Higgs Boson Searches at the Tevatron

Harald Fox Department of Physics <u>h.fox@lancaster.ac.uk</u>

Contents

Tevatron, **DØ** and CDF **Higgs production** Search for heavy Higgs $H \rightarrow WW \rightarrow II_{VV}$ Search for light Higgs $WH \rightarrow lvb\bar{b}$ $ZH \rightarrow vvb\bar{b}$ $ZH \rightarrow IIb\bar{D}$ Outlook **Conclusion**

The Standard Model

Sermilab 95-759

 W^{-}

The Higgs Mechanism

 The Higgs field acquires a vacuum expectation value

$$v = \sqrt{\frac{-\mu^2}{2\lambda}} = 246 \text{GeV}$$

 Particles interact with the Higgs field and acquire an effective mass

$$m_{\gamma} = 0$$

$$m_{W} = \frac{1}{2}vg$$

$$m_{Z} = \frac{1}{2}vg\frac{1}{\cos\theta_{W}}$$

$$m_{H} = \sqrt{2\lambda v^{2}}$$

$$m_{f} = \frac{1}{\sqrt{2}}g_{f}v$$

- The mass relation between
 γ, W and Z bosons is
 determined
- Couplings and branching ratios are determined.

Constraints on the Higgs Mass

Excluded by LEP

Two General Purpose Detectors: CDFDØElectron acceptance $|\eta| < 2.0 |\eta| < 3.0$ Muon acceptance $|\eta| < 1.5 |\eta| < 2.0$ Silicon Precision tracking $|\eta| < 2.0 |\eta| < 3.0$ Hermetic Calorimeter $|\eta| < 3.6 |\eta| < 4.2$

Powerful trigger systems (2.5MHz \rightarrow 50Hz) Dilepton triggers with p_T>4GeV

Tevatron Cross Sections

Total inelastic cross section.

Light quarks are ubiquitous.

Plenty of W and Z bosons \rightarrow calibration.

Evidence of single top production is an important milestone towards the Higgs boson.

The Higgs cross section is 10-11 orders of magnitudes lower than the total inelastic cross section.

High Mass Higgs Channels

• final states with charged leptons:

- e[±]e[∓]
- $e^{\pm}\mu^{\mp}$ \leftarrow counts twice
- µ[±]µ[∓]
- I[±]τ[∓]h ← difficult
- hadronic final state:
 - very difficult

Angular correlation of leptons due to V-A as H is a spin 0 particle:

High Mass Higgs Channels

- 2 leptons with high p_T
- Isolation of e/μ against QCD and b-je
- E_T due to 2 neutrinos
- E_T significance:
 - ▶ not from mis-measured lepton p_T
 - not from mis-measured jet pT
- $m_{ll} < m_Z$
- Σ_{jets} p_T < 100 against ft background

 $S/B \approx 15/300k$

```
S/B \approx 5/50
```

Cuts Optimised for $m_H = 120 - 200$

Selection criterion	$m_H = 120$	$m_H = 140$	$m_H = 160$	$m_H = 180$	$m_H = 200$
Cut 1 Preselection	Trigger, $p_T > 20/10 \text{GeV}$	ID, leptons with o $20/15$	pposite charge, z_V 25/15	$T_{TX} < 60 \text{ cm}, M_{\mu\mu}$ 25/15	$> 17 { m GeV}$ 25/15
Cut 2 Missing trans- verse energy \not{E}_{T}	$25 < \not \!\! E_{\rm T} < 70$	$25 < \not \!\! E_{\rm T} < 80$	$30 < \not \!\! E_{\rm T} < 90$	$35 < \not\!\!\!E_{\rm T} < 100$	$35 < at E_{ m T} < 110$
Cut 3 $Sig(\not\!\!\!E_T)$	$Sig(\not\!\!E_T) > 5 \text{ (for } N_{Jet} > 0)$				
Cut 4 $M_{min}^T (l, \not\!\! E_T)$	$M_{min}^T > 30$	$M_{min}^T > 30$	$M_{min}^T > 40$	$M_{min}^T > 45$	$M_{min}^T > 45$
Cut 5 Invariant mass $M_{\mu\mu}$	$17 < M_{\mu\mu} < 60$	$17 < M_{\mu\mu} < 70$	$17 < M_{\mu\mu} < 75$	$17 < M_{\mu\mu} < 85$	$17 < M_{\mu\mu} < 95$
Cut 6 $\Sigma p_T = p_T^l + p_T^{l'} + \not\!$	$60 < \Sigma p_T < 135$	$70 < \Sigma p_T < 160$	$80 < \Sigma p_T < 170$	$90 < \Sigma p_T < 180$	$90 < \Sigma p_T < 200$
Cut 7 H_T (scalar sum of p_T^{Jet})	$H_T < 60$	$H_T < 60$	$H_T < 60$	$H_T < 60$	$H_T < 50$
Info Neural Net			NN > 0.5		

