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What do I mean by “CURSE” ?

The CURSE of today may be the BLESSING

of tomorrow

The curse of spin is its ability to demonstrate

the shortcomings of a theory and, in some

cases, to destroy it.

Spin dependent measurements have a scalpel

like ability to probe a theory, which may have

been able to fudge the results of ordinary e.g.

cross-section measurements.

Thus the path of spin is strewn with the wreck-

age of discarded theories. The positive aspect

is that better (hopefully) theories arise from

the debris.
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THE ANCIENT WORLD
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An example: Electroweak Theory

Weak interactions were supposed to involve S-

T coupling:

1 and i
2[γµ, γν]

Eventually learned: V-A

γµ(1− γ5)

Role of spin in comparing rates for π → eν̄ and

π → µν̄ was crucial. Measurement of the Helic-

ity of the neutrino was also a vital experiment

in confirming this.
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Without this unification of Weak and Electro-

magnetic interactions would have been impos-

sible!
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Another example: Regge Poles

Totally unexpected SHRINKING of diffraction

peaks in dσ
dt for elastic cross-sections

A(p1) + B(p2) → A(p3) + B(p4)

t = (p1 − p3)
2

fig
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Beautiful explanation by Theory of Complex

Angular Momentum: simplest version: Regge

Poles————–BUT

Total failure to predict POLARIZATIONS
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Despite the important role played by spin-dependent

measurements, the subject has NOT attracted

a large following. WHY?

Possibly two reasons:

1) Practical: Polarization measurements are

very difficult. Sources, acceleration, depolariz-

ing resonances etc etc

2) Pedagogical-psychological

Spin had a difficult birth: fine structure of hy-

drogen (spin-orbit coupling); Stern-Gerlach ex-

periment; “mysterious effects too complicated

to explain in an undergraduate text” etc etc
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Deep Inelastic Scattering: a reminder

slide
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Deep Inelastic Scattering in the parton model

fig
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Deep Inelastic Scattering in the parton model

Q2 ≡ −q2 = −(k − k′)2 ν ≡ ELab − E′Lab

x ≡ xBjorken = Q2

2Mν

24



The cross-sections are expressed in terms of

two (unpolarized) STRUCTURE FUNCTIONS:F1,2

In simple Parton Model: F1,2(x)

Including some aspects of QCD:F1,2(x, Q2)

Slow evolution in Q2

F1(x, Q2) =
1

2

∑

flav

e2j [qj(x, Q2) + q̄j(x, Q2)]

A key ingredient: the UNPOLARIZED parton

number density q(x)

fig
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Quite analogously, POLARIZED cross-section

expressed in terms of two spin-dependent STRUC-

TURE FUNCTIONS: g1,2

g1(x, Q2) =
1

2

∑

flav

e2j [∆qj(x, Q2) + ∆q̄j(x, Q2)]

The key ingredient here is the polarized quark

density

fig
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THE EMC EXPERIMENT OF 1988

Notation:

∆q =
∫

dx∆q(x) (1)

Important flavour combinations :

a3 = ∆u + ∆ū−∆d−∆d̄ (2)

= 1.267± 0.0035

a8 = ∆u + ∆ū + ∆d−∆d̄− 2(∆s + ∆s̄) (3)

= 0.585± 0.025

∆Σ =
∑

f

(∆qf + ∆q̄f) (4)
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a8 = ∆u + ∆ū + ∆d + ∆d̄− 2(∆s + ∆s̄) (6)

= 0.585± 0.025

∆Σ =
∑

f

(∆qf + ∆q̄f) (7)

30



THE EMC EXPERIMENT OF 1988

Notation:

∆q =
∫

dx∆q(x)

Important flavour combinations :

a3 = ∆u + ∆ū−∆d−∆d̄
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Ellis -Jaffe Theory: safe to ignore ∆s + ∆s̄

=⇒∆Σ ' a8 ' 0.59

Now EMC measurement of

Γp
1 =

∫
dxg

p
1(x)

=
1

12

[
a3 +

1

3
(a8 + 4a0)

