The Curse of Spin: Lurching from One Crisis to the Next

Elliot Leader

Imperial College London

The CURSE of today may be the BLESSING of tomorrow

The CURSE of today may be the BLESSING of tomorrow

The curse of spin is its ability to demonstrate the shortcomings of a theory and, in some cases, to destroy it.

The CURSE of today may be the BLESSING of tomorrow

The curse of spin is its ability to demonstrate the shortcomings of a theory and, in some cases, to destroy it.

Spin dependent measurements have a scalpel like ability to probe a theory, which may have been able to fudge the results of ordinary e.g. cross-section measurements.

The CURSE of today may be the BLESSING of tomorrow

The curse of spin is its ability to demonstrate the shortcomings of a theory and, in some cases, to destroy it.

Spin dependent measurements have a scalpel like ability to probe a theory, which may have been able to fudge the results of ordinary e.g. cross-section measurements.

Thus the path of spin is strewn with the wreckage of discarded theories. The positive aspect is that better (hopefully) theories arise from the debris.

Contents

1) The Ancient World (brief)

2) The Renaissance (the European Muon Collaboration experiment)

3) The Present (new problems)

THE ANCIENT WORLD

An example: Electroweak Theory

Weak interactions were supposed to involve S- T coupling:

1 and $\frac{i}{2}[\gamma_{\mu},\gamma_{\nu}]$

An example: Electroweak Theory

Weak interactions were supposed to involve S- T coupling:

1 and
$$rac{i}{2}[\gamma_{\mu},\gamma_{
u}]$$

Eventually learned: V-A

$$\gamma_{\mu}(1-\gamma_{5})$$

An example: Electroweak Theory

Weak interactions were supposed to involve S- T coupling:

1 and
$$rac{i}{2}[\gamma_{\mu},\gamma_{
u}]$$

Eventually learned: V-A

 $\gamma_{\mu}(1-\gamma_{5})$

Role of spin in comparing rates for $\pi \to e\bar{\nu}$ and $\pi \to \mu\bar{\nu}$ was crucial. Measurement of the Helicity of the neutrino was also a vital experiment in confirming this.

fig

Fig. 1.8. 90% confidence level limits on the coupling constants $g^i_{\lambda'\lambda}$ from the SIN experiments.

Without this unification of Weak and Electromagnetic interactions would have been impossible! Another example: Regge Poles

Totally unexpected SHRINKING of diffraction peaks in $\frac{d\sigma}{dt}$ for elastic cross-sections

$$A(p_1) + B(p_2) \to A(p_3) + B(p_4)$$

$$t = (p_1 - p_3)^2$$

fig

Beautiful explanation by Theory of Complex Angular Momentum: simplest version: Regge Poles————BUT Beautiful explanation by Theory of Complex Angular Momentum: simplest version: Regge Poles————BUT

Total failure to predict **POLARIZATIONS**

Possibly two reasons:

Possibly two reasons:

1) Practical: Polarization measurements are very difficult. Sources, acceleration, depolarizing resonances etc etc

Possibly two reasons:

1) Practical: Polarization measurements are very difficult. Sources, acceleration, depolarizing resonances etc etc

2) Pedagogical-psychological:

Possibly two reasons:

1) **Practical:** Polarization measurements are very difficult. Sources, acceleration, depolarizing resonances etc etc

2) Pedagogical-psychological:

Spin had a difficult birth: fine structure of hydrogen (spin-orbit coupling); Stern-Gerlach experiment; "mysterious effects too complicated to explain in an undergraduate text" etc etc

slides

19.1 THE FINE STRUCTURE OF HYDROGEN

$$H_{\text{magn}} = \frac{1}{m^2 c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$
(18.100)

When the actual calculation is made with the proper Lorentz transformations for the fields, it is found that owing to purely kinematic effects we must add a term to the energy, which has the same form as (18.100) but a different coefficient. Known as the *Thomas term*, this contribution to the Hamiltonian is

$$H_{\rm Thomas} = -\frac{1}{2} H_{\rm magn} \tag{18.101}$$

19.1 THE FINE STRUCTURE OF HYDROGEN

$$H_{\text{magn}} = \frac{1}{m^2 c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$
(18.100)

