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Important question: how are the momentum and

angular momentum of a nucleon built up from the

momenta and angular momenta of its constituents?
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Background

• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• Ji= Bellinfante vs Chen et al (Chen , Lu, Sun, Wang

and Goldman ) vs Wakamatsu vs Canonical Ji stresses:

gauge invariant operators; covariance; local operators

Chen at al: don’t like Ji; don’t like any previous theory;

claim even in QED the traditional, decades-old identi-

fication of electron and photon angular momentum is

incorrect

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞
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Actually two kinds of problem:

•Any interacting particles

•Specific to gauge theories

Since controversy arose in QCD, will first discuss gauge

aspect

Since problem already arises in QED, will illustrate via

QED
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Actually two kinds of problem:

•Any interacting particles
•Specific to gauge theories

Since controversy arose in QCD, will first discuss gauge
aspect
Since problem already arises in QED, will illustrate via
QED

There are four versions of J

Canonical (can), Bellinfante (bel)= Ji, Chen at al
(chen), Wakamatsu (wak)
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Jcan =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−i∇)]ψ

+
∫
d3x (E ×A) +

∫
d3xEi[x×∇Ai]

= Scan(el) + Lcan(el) + Scan(γ) + Lcan(γ)

Jbel =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−iD)]ψ

+
∫
d3xx× (E ×B)

= Sbel(el) + Lbel(el) + Jbel(γ)

Note: Jbel(γ) NOT split into spin and orbital parts.
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Jchen =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−iDpure)]ψ

+
∫
d3x (E ×Aphys) +

∫
d3xEi[x×∇Aiphys]

= Sch(el) + Lch(el) + Sch(γ) + Lch(γ)

Jwak =
∫
d3xψ†γγ5ψ+

∫
d3xψ†[x× (−iD)]ψ

+
∫
d3x (E ×Aphys)

+
[∫

d3xEi(x×∇Aiphys) +
∫
d3xψ†(x× eAphys)ψ

]
= Swak(el) + Lwak(el) + Swak(γ) + Lwak(γ)

In this version the very last term
∫
d3xψ†(x× eAphys)ψ

has been shifted from Chen et al’s electron orbital term

to the photon’s orbital angular momentum.
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As usual Dµ = ∂µ − ieAµ

Chen et al: A = Aphys+Apure

∇.Aphys = 0 ∇×Apure = 0

Corresponds exactly to what is usually called the trans-

verse A⊥ and longitudinal A∥ parts respectively
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Two important points:

• To go from one form to another need to throw away

spatial integral of a divergence.

Is this OK?

• Aphys is not a local field:

Aphys = A−
1

∇2
∇(∇ ·A)
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Which is “correct”?

What is the criterion for deciding?
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Similar differences in definitions of linear momentum.

Asymptotically what fraction of total momentum is car-

ried by gluons?

Ji: 16
16+3nf

≃ 1/2 for nf = 5

Chen et al: 8
8+6nf

≃ 1/5 for nf = 5 !
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My general criticism

Not enough attention paid to difference between

CLASSICAL and QUANTUM field theory.

Examples

•“Measurable operators must be gauge invariant”

No: physical matrix elements of measurable operators

must be gauge invariant

•“Aµ should transform as a 4-vector”

Beware quantization conditions! Bellinfante, as used,

does not correspond to covariant quantization.
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•“OK to use non-local field operators”

Not OK if they are dynamical variables. In Coulomb

gauge A0 is not an independent dynamical variable.

•“If E and F are interacting particles, definition of e.g.

J(E) should satisfy [J i(E), Jj(E)] = i ϵijkJk(E)”

Impossible. Cannot be checked!
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•“OK to use non-local field operators”

Not OK if they are dynamical variables. In Coulomb

gauge A0 is not an independent dynamical variable.

•“If E and F are interacting particles, definition of e.g.

J(E) should satisfy [J i(E), Jj(E)] = i ϵijkJk(E)”

Impossible. Cannot be checked!

Will only have time to discuss some aspects of these

problems

25



Many of the problems involved also apply to linear

momentum.

Also many apply in QED

Much simpler, therefore illustrate them using linear

momentum in QED.
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The momentum operator in gauge-invariant theories

Theory invariant under translations; Noether construc-

tion, from classical Lagrangian; canonical e-m density

t
µν
can(x). A conserved density, generally not symmetric

under µ↔ ν.

∂µt
µν
can(x) = 0

Canonical total linear momentum operator P jC

P
j
C =

∫
d3x t0jcan(x)

independent of time.
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Canonical momentum operator as generator of trans-

lations

Classically : P jcan generates spatial translations.