]

=⇒ aEMC
0 ' 0

But in naive parton model a0 = ∆Σ Moreover,
since

∆Σ = 2Squarks
z (8)

EMC seems to imply S
quarks
z = 0

and there appears to be a crisis in the parton
model: where, oh where, is the proton’s spin?
[Anselmino and L, Z.Phys. C41,(1988) 239 ]
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Resolution (??)of the crisis : The Anomalous

Gluon Contribution

The Operator Product Expansion has no gluon

operator contributing to the first moment of

g1, but Feynman diagram approach yields re-

sult:

a0 = ∆Σ− ?αs(Q2)

2π
∆G(Q2) (1)
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a0 = ∆Σ− 3αs(Q2)

2π
∆G(Q2)

It was thus hoped that one could have a rea-

sonable ∆Σ ' 0.6 and still obtain a very small

a0.

But even with present day estimates a0 ≈ 0.2

this requires

∆G ' 1.7 at Q2 = 1GeV 2

Is this acceptable? What do we know about

∆G?
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THE PRESENT

ATTEMPTS TO MEASURE ∆G

There are three ways to access ∆G(x) :

(1) Polarized Deep Inelastic Scattering (DIS)—

parametrize polarized quark and gluon densi-

ties and fit data on g1(x, Q2).

Main role of gluon is in EVOLUTION with Q2,

but range of Q2 is very limited so determination

of ∆G(x) is imprecise.

Figure 3 shows world results on ∆G(x)
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Typically one has ∆G ≈ 0.29±0.32 much smaller

than the desired 1.7 !

(2) cc̄ production in DIS. Requires high energy

lepton beam: COMPASS at CERN.

Given that the nucleon has no INTRINSIC charm,

the cc̄ are produced via ’gluon-photon fusion’.

Figure 4.
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Detecting BOTH charmed particles would be

an absolutely clean signal for the mechanism!

But the intensity is too low—-factor of 30 in

rate lost in detecting second charmed meson—

- so rely on single charm production. Also on

back-to-back jets—much less clean.

Figure shows some of the COMPASS results
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Suggests very small ∆G compatible with result

quoted above

(3) ALL with polarized protons: uniquely at

RHIC.

Several reactions:

~p + ~p −→ π0 + X

~p + ~p −→ Jet + X

Dominant partonic reactions:

~g + ~g −→ g + g : dominates at smaller p2
T

~g + ~q −→ g + q: dominates at larger p2
T

Nice test: PQCD describes cross-sections quite

well.Figure 6
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Results: ALL is SMALL!

Fig
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Consistent with ZERO gluon polarization

THE SPIN CRISIS

IS STILL WITH US !
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Expect more definite statement on ALL very

soon: much improved accuracy

fig
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TRANSVERSE SINGLE-SPIN

ASYMMETRIES

Hadronic reactions like

p↑ + p → π + X

p↑ : transversely polarized proton

Asymmetry under reversal of direction of po-

larisation

AN ≡ dσ↑ − dσ↓

dσ↑ + dσ↓

Partonic mechanism:

fig
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In collinear Parton Model AN ≈ 0

To get an idea of the size, at the parton level

âN = αs
mq√

s
f(θ∗)

where f(θ∗) is of order 1

Gives asymmetries of a fraction of a percent

The data strogly contradicts this!

fig
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How to extricate QCD from this mess???

1) Include intrinsic transverse momentum kT

of partons.

Conceptually no problem; but makes serious

calculations horrendous

2) Invent new SOFT mechanisms—-beyond

the parton model

SIVERS: Number density of quarks with mo-

mentum xP +kT depends on polarization P of

parent hadron

A + B P · (xP × kT

65
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BUT can show this violates Parity and Time

Reversal invariance IF

hadron → quark + X

is treated as an independent reaction——-as

it is in the parton model.

To avoid this need INITIAL or FINAL state

interactions, thereby spoiling UNIVERSALITY

of parton model.

b) COLLINS: In fragmentation of quark of mo-

mentum p into hadron allow hadron to have

intrinsic transverse momentum kT relative to

quark.