When the actual calculation is made with the proper Lorentz transformations for the fields, it is found that owing to purely kinematic effects we must add a term to the energy, which has the same form as (18.100) but a different coefficient. Known as the *Thomas term*, this contribution to the Hamiltonian is

$$H_{\rm Thomas} = -\frac{1}{2} H_{\rm magn} \tag{18.101}$$

However, the kinematics used above is nonrelativistic. Relativistically, the electron also precesses about the nucleus (this is called the *Thomas precession*) with a certain frequency. The net upshot of this precession is that the magnetic field "seen" by the electron is only half as large as the one assumed in the derivation of equation (19.2), and therefore (----)

19.1 THE FINE STRUCTURE OF HYDROGEN

$$H_{\text{magn}} = \frac{1}{m^2 c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$
(18.100)

When the actual calculation is made with the proper Lorentz transformations for the fields, it is found that owing to purely kinematic effects we must add a term to the energy, which has the same form as (18.100) but a different coefficient. Known as the *Thomas term*, this contribution to the Hamiltonian is

$$H_{\rm Thomas} = -\frac{1}{2} H_{\rm magn} \tag{18.101}$$

However, the kinematics used above is nonrelativistic. Relativistically, the electron also precesses about the nucleus (this is called the *Thomas precession*) with a certain frequency. The net upshot of this precession is that the magnetic field "seen" by the electron is only half as large as the one assumed in the derivation of equation (19.2), and therefore (----)

Note that a direct calculation

of the spin-orbit coupling, with the usual formulations of special relativity, gives a value *twice* as large as (13.22), and therefore a fine-structure splitting twice too large. This is why Pauli, at the end of 1925, did not believe in the idea of spin, and called it a "Irrleher" in a letter to Niels Bohr. However, in March 1926, L.H. Thomas remarked that the rest frame of the electron is not an inertial frame, and that a correct calculation introduces a factor of 1/2 in the formula (the Thomas precession²). This convinced Pauli of the validity of the spin-1/2 concept.

THE RENAISSANCE

Deep Inelastic Scattering: a reminder

slide

Deep Inelastic Scattering in the parton model

fig

Deep Inelastic Scattering in the parton model

$$Q^{2} \equiv -q^{2} = -(k - k')^{2} \qquad \nu \equiv E_{Lab} - E'_{Lab}$$
$$x \equiv x_{Bjorken} = \frac{Q^{2}}{2M\nu}$$

The cross-sections are expressed in terms of two (unpolarized) STRUCTURE FUNCTIONS: $F_{1,2}$

In simple Parton Model: $F_{1,2}(x)$

Including some aspects of QCD: $F_{1,2}(x,Q^2)$

Slow evolution in Q^2

The cross-sections are expressed in terms of two (unpolarized) STRUCTURE FUNCTIONS: $F_{1,2}$

In simple Parton Model: $F_{1,2}(x)$

Including some aspects of QCD: $F_{1,2}(x,Q^2)$

Slow evolution in Q^2

$$F_1(x,Q^2) = \frac{1}{2} \sum_{flav} e_j^2 [q_j(x,Q^2) + \bar{q}_j(x,Q^2)]$$

A key ingredient: the UNPOLARIZED parton number density q(x)

fig

Quite analogously, POLARIZED cross-section expressed in terms of two spin-dependent STRUC-TURE FUNCTIONS: $g_{1,2}$

$$g_1(x,Q^2) = \frac{1}{2} \sum_{flav} e_j^2 [\Delta q_j(x,Q^2) + \Delta \bar{q}_j(x,Q^2)]$$

Quite analogously, POLARIZED cross-section expressed in terms of two spin-dependent STRUC-TURE FUNCTIONS: $g_{1,2}$

$$g_1(x,Q^2) = \frac{1}{2} \sum_{flav} e_j^2 [\Delta q_j(x,Q^2) + \Delta \bar{q}_j(x,Q^2)]$$

