple, but interesting example of such a vanishing can be obtained by

considering, within the same formalism, the expression of the kernels for the longitudinal
single spin asymmetry AL, which we know must vanish in a parity conserving theory. The
kernels themselves are not zero, but under integration do vanish. This is another very stringent
test of the correctness of our formalism. For AL, for the partonic channel qaqb → qcqd , we

6
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have for the numerator of the longitudinal single spin asymmetry the following expression:

[�(+, 0) − �(−, 0)]qaqb→qcqd

= 
f̂ a
sx/+(xa, k⊥a)
f̂ b

sy/B
(xb, k⊥b)

(
2M̂

0
2M̂

0
3

)
sin(ϕ3 − ϕ2)D̂C/c(z, k⊥C)

−
f̂ a
sx/+(xa, k⊥a)f̂ b/B(xb, k⊥b) sin

(
ϕ1 − ϕ2 + φH

C

)
M̂

0
1M̂

0
2


ND̂C/c↑(z, k⊥C), (16)

and, again, all terms—being odd functions of ϕi and φH
C —vanish, as they should, upon angular

integration.

4. Phenomenology: ALL at RHIC

The longitudinal double spin asymmetry ALL for inclusive neutral pion and jet production
in proton–proton scattering at

√
s = 200 GeV has been measured at RHIC in various runs,

respectively by the PHENIX [17–19] and STAR [20, 21] Collaborations. The first published
PHENIX experimental data [17] showed results for ALL at mid rapidity compatible with
negative values. This was quite puzzling, since ALL is a positive quantity in the collinear
parton model [22], at least at low pT where it is dominated by gg → gg elementary scattering

processes, see equation (9) in which it can be shown that
∣∣M̂0

1

∣∣2 − ∣∣M̂0
2

∣∣2 − ∣∣M̂0
3

∣∣2
> 0. More

recent and precise data from both collaborations [18, 20] exclude the possibility of a large and
negative ALL: in two subsequent RHIC runs, Run 5 [21, 19] and Run 6 (results from Run 6
have only been presented as ‘preliminary’ [23, 24]), they confirm and reinforce the statement
that ALL is very small and compatible with zero over the whole pT range covered.

An earlier comparison of present RHIC data with collinear next-to-leading order (NLO)
QCD calculations of ALL [25] disfavoured large positive values for 
g, definitely excluding
scenarios where 
g is as large as the unpolarized gluon distribution function, g, at low scale.
Instead the data were in better agreement with the predictions obtained by assuming 
g = 0
or even 
g = −g at the initial scale [26]. A recent statistical analysis shows that the PHENIX
Run 5 data are compatible with both 
g = 0 and the ‘standard’ GRSV parametrization [27],
while it rules out the 
g = −g (at the initial scale) hypothesis [19]. A newest update of
this analysis, which includes the preliminary data from PHENIX Run 6, favours the 
g = 0
scenario over the standard GRSV [24]. (Note that in this section we have adopted the common,
short-hand notations 
f

q

sz/+ ≡ 
q and 
f
g

sz/+ ≡ 
g for the helicity distribution functions,
while fq/p ≡ q and fg/p ≡ g for the unpolarized distribution functions, for quarks and gluons
respectively.)

Our goal is to explore whether the new mechanisms permitted by the presence of partonic
intrinsic transverse momenta, obtained in a general and fully non-collinear kinematics, could
affect the above conclusions, which are based on the analysis of ALL in the collinear
configuration, i.e. taking into account only the terms proportional to 
q(x) and 
g(x).
Could the ‘new’ contributions shown in equations (8)–(11) turn the longitudinal double spin
asymmetry ALL into a very small (or even slightly negative) quantity without the need to
assume 
g to be zero or negative?

We have studied ALL at RHIC, for the PHENIX kinematics,
√

s = 200 GeV and
|η| < 0.35 (numerical calculations are performed at η = 0) and evaluated each separate
contribution to ALL, according to equations (8)–(15). Since we have no knowledge of the
parton densities 
f̂

q

sx/+ and 
f̂
g

T2/+ we maximized them in order to see whether, in principle,
they can have a significant effect on ALL. We thus used for them the corresponding unpolarized
parton densities and adjusted the signs so that all contributions add up coherently.

