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Transverse angular momentum: new results
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Summary. — We describe briefly the two methods of deriving angular momentum
sum rules, the quick way using the rotational properties of states and the cumber-
some way utilizing the energy momentum tensor. Though cumbersome, the latter
approach allows us to derive a new relation between the expectation value of the
transverse component of the Bellinfante version of the angular momentum ⟨ Jbel

T ⟩
of a quark in a transversely polarized nucleon in terms of the Generalized Parton
Distributions H and E, namely

⟨ Jbel
T (quark) ⟩ = 1

2M

[
P0

∫ 1

−1

dxxEq(x, 0, 0) +M

∫ 1

−1

dxxHq(x, 0, 0)

]
where P0 is the energy of the nucleon and where “quark” implies the sum of quark
and antiquark of a given flavor. A similar relation holds for gluons. The result is
remarkably similar to Ji’s relation for the case of longitudinal polarization.
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1. – Derivation of a sum rule

There are two steps:
1) Derive an expression for

(1) ⟨Nucleon;P, S |J |Nucleon;P, S ⟩

in terms of P and S
2) Express |Nucleon;P, S ⟩ as a Fock expansion in terms of the constituents of the nucleon.

1
.
1. The super-quick approach. – We know what a rotation does to a state, so we

know matrix elements of R. But, e.g.

(2) Rz(β) = e−iβJz
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so that we get the matrix element of Jz using

(3) Jz = i
d

dβ
Rz(β)

∣∣
β=0

1
.
2. The approach via the energy momentum tensor . – Typically the angular momen-

tum density involves the Bellinfante form of the energy-momentum tensor density tµνbel(x)
in the form e.g.

(4) Jz = J3 =

∫
dV [xt02bel(x)− yt01bel(x)]

The factors x, y cause trouble. One ends up with things like
∫
dV x⟨P, S|t02bel(0)|P, S⟩

The matrix element is independent of x so we are faced with
∫
dV x = ∞ ? or = 0 ?

Totally ambiguous!
The problem is an old one: In ordinary QM plane wave states give infinities.The

solution is an old one: Build a wave packet, a superposition of physical plane wave
states...... but.... it is a long, complicated calculation. Both approaches give the same
result for the nucleon’s angular momentum

(5) ⟨Nucleon;P, S |J |Nucleon;P, S ⟩ = 1

2
s+ delta function

where s is the rest frame spin vector.
A KEY POINT: This result is independent of whether s is longitudinal or transverse.
Although painful, the traditional approach is fruitful, because it connects matrix

elements of J with matrix elements of the energy momentum tensor tµν .
The most general form of the matrix elements of tµνbel, say for quarks, is ( similar for

gluons)

⟨P ′, S′ | tµνbel(quark; 0) |P, S ⟩ = [ū′γµu P̄ ν + (µ ↔ ν)]Dq(∆
2)/2

+

[
i∆ρ

4M
ū′σµρu P̄ ν + (µ ↔ ν)

]
[2Sq(∆2)− Dq(∆

2)]

+
ū′u

2M

[
1

2
[Gq(∆

2)−Hq(∆
2)](∆µ∆ν −∆2gµν) +M2Rq(∆

2)gµν
]

(6)

where D, S, G, H are scalar form factors, and

(7) u ≡ u(P, S) u′ ≡ u(P ′, S′) ∆ = P ′ − P.

2. – Connection with Generalized Parton Distributions

Comparing with the definition of GPDs [1] one finds

(8)

∫ 1

−1

dxxHq(x, 0, 0) = Dq = momentum fraction carried by quarks
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Further one sees that

(9)

∫ 1

−1

dxxEq(x, 0, 0) = (2Sq − Dq).

From eqs. (8, 9) one has that

(10)

∫ 1

−1

dxxHq(x, 0, 0) +

∫ 1

−1

dxxEq(x, 0, 0) = 2Sq.

3. – Connection with angular momentum: old and new results

We now show how the expectation values of J are related to the GPDs.

3
.
1. Longitudinally polarized nucleon. – For the case of a longitudinally polarized

nucleon moving in the z-direction Bakker, Leader and Trueman (BLT) [2] proved that S
measures the expectation value of the z-component of J . Hence eq. (10) can be written

(11)
1

2

∫ 1

−1

dxx[Hq(x, 0, 0) + Eq(x, 0, 0)] = ⟨ Jbel
z (quark) ⟩

which is the relation first derived by Ji [3].