The key ingredient here is the polarized quark density

fig

Notation:

$$\Delta q = \int dx \Delta q(x)$$

Notation:

$$\Delta q = \int dx \Delta q(x)$$

Important flavour combinations :

$$a_3 = \Delta u + \Delta \bar{u} - \Delta d - \Delta \bar{d}$$

 $= 1.267 \pm 0.0035$

$$a_8 = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} - 2(\Delta s + \Delta \bar{s})$$
$$= 0.585 \pm 0.025$$

$$\Delta \Sigma = \sum_{f} (\Delta q_f + \Delta \bar{q}_f)$$

Notation:

$$\Delta q = \int dx \Delta q(x)$$

Important flavour combinations :

$$a_3 = \Delta u + \Delta \bar{u} - \Delta d - \Delta \bar{d}$$

 $= 1.267 \pm 0.0035$

 $a_8 = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} - 2(\Delta s + \Delta \bar{s})$ $= 0.585 \pm 0.025$

$$\Delta \Sigma = \sum_{f} (\Delta q_f + \Delta \bar{q}_f)$$

Note that $\Delta \Sigma = a_8 + 3(\Delta s + \Delta \bar{s})$

$$\Longrightarrow \Delta \Sigma \simeq a_8 \simeq 0.59$$

 $\Longrightarrow \Delta \Sigma \simeq a_8 \simeq 0.59$

Now EMC measurement of

$$\Gamma_1^p = \int dx g_1^p(x)$$
$$= \frac{1}{12} \left[a_3 + \frac{1}{3} (a_8 + 4a_0) \right]$$
$$\implies a_0^{EMC} \simeq 0$$

 $\Longrightarrow \Delta \Sigma \simeq a_8 \simeq 0.59$

Now EMC measurement of

$$\Gamma_1^p = \int dx g_1^p(x)$$
$$= \frac{1}{12} \left[a_3 + \frac{1}{3} (a_8 + 4a_0) \right]$$
$$\implies a_0^{EMC} \simeq 0$$

But in naive parton model $a_0 = \Delta \Sigma$

: Gross contradiction with Ellis-Jaffe Theory

 $\Longrightarrow \Delta \Sigma \simeq a_8 \simeq 0.59$

Now EMC measurement of

$$\Gamma_1^p = \int dx g_1^p(x)$$
$$= \frac{1}{12} \left[a_3 + \frac{1}{3} (a_8 + 4a_0) \right]$$
$$\implies a_0^{EMC} \simeq 0$$

But in naive parton model $a_0 = \Delta \Sigma$

: Gross contradiction with Ellis-Jaffe Theory

Moreover, since

$$\Delta \Sigma = 2 S_z^{quarks}$$
 EMC seems to imply $S_z^{quarks} = 0$

and there appears to be 'A crisis in the parton model: where, oh where, is the proton's spin?' [Anselmino and L, Z.Phys. C41,(1988) 239]

36

Resolution (??)of the crisis : The Anomalous Gluon Contribution

Resolution (??)of the crisis : The Anomalous Gluon Contribution

The Operator Product Expansion has no gluon operator contributing to the first moment of g_1 , but Feynman diagram approach yields result:

$$a_0 = \Delta \Sigma - \frac{3\alpha_s(Q^2)}{2\pi} \Delta G(Q^2) \qquad (2)$$

$$a_0 = \Delta \Sigma - \frac{3\alpha_s(Q^2)}{2\pi} \Delta G(Q^2)$$

It was thus hoped that one could have a reasonable $\Delta\Sigma\simeq 0.6$ and still obtain a very small a_0 .

$$a_0 = \Delta \Sigma - \frac{3\alpha_s(Q^2)}{2\pi} \Delta G(Q^2)$$

It was thus hoped that one could have a reasonable $\Delta\Sigma \simeq 0.6$ and still obtain a very small a_0 .

But even with present day estimates $a_0 \approx 0.2$ this requires

$$\Delta G \simeq 1.7$$
 at $Q^2 = 1 GeV^2$

$$a_0 = \Delta \Sigma - \frac{3\alpha_s(Q^2)}{2\pi} \Delta G(Q^2)$$

It was thus hoped that one could have a reasonable $\Delta\Sigma \simeq 0.6$ and still obtain a very small a_0 .