Quantum theory: check correct commutation relations

with fields i.e. for any field ϕ(x)

i [P jcan, ϕ(x)] = ∂j ϕ(x)

Interacting theory: cannot calculate arbitrary commu-

tation relation between the fields.

But Equal Time Commutators (ETC) fixed in quantiz-

ing theory. Thus can check because P
j
can independent

of time. Take time variable of fields in P
j
C to coincide

with time variable in ϕ(x) ≡ ϕ(t,x).
Crucial when discussing division of total momentum

into contributions from different fields .
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with fields i.e. for any field ϕ(x)
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of time. Take time variable of fields in P
j
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with time variable in ϕ(x) ≡ ϕ(t,x).
Will be crucial when discussing division of total mo-

mentum into contributions from different fields .
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The Bellinfante e-m density

Construct from t
µν
can(x) and the Lagrangian, the con-

served, symmetric, Bellinfante density t
µν
bel(x), which is

gauge invariant.

Differs from t
µν
can(x) by a divergence term:

t
µ ν
bel (x) = tµ νcan(x) +

1

2
∂ρ[H

ρµν −Hµρν −Hνρν]

where Hρµν = −Hρνµ and is a local operator.
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Then P
j
bel defined by

P
j
bel ≡

∫
d3x t

0j
bel(x)

differs from P
j
C by the integral of a spatial divergence

of a local operator.

Usually stated that since the fields must vanish at in-

finity, such a contribution can be neglected, leading to

the equality

P
j
bel = P

j
C

For a classical c-number field it is meaningful to argue

that the field vanishes at infinity. Much less obvious

what this means for a quantum operator.
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Is it safe to throw away integral of divergence ??

It had better be, otherwise a catastrophe

Would find that P j does not commute with itself

!
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Non-gauge invariance of the QED momentum operator

Theorem : Consider a theory which is invariant under

local c-number gauge transformations. Let Pµ be the

total momentum operator, defined as the generator of

space-time translations. Then Pµ cannot be a gauge

invariant operator.

Proof: The theory is invariant under the infinitesmal

gauge transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x)

where Λ(x) is a c-number field satisfying �Λ(x) = 0

and vanishing at infinity.

Let F be the generator of gauge transformations, so

that

i[F,Aµ(x)] = ∂µΛ(x) (9)
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Consider the Jacobi identity

[F, [Pµ, Aν]] + [Aν, [F, Pµ]] + [Pµ, [Aν, F ]] = 0

Now [Pµ, [Aν, F ]] = 0 since [Aν, F ] is a c-number. Thus

[[F, Pµ], Aν] = [F, [Pµ, Aν]] (α)

Since Pµ are generators of translations i[Pµ, Aν] = ∂µAν

Thus the RHS of Eq. (α) becomes

[F, [Pµ, Aν]] = −i∂µ[F,Aν(x)] = −∂µ∂νΛ(x) ̸= 0

Hence from Eq. (α)

[[F, Pµ], Aν] ̸= 0

so that Pµ is not gauge invariant.
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However, lack of gauge invariance of no physical
significance.

Example, covariantly quantized QED: show that the
matrix element of P jcan between any normalizable physi-
cal states, unaffected by gauge changes in the operator.
Lautrup-Nakanishi Lagrangian density: combination of
the Classical Lagrangian (Clas) and a Gauge Fixing part
(Gf)

L = LClas+ LGf
where

LClas = −
1

4
FµνF

µν +
1

2
[ψ̄(i ̸∂ −m+ e ̸A)ψ+h.c.]

and

LGf = B(x) ∂µA
µ(x) +

a

2
B2(x)
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B(x): gauge-fixing field. Parameter a determines struc-

ture of photon propagator; irrelevant for present discus-

sion .

Theory invariant under c-number infinitesmal gauge trans-

formation

Aµ → Aµ+ ∂µΛ(x) ψ → ψ+ ieΛψ

while B(x) is unaffected by gauge transformations.

GeneratorF =
∫
d3x [(∂0B)Λ−B∂0Λ+ ∂j(F

0jΛ)].

Physical states |Ψ⟩ of the theory defined to satisfy

B(+)(x)|Ψ⟩ = 0

B(x) = B(+)(x) +B(−)(x) B(−)(x) = [B(+)]†(x)
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Thus for arbitrary physical states

⟨Ψ′|B(x)|Ψ⟩ = 0 (γ)

Theorem Physical matrix elements of P j are invariant

under gauge transformations.

