

Reconstruction of Z->ττ->e+τ jet events with early data in CMS

Konstantinos A. Petridis

IOP Conference Lancaster 31st March 2008

Overview

- Motivation
- Detector and algorithm description
- Aspects of τ jet reconstruction
- Results
- Background estimation
- Conclusions

Introduction

- Motivation for reconstructing and selecting $Z \rightarrow \tau\tau \rightarrow e + \tau$ jet events
 - Benchmark for light SM/SUSY H-> $\tau\tau$ ->e+ τ jet discoveries
 - Main channel to measure τ jet tagging efficiency
 - Vital ingredients for the measurement of x-section of events involving τ jets
 - Input to measurements of SUSY studies
- Description of Reconstruction and Selection strategy
 - Trigger on events using the Single Electron Trigger
 - Offline electrons matched to HLT and pass offline Id with $E_T > 16 GeV$
 - Offline Calo τ jet E_T>20GeV passing e rejection and isolated in the tracker with using η - ϕ cone with constant R_s and 1 or 3 signal tracks
 - M_{e-MET} <60GeV/c², $\Delta \phi_{e-MET}$ <2.4, $N_{other jets}$ <2
 - Require e, τ jet candidates to have opposite charge

The CMS Detector

Electron L1+HLT: Calorimeter isolation at L1. At HLT build Ecal clusters out of "L1 accepted" objects. Build pixel seeded tracks and require E/P, HCal and Tracker isolation cuts.

Offline Electron Id: Based on H/E, E/P, cluster shape, brem fraction, track-cluster matching ...cuts.

Tau Jet L1+HLT: Calorimeter isolation at L1. At HLT build calo-jets out of "L1 accepted objects". Build pixel seeded tracks and require Ecal and Pixel/Track isolation

Tau Jet Offline: Calo/PF jet with isolated tracks. Variations of isolation (varying $R_{S,}$ $\eta-\phi$, $\theta-\phi$ cone definitions....)

Triggering on Z-> $\tau\tau$ ->e+ τ jet

- Ideally trigger using HLT $e + e\tau$ jet trigger
- At 10³²cm⁻²s⁻¹: HLTe E_Te>15GeV

HLTe+ τ jet E_T^e>12GeV

E_τ^{τ jet}>20GeV

• No gain of HLTe+ τ jet on top of HLTe at 10^{32} cm⁻²s⁻¹

•HLTe+ τ jet becomes important at higher L scenario when HLTe E_{T} threshold increases

Imperial College

London

Offline τ jet tracker isolation performance

$e-\tau$ jet misidentification

• Electrons are ideal candidates to pass τ jet identification criteria since they are single isolated tracks. Need to be able to reject them.

• Consider $E_{T3x3}^{HT}/P_T^{LdgTr}$ = Sum of 3x3 HCal Tower E_T around ldg track impact point on Calo Surface divided by Ldg Trk P_T

• For $(85+/-0.2)\% \tau$ jet efficiency mark, $E_{T3x3}^{HT}/P_T^{LdgTr}>0.1$ gives lowest e efficiency (2.7+/-0.2)% out of all selections

Imperial College

London

- Further apply veto for candidates with LdgTr @ Ecal pointing to η cracks giving a total
- τ jet eff ~80%

Offline Signal Performance

Imperial College London

Mass Plot

Look at invariant mass between Opposite Sign (OS) reconstructed visible Z products $M_{e+\tau jet}$ since want to minimise the use of Missing E_T at startup