But even with present day estimates $a_0 \approx 0.2$ this requires

$$\Delta G \simeq 1.7$$
 at $Q^2 = 1 GeV^2$

Is this acceptable? What do we know about ΔG ?

ATTEMPTS TO MEASURE $\Delta {\it G}$

There are three ways to access $\Delta G(x)$:

ATTEMPTS TO MEASURE ΔG

There are three ways to access $\Delta G(x)$:

(1) Polarized Deep Inelastic Scattering (DIS) parametrize polarized quark and gluon densities and fit data on $g_1(x, Q^2)$.

ATTEMPTS TO MEASURE ΔG

There are three ways to access $\Delta G(x)$:

(1) Polarized Deep Inelastic Scattering (DIS) parametrize polarized quark and gluon densities and fit data on $g_1(x, Q^2)$.

Main role of gluon is in EVOLUTION with Q^2 , but range of Q^2 is very limited so determination of $\Delta G(x)$ is imprecise.

ATTEMPTS TO MEASURE ΔG

There are three ways to access $\Delta G(x)$:

(1) Polarized Deep Inelastic Scattering (DIS) parametrize polarized quark and gluon densities and fit data on $g_1(x, Q^2)$.

Main role of gluon is in EVOLUTION with Q^2 , but range of Q^2 is very limited so determination of $\Delta G(x)$ is imprecise.

fig world results on $\Delta G(x)$

This is a test.

Typically one has $\Delta G \approx 0.29 \pm 0.32$ much smaller than the desired 1.7 !

Typically one has $\Delta G \approx 0.29 \pm 0.32$ much smaller than the desired 1.7 !

(2) $c\overline{c}$ production in DIS. Requires high energy lepton beam: COMPASS at CERN.

Typically one has $\Delta G \approx 0.29 \pm 0.32$ much smaller than the desired 1.7 !

(2) $c\overline{c}$ production in DIS. Requires high energy lepton beam: COMPASS at CERN.

Given that the nucleon has no INTRINSIC charm, the $c\overline{c}$ are produced via 'gluon-photon fusion'. fig

Photon-Gluon fusion

q = c

"OPEN CHARM" cross section difference in charmed meson production

- in charmed meson production
- ightarrow theory well understood
- \rightarrow experiment challenging
- q = u,d,s

"HIGH p_T HADRON PAIRS" cross section difference in 2+1 jet production in COMPASS: events with 2 hadrons with high p_T

- \rightarrow experiment "easy"
- \rightarrow theory more difficult

F. Bradamante RIKEN, Dec 3 2005 Detecting BOTH charmed particles would be an absolutely clean signal for the mechanism!

But the intensity is too low—-factor of 30 in rate lost in detecting second charmed meson— - so rely on single charm production. Also on back-to-back jets—much less clean.

Figure shows some of the COMPASS results

Figure 3: Comparison of the $\Delta G/G$ measurements from COMPASS (present work), SMC [14], and HERMES [23]. The horizontal bar on each point represents the range in $x_{\rm g}$. The curves show various parametrizations from NLO fits in the $\overline{\rm MS}$ scheme at $\mu^2 = 3~({\rm GeV/c})^2$: GRSV2000 [20] (3 curves, please see text for details), AAC03 [24], and LSS05 sets 1 and 2 [25].

(3) A_{LL} with polarized protons: uniquely at RHIC.

Several reactions:

 $\vec{p} + \vec{p} \longrightarrow \pi^0 + X$ (needs Fragmentation Functions)

 $\vec{p} + \vec{p} \longrightarrow Jet + X$

(3) A_{LL} with polarized protons: uniquely at RHIC.

Several reactions:

 $\vec{p} + \vec{p} \longrightarrow \pi^0 + X$ (needs Fragmentation Functions)

 $\vec{p} + \vec{p} \longrightarrow Jet + X$

Dominant partonic reactions:

 $\vec{g} + \vec{g} \longrightarrow g + g$: dominates at smaller p_T^2

 $\vec{g} + \vec{q} \longrightarrow g + q$: dominates at larger p_T^2

(3) A_{LL} with polarized protons: uniquely at RHIC.