Proof Consider the general physical matrix element

⟨Ψ′|P j|Ψ⟩ =
∫
d3p d3p′ ϕ(p)ϕ′(p′) ⟨p′|P j|p⟩

Change induced in ⟨p′|P j|p⟩ is ⟨p′|i[F, P j]|p⟩.
First two terms in F , Eq. (β), give zero because of

Eq. (γ) and the fact that Λ is a c-number.
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Change induced by the divergence term is∫
d3x⟨p′|i[∂k(F0kΛ), P j]|p⟩ = (p′ − p)j[(p0 − p′0) ⟨p′|Ak(0)|p⟩

− (p− p′)k⟨p′|A0(0)|p⟩]

×
∫
d3x∂k[Λ(x) e

i(p−p′)�x]

which vanishes after the spatial integration because

Λ(x) vanishes at infinity.

Hence ⟨Ψ′|P j|Ψ⟩ is indeed invariant under gauge trans-

formations.
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The matrix elements of the angular momentum

operators

A subtle problem: many incorrect statements in the

literature

We consider a nucleon with 4-momentum pµ and covari-

ant spin vector S corresponding to some specification

of its spin state e.g. helicity, transversity or spin along

the Z-axis i.e. a nucleon in state |p,S⟩.

We require an expression for the expectation value of

the angular momentum in this state i.e. for ⟨p,S|J |p,S⟩
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i.e. we require an expression in terms of p and S. This

can then be used to relate the expectation value of J

for the nucleon to the angular momentum carried by its

constituents.
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The traditional approach:

In every field theory there is an expression for the angu-

lar momentum density operator. The angular momen-

tum operator J is then an integral over all space of this

density.

Typically the angular momentum density involves the

energy-momentum tensor density tµν(x) in the form e.g.

Jz = J3 =
∫
dV [xt02(x)− yt01(x)]
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Consider the expectation value of the first term in the

expression for the angular momentum tensor:

⟨p,S|
∫
d3xx1t02(x)|p,S⟩ =

∫
d3xx1⟨p,S|t02(x)|p,S⟩ (1)

=
∫
d3xx1⟨p,S|eiP.xt02(0)e−iP.x|p,S⟩
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Now the nucleon is in an eigenstate of momentum, so

P acting on it just becomes p. The numbers eip.xe−ip.x

cancel out and we are left with:

∫
dV x⟨p,S|t02(0)|p,S⟩

The matrix element is independent of x so we are faced

with
∫
dV x =∞ ? or = 0 ? Totally ambiguous!

The problem is an old one: In ordinary QM plane wave

states give infinities

The solution is an old one: Build a wave packet, a

superposition of physical plane wave states
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Now the nucleon is in an eigenstate of momentum, so
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This involves studying non-forward matrix elements

and then taking the forward limit .

So we need expressions for matrix elements like

⟨ p+∆/2;S | tµν(0) | p−∆/2;S ⟩

Points which are handled incorrectly in the literature:

1) For a PHYSICAL wave packet the physical require-

ment on the covariant polarization vector, namely S ·
(p±∆/2) = 0 implies S ·∆ = 0.
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2)

⟨ p+∆/2;S | tµν(0) | p−∆/2;S ⟩

does NOT transform as a tensor!!

To see this think of electromagnetic form factors:

⟨p′,S|jµem|p,S⟩

We cannot say: this transforms like a 4-vector, and
therefore we can express it terms of vectors built from
p, p′,S

We have to first factor out the Dirac spinors

ū(p′)[γµ F1 + iσµνqν
2m F2]u(p)
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Relating the matrix elements of J to the matrix

elements of tµν, using wave packets is tortuous. We

shall come back to that later.
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The problem of defining separate quark and

gluon momenta

Two separate issues:(1) general problem of how to de-

fine the separate momenta for a system of interacting

particles, (2) more specific to gauge theories and in-

cludes the issue of splitting the angular momentum of

a gauge particle into a spin and orbital part.
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(1) The general problem: System of interacting par-

ticles E and F . Split the total momentum into two

pieces

P j = P
j
E + P

j
F

which we associate with the momentum carried by the

individual particles E and F respectively.

Note that Eq. (2) is totally misleading, and should be

written

P j = P
j
E(t) + P

j
F (t)

to reflect the fact that the particles exchange momen-

tum as a result of their interaction.
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pieces

P j = P
j
E + P

j
F
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individual particles E and F respectively.

Note that this expression is totally misleading, and should
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P j = P
j
E(t) + P

j
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to reflect the fact that the particles exchange momen-

tum as a result of their interaction.
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Key question is: what should be the criterion for identi-

fying PE,F as the momentum associated with particles

E,F respectively?