Neural Net

Neural Net

Multivariate Techniques :: TNG

Improved NN

- Very loose selection
- More variables (~10 \rightarrow ~20)
- Train against more backgrounds

Matrix Element

$$P_m(x_{obs}) = \frac{1}{<\sigma_m >} \int \frac{d\sigma_m^{th}(y)}{dy} \epsilon(y) G(x_{obs}, y) dy$$
 ME
 ME

L=1.2fb⁻¹

0.8 0.9

$$LR(x_{obs}) \equiv \frac{P_H(x_{obs})}{P_H(x_{obs}) + \sum_i k_i P_i(x_{obs})}$$

Additional input to NN

Combination of Channels

- Combination of
- 3 final states
- 2 run periods
- Uncertainties
- Statistical
- Correlated systematics
 - Bg cross sections (6-18%)
 - Normalisation (6%)
 - Jet energy scale
- Uncorrelated (some channels)
 - Lepton ID & resolution(3-10%)

LEP CL_s Method

Profile Likelihood

$$Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_{\text{Chan}}} \prod_{j=0}^{N_{\text{bins}}} \frac{(s+b)}{1} \frac{d_{ij}}{d_{ij}!} e^{-(s+b)_{ij}} \frac{b}{1} \frac{d_{ij}}{d_{ij}!} e^{-b} \frac{d_{ij}}{d_{ij}!}$$

 $LLR = -2\ln Q$

$$CL_s = 1 - \frac{CL_{s+b}}{CL_b}$$

Systematics taken into account via Gaussian marginalisation Correlations taken into account

CLs Technique

Figure 1. Left: The pdfs of the combined Higgs search at LEP for the background (right) and signal + background hypotheses (left) for $m_{\rm H} = 115.6 \,{\rm GeV}/c^2$. The light grey region to the left of the observation is $1 - CL_b$ and the dark grey region to the right of the observation is CL_{s+b} . Right: Illustration of the evolution of the pdfs with falling search sensitivity from (a) to (c) as the Higgs mass hypothesis is increased and the production cross-section falls.

A. L. Read, J. Phys. G: Nucl. Part. Phys. 28 (2002) 2693-2704

H→WW DØ Combination

DØ Final States

$H \rightarrow WW @ CDF$

Low Mass Higgs Channels

2 b jets ~ $1/2 M_{H}$ each 0 leptons Missing E_{T} ~ 100 GeV Largest expected signal

2 b jets ~ 1/2 M_H each
 1 lepton ~ 50 GeV each
 Missing E_T ~ 50 GeV
 Highest production X-sec