Several reactions:

 $\vec{p} + \vec{p} \longrightarrow \pi^0 + X$ (needs Fragmentation Functions)

 $\vec{p} + \vec{p} \longrightarrow Jet + X$

Dominant partonic reactions:

 $\vec{g} + \vec{g} \longrightarrow g + g$: dominates at smaller p_T^2

 $\vec{g} + \vec{q} \longrightarrow g + q$: dominates at larger p_T^2

Nice test: PQCD describes cross-sections quite well. Fig

53

π° Cross Section

- > Data points extend from 1 to 20 GeV/c in pT.
- > pQCD calculation with KKP FF describes the data well over all measured pT region. (range of 10⁹)
- > The cross section of other channel, for example charged pion, is also useful to test pQCD.

Results: A_{LL} is SMALL!

Fig

••

Consistent with ZERO gluon polarization

Consistent with ZERO gluon polarization

THE SPIN CRISIS

IS STILL WITH US !

Expect more definite statement on A_{LL} very soon: much improved accuracy

fig

Prospects for Run5 (first long pp run) and Run6(ongoing)

Run5 improvements: • P_b~45% (~40% in Run4) L= 3/pb (0.3/pb in Run4) FoM (Run5)/FoM(Run4) = 16

Acceptance: 3/4 BEMC complete (1/2 in Run4)

 Two complementary jet triggers permit assessment of trigger bias due to q vs. g jet differences in shape, multiplicity, hardness in z.

Potential to discriminate between several ALL predictions based on DIS parametrizations
TRANSVERSE SINGLE-SPIN ASYMMETRIES

Hadronic reactions like

$$p^{\uparrow} + p \to \pi + X$$

 p^{\uparrow} : transversely polarized proton

TRANSVERSE SINGLE-SPIN ASYMMETRIES

Hadronic reactions like

$$p^{\uparrow} + p \to \pi + X$$

 p^{\uparrow} : transversely polarized proton

Asymmetry under reversal of direction of polarisation

$$A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

TRANSVERSE SINGLE-SPIN ASYMMETRIES

Hadronic reactions like

$$p^{\uparrow} + p \to \pi + X$$

 p^{\uparrow} : transversely polarized proton

Asymmetry under reversal of direction of polarisation

$$A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

Partonic mechanism:

fig

60

To get an idea of the size, at parton level

$$\hat{a}_N = \alpha_s \frac{m_q}{\sqrt{s}} f(\theta^*)$$

where $f(\theta^*)$ is of order 1

To get an idea of the size, at parton level

$$\hat{a}_N = \alpha_s \frac{m_q}{\sqrt{s}} f(\theta^*)$$

where $f(\theta^*)$ is of order 1

Gives asymmetries of a fraction of a percent

To get an idea of the size, at parton level

$$\hat{a}_N = \alpha_s \frac{m_q}{\sqrt{s}} f(\theta^*)$$

where $f(\theta^*)$ is of order 1

Gives asymmetries of a fraction of a percent

THE DATA STRONGLY CONTRADICT THIS!

fig

Large asymmetry in pion production Asymmetry persists to high energy

BROOKHAVEN NATIONAL LABORATORY

No asymmetry in proton production at the AGS (not shown)

1) Include intrinsic transverse momentum ${m k}_T$ of partons.

Conceptually no problem; but makes serious calculations horrendous.

1) Include intrinsic transverse momentum k_T of partons.

Conceptually no problem; but makes serious calculations horrendous.

2) Invent new SOFT mechanisms—-beyond the parton model

1) Include intrinsic transverse momentum k_T of partons.

Conceptually no problem; but makes serious calculations horrendous.

2) Invent new SOFT mechanisms—-beyond the parton model

a) SIVERS: Number density of quarks with momentum $xP + k_T$ depends on polarization \mathscr{P} of parent hadron:

1) Include intrinsic transverse momentum k_T of partons.