The seductively obvious answer would be to demand

that

i[P jE, ϕ
E(x)] = ∂jϕE(x) (2)

and similarly for F

But there is no way we can check this, since P
j
E(t)

depends on t and, without solving the entire theory, we

are only able to compute equal time commutators .
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We suggest, therefore, that the minimal requirement

for identifying an operator P jE with the momentum car-

ried by E , is to demand that at equal times

i[P jE(t) , ϕ
E(t,x)] = ∂jϕE(t,x).
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Analogously, for an angular momentum operator M ij
E

( J i = ϵijkMjk) we suggest that at equal times

i[M ij
E (t) , ϕEr (t,x)] = (xi∂j−xj∂i)ϕEr (t,x)+(Σij) sr ϕ

E
s (t,x)

where r and s are spinor or Lorentz labels and (Σij) sr
is the relevant spin operator.
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Implications

For the total momentum there is no essential difference

between Pcan and Pbel since their integrands differ by the

spatial divergence of a local operator.

But, if we split Pcan into Pcan,E + Pcan, F and Pbel into

Pbel, E+Pbel, F , then the integrands of Pcan,E and Pbel, E
do not differ by a spatial divergence

Hence Pcan,E and Pbel, E do not generate the same

transformation on ϕE(x), and similarly for F .
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Since, by construction, Pcan,E and Pcan, F do gener-

ate the correct transformations on ϕE(x) and ϕF (x)

respectively, we conclude that with the above minimal

requirement we are forced to associate the momentum

and angular momentum of E and F with the canonical

version of the relevant operators.

This disagrees with Ji, Chen et al and Wakamatsu, but

agrees with Jaffe and Manohar [?].
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An apparent conundrum

We: the canonical versions of the momentum and an-
gular momentum operators should be regarded as phys-
ically meaningful.

Nucleon moving fast along the OZ axis: xBq(xB) is the
fraction of the “ + ” component of the quark momen-
tum.

But this corresponds, via the OPE, to the matrix ele-
ment of the Bellinfante version of the momentum op-
erators!

In fact, no contradiction in the special case of the lon-
gitudinal components of the momentum and angular
momentum.
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gular momentum operators should be regarded as phys-
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Nucleon moving fast along the OZ axis: xB q(xB) is the
fraction of the “ + ” component of the quark momen-
tum.

But this corresponds, via the OPE, to the matrix ele-
ment of the Bellinfante version of the momentum op-
erators!

In fact, no contradiction in the special case of the
longitudinal components of the momentum and angular
momentum.
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¿From gauge invariant expression for the unpolarized

quark number density q(x) (including Wilson line oper-

ator) one finds∫ 1

0
dxx [q(x)+q̄(x) ] =

i

4(P+)2
⟨P | ψ̄(0) γ+

←→
D+ψ(0) |P ⟩

with
←→
D+ =

−→
∂ + −

←−
∂ + − 2igA+(0).

But the quark part of tµνbel(qG) is given by

t
µν
q, bel(z) =

i

4
[ψ̄(z)γµ

←→
D (z)νψ(z) + (µ↔ ν)]− gµνLq

where Lq is the quark part of LqG .
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Since g++ = 0

t++
q, bel(0) =

i

2
{ψ̄(0) γ+

←→
D+ψ(0)}

so that∫ 1

0
dx x [ q(x) + q̄(x) ] =

1

2(P+)2
⟨P | t++

q, bel(0) |P ⟩.

Consider the physical interpretation of the LHS in the

parton model. The parton model is not synonymous

with QCD. It is a picture of QCD in the gauge A+ = 0

and it is in this gauge, and in an infinite momentum

frame that x can be interpreted as the momentum frac-

tion carried by a quark in the nucleon.
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But since A+ = 0 we have

←→
D+ =

←→
∂ + (gaugeA+ = 0)

Thus for these particular components of the tensors

there is no difference between the canonical and Bellinfante

versions

t++
q, can(0) = t++

q, bel(0) (gaugeA+ = 0).