Now as mentioned above
∫ 1

−1
dxxHq(x, 0, 0) measures the fraction of the nucleon’s mo-

mentum carried by quarks and antiquarks of a given flavour, so that adding the gluon
contribution(1)

(12)
∑

flavours

∫ 1

−1

dxxHq(x, 0, 0) +

∫ 1

0

dxxHG(x, 0, 0) = 1.

Hence, summing eq. (11) over flavors and adding the analogous equation for gluons, one
obtains

1

2
+

∑
flavors

∫ 1

−1

dxxEq(x, 0, 0) +

∫ 1

0

dxxEG(x, 0, 0) =
∑

flavours

⟨Jbel
z (quark) ⟩+ ⟨Jbel

z (gluon) ⟩

=
1

2
(13)

so that

(14)
∑

flavors

∫ 1

−1

dxxEq(x, 0, 0) +

∫ 1

0

dxxEG(x, 0, 0) = 0.

This fundamental sum rule has wide ramifications and can be shown to correspond to
the vanishing of the nucleon’s anomalous gravitomagnetic moment.

(1) For gluons the integrals run from 0 to 1.
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3
.
2. Transversely polarized nucleon. – For the case of a transversely polarized nucleon,

moving along the positive z-axis, it follows from BLT that

(15) ⟨Jbel
T (quark) ⟩ = 1

2M
[(P0 (2Sq − Dq) +M Dq]

Substituting eqs. (8, 9) we obtain the new result

(16) ⟨ Jbel
T (quark) ⟩ = 1

2M

[
P0

∫ 1

−1

dxxEq(x, 0, 0) +M

∫ 1

−1

dxxHq(x, 0, 0)

]
where P0 is the energy of the nucleon.
The factor P0 may seem unintuitive. However if we go the rest frame eq. (16) reduces
to the Ji result eq. (11), as it should, since in the rest frame there is no distinction
between x and z directions. Moreover, if one calculates the orbital angular momentum
in a simple classical model of a quark rotating about the center of the nucleon at rest,
and then boosts the system one finds that the transverse angular momentum grows like
P0. Finally, if one sums eq. (16) over flavors and adds the analogous gluon equation, one
finds that the term proportional to P0 disappears as a consequence of eq. (14), and using
eq. (12), one obtains the correct result

(17)
∑

flavors

⟨ Jbel
T (quark) ⟩+ ⟨ Jbel

T (gluon) ⟩ = 1

2
.

The relation eq. (16) can be used to test model results and, possibly, lattice calculations.

Now BLT derived a sum rule for the angular momentum of a transversely polarized
nucleon, namely

(18)
1

2
=

1

2

∑
flavours

∫
dx [∆T q(x) + ∆T q̄(x)] +

∑
q, q̄, G

⟨LT ⟩

where ∆T q(x) ≡ h1(x) is the quark transversity distribution. Note that here there is
a sum over quark and antiquark transversities, so this quantity is not the expectation
value of a local operator and is not related to the nucleon’s tensor charge.

In this context it is important to realize that the quark part of eq. (18) i.e.

(19)
1

2

∑
flavours

∫
dx [∆T q(x) + ∆T q̄(x)] +

∑
q, q̄

⟨LT ⟩

cannot be identified with ⟨Jbel
T (quark) ⟩ in eq. (16). The reason is the following. While

for the total angular momentum there is no difference between Bellinfante and canonical
angular momentum, i.e.

(20) ⟨ Jbel
T (total) ⟩ = ⟨Jcan

T (total) ⟩
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this is not true for the separate quark and gluon pieces, i.e.

(21) ⟨Jbel
T (quark) ⟩ ̸= ⟨Jcan

T (quark) ⟩

and in deriving eq. (18) BLT used the property that J is the generator of rotations. As
explained in detail in [4] it is the canonical versions of the operators, Jcan, which are the
generators of rotations. Thus the expression in eq. (19) corresponds to ⟨Jcan

T (quark) ⟩
and should not be confused with ⟨Jbel

T (quark) ⟩.
In summary I have derived a rigorous relation between the expectation value of the

Bellinfante version of the transverse angular momentum carried by quarks in a trans-
versely polarized nucleon and the generalized parton distributions H and E, which is
closely analogous to Ji’s relation for the longitudinal component of the quark angular
momentum in a longitudinally polarized nucleon. Neither relation is a genuine sum rule,
but both offer interesting possibilities for testing models and lattice calculations.
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