Conceptually no problem; but makes serious calculations horrendous.

2) Invent new SOFT mechanisms—-beyond the parton model

a) SIVERS: Number density of quarks with momentum $xP + k_T$ depends on polarization \mathscr{P} of parent hadron:

$$q(x, \boldsymbol{k}_T) = A + B_S \mathscr{P} \cdot (x\boldsymbol{P} \times \boldsymbol{k}_T)$$

BUT can show this violates Parity and Time Reversal invariance IF

$hadron \rightarrow quark + X$

is treated as an independent reaction——-as it is in the parton model.

BUT can show this violates Parity and Time Reversal invariance IF

$hadron \rightarrow quark + X$

is treated as an independent reaction——-as it is in the parton model.

To avoid this need INITIAL or FINAL state interactions, thereby spoiling UNIVERSALITY of parton model.

BUT can show this violates Parity and Time Reversal invariance IF

$hadron \rightarrow quark + X$

is treated as an independent reaction——-as it is in the parton model.

To avoid this need INITIAL or FINAL state interactions, thereby spoiling UNIVERSALITY of parton model.

b) COLLINS: In fragmentation of quark of momentum p into hadron allow hadron to have intrinsic transverse momentum k_T relative to quark.

BUT can show this violates Parity and Time Reversal invariance IF

$hadron \rightarrow quark + X$

is treated as an independent reaction——-as it is in the parton model.

To avoid this need INITIAL or FINAL state interactions, thereby spoiling UNIVERSALITY of parton model.

b) COLLINS: In fragmentation of quark of momentum p into hadron allow hadron to have intrinsic transverse momentum k_T relative to quark.

Number density of hadrons with momentum $P_h = \frac{1}{z}p + k_T$ depends on polarization \mathscr{P} of fragmenting quark.

$D(z, P_h) = A + B_C \mathscr{P}(p \times P_h)$

$$D(z, P_h) = A + B_C \mathscr{P}(p \times P_h)$$

Again, vanishes if fragmentation

$$q \rightarrow hadron + X$$

is treated as an independent reaction, as it is in the parton model.

$$D(z, P_h) = A + B_C \mathscr{P}(p \times P_h)$$

Again, vanishes if fragmentation

$$q \rightarrow hadron + X$$

is treated as an independent reaction, as it is in the parton model.

So again lose universality.

$$D(z, P_h) = A + B_C \mathscr{P}(p \times P_h)$$

Again, vanishes if fragmentation

$$q \rightarrow hadron + X$$

is treated as an independent reaction, as it is in the parton model.

So again lose universality.

Moreover, can't calculate B_S or B_C so need to introduce new functions phenomenologically, for each flavour of quark and antiquark. Ugly! THE LATEST PROBLEM

One of the oldest and supposedly best understood reactions:

 $electron + proton(p) \rightarrow electron + proton(p')$

Measurement of the ELECTROMAGNETIC FORM FACTORS OF THE PROTON One of the oldest and supposedly best understood reactions:

 $electron + proton(p) \rightarrow electron + proton(p')$

Measurement of the ELECTROMAGNETIC FORM FACTORS OF THE PROTON

As always, assume ONE PHOTON Exchange

fig

The photon-proton vertex is given by:

The photon-proton vertex is given by:

$$\bar{u}(p')[\gamma_{\mu}F_1^{em}(Q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M}\kappa F_2^{em}(Q^2)]u(p)$$

q = p' - p κ = anomalous magnetic moment $Q^2 = -q^2$

 $F_{1,2}$ Dirac em form factors. Sachs more convenient: $G_E = F_1 - \kappa \tau F_2$ $G_M = F_1 + \kappa F_2$

$$\tau = \frac{Q^2}{4M^2}$$

 $G_E(0) = 1$ $G_M(0) = \text{total magnetic moment}(\mu) = 2.79$

Diff. cross-section in the LAB: ROSENBLUTH

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)'_{Mott} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\theta/2)\right]$$

Diff. cross-section in the LAB: ROSENBLUTH

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)'_{Mott} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\theta/2)\right]$$