For the helicity distributions we have used the sets GRSV2000 [27] and LSS05 [28].
The unpolarized cross-section and the maximized contributions to the numerator of ALL have
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Figure 1. ALL for the process pp → π0X at
√

s = 200 GeV and η = 0, plotted as a function

of pT , calculated with different choices of
√

〈k2
⊥〉 ≡ k0 in the PDF/FFs, compared to PHENIX

data, Run 5 [19]. The solid line corresponds to the choice k0 = 0.01 GeV/c in both PDFs and
FFs. The dashed line corresponds to k0 = 0.8 GeV/c in PDF/FFs. The PDF sets are LSS05 [28]
and MRST01 [30], the FF set is KKP [31] and the factorization scale is Q = pT . Note that the
changes in ALL induced by varying the value of 〈k2

⊥〉 are much smaller than those obtained by
choosing different sets of distribution functions and/or factorization scales, see figure 3.

been calculated using the GRV98 set [29] and the MRST01 set [30] respectively. For the
fragmentation functions we have used the KKP set [31] and, for comparison, the Kretzer set
[32]. The transverse momentum dependence has been included by means of a factorized
Gaussian smearing, for all the parton distribution and fragmentation functions

f̂ (x, k⊥) = f (x)
e−k2

⊥/〈k2
⊥〉

π
〈
k2
⊥
〉 , (17)

D̂(z, k⊥C) = D(z)
e−k2

⊥C/〈k2
⊥C 〉

π
〈
k2
⊥C

〉 , (18)

with a constant and flavour independent parameter
√〈

k2
⊥
〉 ≡ k0, assumed to be the same for

all quark flavours and for gluons; we shall study the effect of changes in the value of k0.
Guided by our previous work, we compared the results obtained using three different values
for k0: k0 = 0.8 GeV/c from studies on the unpolarized pp scattering cross-sections and
single spin asymmetries [7], k0 = 0.5 GeV/c from fitting the Cahn effect in SIDIS [16], and
k0 = 0.01 GeV/c to recover the collinear configuration. For the fragmentation functions, we
take

〈
k2
⊥C

〉 = 〈
k2
⊥
〉

everywhere. We have checked that variations in
〈
k2
⊥C

〉
induce negligible

changes in ALL.
It turns out that the new non-collinear soft contributions containing the PDFs


f̂
q

sx/+(x, k⊥) and 
f̂
g

T2/+(x, k⊥), even if maximized, are totally negligible. In fact, in
the RHIC kinematical regime considered their maximized contribution does not exceed, in

8
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Figure 2. The invariant unpolarized cross-section for the process pp → π0X at
√

s = 200 GeV
and η = 0, plotted as a function of pT , calculated with different FF sets and factorization scales.
The thick, solid and dashed lines correspond to the choice of the KKP FF set [31], at the factorization
scale Q = pT and Q = pT /2 respectively. The thin, solid and dashed lines correspond to the
choice of the Kretzer FF set [32], at the factorization scale Q = pT and Q = pT /2 respectively.

The PDF set is GRV98 [29].
√

〈k2
⊥〉 ≡ k0 = 0.5 GeV/c for both PDFs and FFs. The experimental

data are from the PHENIX collaboration at RHIC, Run 5 [19].

the lowest pT range, few percent of the usual terms (already present in the collinear case),
becoming much smaller at larger pT . We have checked that this result remains true also at
lower energies. Let us remark that a similar situation holds also for the unpolarized cross-
section [7]. Although the two additional terms (with respect to that already present in the
collinear case) are of course different in this case [6], involving respectively the convolution of
two Boer–Mulders functions with an unpolarized fragmentation function and the convolution
of a Boer–Mulders function and an unpolarized distribution with the Collins fragmentation
function, their total maximized contribution reaches at most 1% of the usual term, being even
smaller on the average.