Number density of hadrons with momentum
1
zp + kT depends on polarization P of frag-

menting quark.
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mentum p into hadron allow hadron to have

intrinsic transverse momentum kT relative to

quark.

Number density of hadrons with momentum
1
zp + kT depends on polarization P of frag-

menting quark.
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Number density of hadrons with momentum
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D(z, Ph) = A + BC P·(p× Ph)

Again, vanishes if fragmentation q → hadron+

X is treated as an independent reaction, as it

is in the parton model.

So again lose universality.

Can’t calculate BS or BC so need to introduce

new functions phenomenologically. Ugly!
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THE LATEST PROBLEM

1



One of the oldest and supposedly best under-

stood reactions:

electron + proton(p) → electron + proton(p′)

Measurement of the ELECTROMAGNETIC FORM

FACTORS OF THE PROTON

As always, assume ONE PHOTON Exchange

fig
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electron



The photon-proton vertex is given by:

ū(p′)[γµF em
1 (q2) +

iσµνqν

2M
κF em

2 (q2)]u(p)

q = p′ − p κ = anomalous magnetic mo-

ment

F1,2 Dirac em form factors. Sachs more con-

venient: GE = F1+ κq2

4M2F2 GM = F1+κF2
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The photon-proton vertex is given by:

ū(p′)[γµF em
1 (Q2) +

iσµνqν

2M
κF em

2 (Q2)]u(p)

q = p′− p κ = anomalous magnetic moment

Q2 = −q2

F1,2 Dirac em form factors. Sachs more con-

venient: GE = F1 − κτF2 GM = F1 + κF2

τ = Q2

4M2

GE(0) = 1

GM(0) = total magnetic moment(µ) = 2.79
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Diff. cross-section in the LAB: ROSENBLUTH

dσ

dΩ
=

( dσ

dΩ

)′
Mott

[
G2

E + τG2
M

1 + τ

+ 2τG2
M tan2(θ/2)

]

Both GE and GM drop with increasing Q2

Long standing experimental assertion that

GM(Q2) ≈ µGE(Q2)
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New cross-section measurements are consis-

tent with this:

fig
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HOWEVER

A totally new kind of measurement: Polariza-
tion transfer to the proton from a longitudi-
nally polarized electron colliding with an unpo-
larized target:

LONGITUDINAL polarization of the recoil pro-
ton:

PL ∝
[
E + E′

M

] √
τ(1 + τ)G2

M tan2(θ/2)

TRANSVERSE (in scattering plane) polariza-
tion of the recoil proton:

P ∝ −2
√

τ(1 + τ)GE GM tan(θ/2)

fig
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M
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√
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What’s wrong?!? Possibly two-photon exchange.

But expected to be negligible: extra factor of

α = 1/137 i.e. ≤ 1 % effect

Size consistent with comparison of electron-

proton with positron-proton

Exact calculation would require evaluation of

Feynman graph:

fig
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Not possible. Can do approximate calculation

of simplest two photon graph:

fig
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Surprisingly, seems to help!

Mainly affects Rosenbluth extraction and sug-

gests polarization results for GE/GM are cor-

rect!

i.e. GE/GM decreasing fairly rapidly with in-

creasing Q2

What about famous prediction of perturbative

QCD:

GE/GM → constant as Q2 →∞ ?????
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SUMMARY

1) I have tried to give you an idea of the dra-
matic role spin-dependent measurements have
played, both historically and in the present, in
exposing weaknesses in theories and inspiring
new theories

2) Regarding the present we are still left with
three puzzles:

(a) We don’t know how the spin of the nucleon
is built up from the angular momentum of its
constituents

(b) We don’t know how to explain the huge
transverse single-spin asymmetries at a funda-
mental level i.e. not relying on additional phe-
nomenologically determined functions

(c) We are facing the realization that what is
arguably the best-understood of all reactions
i.e. electron-proton elastic scattering, has, in
fact, been significantly misunderstood
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