Both G_E and G_M drop with increasing Q^2

Long standing experimental assertion that

$$G_M(Q^2) \approx \mu G_E(Q^2)$$

fig

New cross-section measurements are consistent with this:

fig

HOWEVER

A totally new kind of measurement: Polarization transfer to the proton from a longitudinally polarized electron colliding with an unpolarized target:

HOWEVER

A totally new kind of measurement: Polarization transfer to the proton from a longitudinally polarized electron colliding with an unpolarized target:

LONGITUDINAL polarization of the recoil proton:

$$P_L \propto \left[\frac{E+E'}{M}\right] \sqrt{\tau(1+\tau)} G_M^2 \tan^2(\theta/2)$$

HOWEVER

A totally new kind of measurement: Polarization transfer to the proton from a longitudinally polarized electron colliding with an unpolarized target:

LONGITUDINAL polarization of the recoil proton:

$$\mathscr{P}_L \propto \left[\frac{E+E'}{M}\right] \sqrt{\tau(1+\tau)} G_M^2 \tan^2(\theta/2)$$

TRANSVERSE (in scattering plane) polarization of the recoil proton:

$$\mathscr{P}_T \propto -2\sqrt{\tau(1+ au)} \, G_E \, G_M \, \tan(heta/2)$$

fig

What's wrong?!? Possibly two-photon exchange.

What's wrong?!? Possibly two-photon exchange.

But expected to be negligible: extra factor of $\alpha = 1/137$ i.e. ≤ 1 % effect

Size consistent with comparison of electronproton with positron-proton What's wrong?!? Possibly two-photon exchange.

But expected to be negligible: extra factor of $\alpha = 1/137$ i.e. ≤ 1 % effect

Size consistent with comparison of electronproton with positron-proton

Exact calculation would require evaluation of Feynman graph:

fig

-

Not possible. Can do approximate calculation of simplest two photon graph:

fig

-

Mainly affects Rosenbluth extraction and suggests polarization results for G_E/G_M are correct!

Mainly affects Rosenbluth extraction and suggests polarization results for G_E/G_M are correct!

i.e. G_E/G_M decreasing fairly rapidly with increasing Q^2

Mainly affects Rosenbluth extraction and suggests polarization results for G_E/G_M are correct!

i.e. G_E/G_M decreasing fairly rapidly with increasing Q^2

What about famous prediction of perturbative QCD:

 $G_E/G_M \rightarrow \text{constant as } Q^2 \rightarrow \infty$?????

1) I have tried to give you an idea of the dramatic role spin-dependent measurements have played, both historically and in the present, in exposing weaknesses in theories and inspiring new theories

1) I have tried to give you an idea of the dramatic role spin-dependent measurements have played, both historically and in the present, in exposing weaknesses in theories and inspiring new theories

2) Regarding the present we are still left with three puzzles:

1) I have tried to give you an idea of the dramatic role spin-dependent measurements have played, both historically and in the present, in exposing weaknesses in theories and inspiring new theories

2) Regarding the present we are still left with three puzzles:

(a) We don't know how the spin of the nucleon is built up from the angular momentum of its constituents

1) I have tried to give you an idea of the dramatic role spin-dependent measurements have played, both historically and in the present, in exposing weaknesses in theories and inspiring new theories

2) Regarding the present we are still left with three puzzles:

(a) We don't know how the spin of the nucleon is built up from the angular momentum of its constituents

(b) We don't know how to explain the huge transverse single-spin asymmetries at a fundamental level i.e. not relying on additional phenomenologically determined functions

1) I have tried to give you an idea of the dramatic role spin-dependent measurements have played, both historically and in the present, in exposing weaknesses in theories and inspiring new theories

2) Regarding the present we are still left with three puzzles:

(a) We don't know how the spin of the nucleon is built up from the angular momentum of its constituents

(b) We don't know how to explain the huge transverse single-spin asymmetries at a fundamental level i.e. not relying on additional phenomenologically determined functions

(c) We are facing the realization that what is arguably the best-understood of all reactions i.e. electron-proton elastic scattering, has, in fact, been significantly misunderstood