Hence the fraction of longitudinal momentum carried

by the quarks in an infinite momentum frame is given

equally well by either the canonical or Belllinfante ver-

sions of the energy momentum tensor density.
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The Ji sum rule

Connects generalized parton distributions H and E, mea-

surable in deeply virtual Compton scattering, with Jbel,z(quarks)∫ 1

−1
dxx[H(x,0,0) + E(x,0,0)] = 2 Jbel,z(quark)

But this Jz is the Bellinfante version! Does it mean

that the RHS is not our interpretation of the angular

momentum?
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Need to know connection between matrix elements of

tµν and matrix elements of J. To 1st order in

∆ = P ′ − P

⟨P ′, S′ | tµνq, bel(0) |P, S ⟩ = [ū′γµu P̄ ν + (µ↔ ν)]Dq, bel(∆2)/2

−
[
i∆ρ

2M
ū′σµρu P̄ ν + (µ↔ ν)

]
[Dq, bel(∆2)/2− Sq, bel(∆2)]

+
ū′u

2M

[
M2Rq, bel(∆2)gµν

]
where

u ≡ u(P, S) u′ ≡ u(P ′, S′).
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⟨ψp,s |M ij
bel |ψp,s ⟩ =

1

M

{ Dbel
2(p0 +M)

(pj ϵ0iαβ − pi ϵ0jαβ)

+ Sbel ϵijαβ
}
Sα pβ (4)

The Dbel term vanishes in the M12
bel if p is along OZ.

Thus, for a longitudinally polarized nucleon moving at

high speed in the Z direction Sbel measures the Z-

component of J .
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So, Ji sum rule becomes∫ 1

−1
dxxH(x,0,0) +

∫ 1

−1
dxxE(x,0,0) = 2 Sq, bel.

Parton model interpretation: choose gauge A+ = 0.

Recall t++
q, can(0) = t++

q, bel(0), so that

Sq, bel = Sq, can.

Thus Jbel,z(quarks)=Jcan,z(quarks)
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So, Ji sum rule becomes∫ 1

−1
dxxH(x,0,0) +

∫ 1

−1
dxxE(x,0,0) = 2 Sq, bel.

Parton model interpretation: choose gauge A+ = 0.

Recall t++
q, can(0) = t++

q, bel(0), so that

Sq, bel = Sq, can.

Thus Jbel,z(quarks)=Jcan,z(quarks) and Ji sum rule is

OK.
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The spin of the photon and the gluon

Emphasized for more than half a century: the canonical
photon (and gluon) spin term is not gauge invariant.

This we regard as an inevitable feature of a gauge the-
ory and it has not been the cause of any problems in
the description and calculation of physical processes in-
volving photons, and more recently, gluons.

But clearly this worries Chen et al, Ji and Wakamatsu!

It shouldn’t, since projection of the spin terms onto the
direction of the photon’s or gluon’s momentum i.e. the
photon (and gluon) helicity, is gauge invariant and it is
this quantity which can be measured in deep inelastic
scattering on atoms or nucleons respectively.
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Summary

• There is no need to insist that the operators ap-

pearing in expressions for the momentum and an-

gular momentum of the constituents of an interact-

ing system should be gauge invariant, provided that

the physical matrix elements of these operators are

gauge invariant.
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• We suggest that the minimal requirement for iden-

tifying an operator P jE with the momentum carried

by E , is to demand that at equal times

i[P jE(t) , ϕ
E(t,x)] = ∂jϕE(t,x).

Analogously, for an angular momentum operator

M
ij
E ( J i = ϵijkMjk) we suggest that at equal times

i[M ij
E (t) , ϕEr (t,x)] = (xi∂j−xj∂i)ϕEr (t,x)+(Σij) sr ϕ

E
s (t,x)

where r and s are spinor or Lorentz labels and

(Σij) sr is the relevant spin operator.
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• The expressions given by Chen et al and Waka-

matsu for the momentum and angular momentum

operators of quarks and gluons are somewhat arbi-

trary and do not satisfy the fundamental require-

ment that these operators should generate these

infinitesmal symmetry transformations.

• Demanding that these conditions be satisfied leads

to the conclusion that the canonical expressions for

the momentum and angular momentum operators

are the correct and physically meaningful ones.
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• It is then an inescapable fact that the photon and

gluon angular momentum operators cannot, in gen-

eral, be split in a gauge-invariant way into a spin and

orbital part. However, the projection of the photon

and gluon spin onto their direction of motion i.e.

their helicity, is gauge-invariant and is measured in

deep inelastic scattering on atoms or nucleons re-

spectively.
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• Although Ji’s expressions for the quark and gluon

angular momenta are the Bellinfante versions, it

turns out that the expectation value of the Bellinfante

operator Jz, bel(quark) used by Ji for the longitudinal

component of the quark angular momentum, which

has the nice property that it can be measured in

deeply-virtual Compton scattering reactions, does

indeed represent the Z-component of the angular

momentum carried by the quarks in a nucleon mov-

ing in the Z direction.
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