MAAAA

Tools: b-tagging

WH → lvbb: Neural Net

Combining WH Results

Decision Tree

E_T	$\sum p_T^{ m jets}$
scalar E_T	$p_T^{ m jet_1}$
H_T	$p_T^{ m jet_2}$
H_T	$\eta_{ m jet_1}$
$A(\not\!\!\!E_T,\not\!\!\!H_T) \doteq (\not\!\!\!E_T - \not\!\!\!H_T)/(\not\!\!\!E_T + \not\!\!\!H_T)$	$\eta_{ m jet_2}$
H_T/H_T	dijet invariant mass
$\min \Delta \phi(E_T, \text{jets})$	dijet transverse mass
$\Delta \phi(E_T, \text{jet}_1)$	$(\not\!\!\!E_T - \sum p_T^{\text{tracks}})/(\not\!\!\!E_T + \sum p_T^{\text{tracks}}))$
$\Delta \phi(E_T, \text{jet}_2)$	$max(\Delta\phi(E_T, \text{jets})) - min(\Delta\phi(E_T, \text{jets}))$
$\Delta \phi (\not\!$	$max(\Delta\phi(\not\!\!E_T, \text{jets})) + min(\Delta\phi(\not\!\!E_T, \text{jets}))$
$\Delta \phi(\text{jet}_1, \text{jet}_2)$	$\sum p_T^{ m tracks}$
$\Delta R(\text{jet}_1, \text{jet}_2)$	p_T^{tracks} from dijets
	$(\sum p_T^{\text{tracks}} - \sum^{\text{dijets}} p_T^{\text{tracks}}) / \sum p_T^{\text{tracks}}$

Table 15: Variables used as input to the Decision Tree

Boosting:

MEI

as single top (adaptive boosting, AdaBoost)

give mis-classified events a higher weight before retraining to make the tree work harder.

Asymmetric b-tagging: €=73%/48%; f=5%/0.5% (@pT>30, n<0.8)

ZH→vvb̄b @ CDF

2 b-tagging requirements:

both jets with secondary vertex tag

1 jet with SVT, 1 jet with low probability that all tracks originate from the primary vertex

- 2 separate NN:
 - against fake ET in QCD multi-jet like events: ET is related to jets and un-correlated to tracks; track based quantities enter the NN
 - ZH discriminating NN for limit setting: NNET, m(jj), ET(cal), met-dot-product: ET(cal) · ET(trk), dR(jj)

ZH → vvbb

Upcoming improvements:

- QCD-multijet understanding.
- Run IIb Level 1 CAL trigger upgrade.
- Include single-tag.

ZH → IIbō: DØ

ZH → IIb̄b: CDF

Two independent neural nets are trained to separate ZH from

- tīt background
- Z+jet background

CDF: $H \rightarrow \tau \tau$

Use $\tau_{lep} \tau_{had}$ mode.

- Lepton $p_T > 10 \text{ GeV}$
- Hadronic $\tau p_T > 15 \text{ GeV}$
- 3 Neural Nets are trained: Signal vs Z-> ττ + jets Signal vs ttbar Signal vs QCD

Select Minimum of 3 NN to fit data.

$D\emptyset: H \rightarrow \gamma\gamma$

Tevatron Combination

Projecting Higgs Reach to 2010

Improvements assumed in projections

- b-tagging
 - b-tagging with Layer 0 (~8% per tag efficiency increase, DØ)
 - add semileptonic b-tags (~5% per tag efficiency increase, DØ)
 - improved usage of existing taggers (~25%, CDF)
 - add single-b-tag channel to $ZH \rightarrow vvbb$ (DØ)
- Acceptance

...

- include forward electrons in WH (DØ)
- include 3-jet sample in WH (DØ)
- 25% trigger acceptance (CDF)
- Analysis techniques
 - improved multivariate analyses (~20% in sensitivity)
 - better usage of E_T^{miss}
 - di-jet mass resolution (from 18% to 15% in $\sigma(m)/m$, DØ)
- scaling of systematic uncertainties as a function of luminosity
 Additional improvements not yet included in projection
- Additional improvements not yet included in projection
 - inclusion of tau channels
 - charm rejection in single b-tag analyses
 - optimizing $H \rightarrow WW$ at low mass

Higgs Projections 115GeV

Rob Roser, P5 Meeting, 01/02/08

Higgs Projection 160 GeV

Conclusion

Harold was enjoying the space between night and day

The rise or setting of the Higgs is close

Backup Slides