Therefore, we conclude that there is no way for the extra contributions induced by the
presence of partonic intrinsic transverse momenta to alter the size of ALL. We have checked
that this conclusion is not sensitive to the choice of the mean intrinsic transverse momentum
k0. In fact, figure 1 shows that in general ALL depends very little on the different choices of k0;
in particular, ALL decreases when increasing the width of the gaussian, but compared to data
this variation is quite negligible. This result can be understood because the k⊥ dependence is
given by the same gaussian for all distribution and fragmentation functions and at mid rapidity
the M̂ amplitudes depend very mildly on k⊥.

It is interesting to note that the corresponding unpolarized cross-section is also almost
independent of the value assigned to the average intrinsic transverse momentum k0, while it
turns out to be more sensitive to the choice of the factorization scale and of the fragmentation
function set, as we show in figure 2, consistently with the NLO collinear pQCD calculations.
The comparison with PHENIX data [19] is well satisfactory. The solid lines correspond to the

9
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Figure 3. ALL for the process pp → π0X at
√

s = 200 GeV and η = 0, plotted as a function of pT ,
calculated with different PDF sets and factorization scales. The solid and dashed lines correspond
to the choice of PDFs GRSV2000/GRV98, at the factorization scale Q = pT /2 and Q = pT

respectively. The dotted and dash-dotted lines correspond the choice of PDFs LSS05/MRST01,

at the factorization scale Q = pT /2 and Q = pT respectively. The FF set is KKP.
√

〈k2
⊥〉 =

0.01 GeV/c for both PDF/FF. The experimental data are from the PHENIX collaboration at RHIC,
Run 5 [19].

factorization scale Q = pT , the dashed lines to Q = pT /2, using the GRV98 [29] PDF set
and the KKP [31] (thick lines) or the Kretzer [32] (thin lines) FF sets. Results for the STAR
and BRAHMS kinematical regimes at

√
s = 200 GeV can be found in [15] and show similar

agreement with data when adopting the same average k⊥’s as in [16].
Contrary to what happens for the k⊥ dependence, ALL is sensitive to the choice of the PDF

set and of the scale. In figure 3 we show ALL calculated in an almost collinear configuration,√〈
k2
⊥
〉 = 0.01 GeV/c, and for two choices of scale, Q = pT and Q = pT /2. Using the

LSS05/MRST01 PDFs, the dotted line corresponds to Q = pT /2 and the dash-dotted line
to Q = pT . Using the GRSV2000/GRV98 PDFs, the solid line corresponds to Q = pT /2,
and the dashed line to Q = pT . As can be seen, the variations induced by different choices
of PDF sets and scale are quite large, larger than those produced by changes in the k0 value;
nevertheless, all these curves are compatible with present experimental data (we have checked
that these same conclusions hold also when adopting Q = 2pT ). However, very precise data
on ALL in the future might be able to distinguish between various sets of PDFs. Data collected
at different energies [23] will also be very useful to cover presently unexplored regions of the
Bjorken x variable.

Concerning the dependence of ALL on the set of fragmentation functions, we have
checked, adopting again the KKP and Kretzer sets, that this is almost negligible over the
whole pT range considered. Only at the largest pT values, where ALL data show large
experimental errors, there is some residual dependence. This result can be understood,
since both the numerator and the denominator of ALL contain the unpolarized FF.

10
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5. Conclusions

We have examined, at leading order in perturbative QCD, the effect on the longitudinal double
spin asymmetry ALL of allowing the partons to have non-zero intrinsic transverse momentum,
and of including in ALL the contributions arising from the new soft functions that play a
crucial role in transverse single spin asymmetries. The study was carried out in the hope
that such effects might negate the conclusion that the very small measured values of ALL

automatically imply that the polarized gluon density is very small. Our analysis indicates that
the contribution from these effects is negligible and we are forced, at the present stage, to
accept the conclusion that the polarized gluon density is much too small to explain the ‘spin
crisis in the parton model’ [10].
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