Signal: 195.8 W+jets: 27.5 ttbar+jets: 10.4 Zà ee: 17 S/√(S+B) ~26

Contribution of QCD is currently being evaluated

Background Estimation

- The charges of the electron and τ jet in Signal events are opposite
 - This gives a good handle for selecting a Signal-Free mass window by looking at Same Sign (SS) $M_{e+\tau jet}$
 - Background contribution in the Opposite Sign (OS) mass window can be extracted by looking at the number of events and shape of the SS mass window
- Charge correlations between QCD and EWK processes are different so treat separately
 - For W+jets, ttbar ,Z+jets->ee, we use dedicated analyses to get the number of events for the corresponding luminosity and apply the selections efficiencies obtained from MC simulations to extract N_{W+jets}^{SS}, N_{ttbar}^{SS}, N_{Z+jets->ee}^{SS}
 - The (OS/SS)_{EWK} ratios are obtained from MC simulations and verified with data
 - For QCD: $N_{QCD}^{SS} = N_{data}^{SS} N_{W+jets}^{SS} N_{t\bar{t}}^{SS} N_{Z+jets}^{SS}$
 - And (OS/SS)_{QCD} can be obtained by looking at events passing a Non-Isolated electron trigger. This trigger has just been approved by CMS so this study is ongoing

W+jets and ttbar Background Estimation

Extracting OS mass dist'n from SS NOS=NSSx(OS/SS)_{MC}

Z->ee Background Estimation

- Extract OS Z->ee contribution by looking at events with reverse electron rejection criteria E_{T3x3}^{HT}/P_T^{LdgTr}<0.1 (τ-veto)
- Hence $N_{Z->OS}^{e-veto} = N_{Z->eeOS}^{\tau-veto} x \varepsilon_{Z->ee}^{e-veto} / \varepsilon_{Z->ee}^{\tau-veto}$
- This requires knowledge of $\varepsilon_{Z->ee}^{e-veto}/\varepsilon_{Z->ee}^{\tau-veto}$ which can be extracted using "Tag and Probe" methods (See Backup)
- Can also extract mass shape however there are still some discrepancies that need to be understood

Conclusions

- Presented a brief description of some of the aspects of selecting and reconstructing Z->ττ->e+τ jet events
- Performance of the algorithms was discussed
- For 100pb⁻¹ we have ~200 Signal with ~ 55 Bkg events (QCD omitted)
 - Effect of QCD is currently been studied. Recently produced 10pb⁻¹ and results out shortly
- Methods for extracting the number and shape of background events from data were discussed
- Finally a data driven method for measuring the "per event" τ tagging efficiency is presented in the backup. Studies are ongoing to use a more powerful method (System D of D0) to measure the "per jet" efficiency as a function of kinematic variables

Backup

Samples used

- Data Sets used
 - Signal: Pythia Zà $\tau\tau$ à e+ τ jet with $|\eta|_{e,\tau jet}$ <2.5 70GeV/c²<m_Z<110GeV/c²
 - Pythia Zà ee $|\eta|_e < 2.5 \text{ m}_Z > 40 \text{GeV/c}^2$
 - Alpgen W+0,1,2 jets
 - Alpgen ttbar+0,1,2 jets
 - Pythia QCD p_T^{hat} 25-170GeV

Triggering on Z-> $\tau\tau$ ->e+ τ jet events

- Ideally a logical OR between Single Isolated e HLT (e HLT) and the X-channel $e\tau$ HLT should be used
 - However current trigger table designed for L= 10^{32} cm⁻²s⁻¹ has low E_T threshold for eHLT
 - For startup L use only Single e HLT which is ideal for τ tagging efficiency measurement

- However as L increases, e HLT E_T threshold will need to increase accordingly
 - Gain of $e\tau$ HLT on top of e HLT will be more evident

25

20

15

10

5

0.2

Rsig

0.18

τ id tightening

 Look at isolation + leading track finding efficiency in Signal QCD 25<p^{hat}<50 and QCD 50<p^{hat}<170

> 20 Ltr 18

> > 16

14

12

10

8

6

4

2

ᅇ

"Per jet" efficiency w.r.t jets that pass:

 $E_T^{\tau \text{ cand}} > 20 \text{GeV},$

```
E_{T3x3}^{HT}/P_{T}^{Ldg}>0.1,
```

```
\Delta \eta_{LdgTr-HTmax}<0.1,
```

Tighten cuts: R_{sig}=0.05, P_T^{LdgTr}>16GeV QCD_25_50 per jet S/B~22 QCD_50_170 per jet S/B~15

Full Sim

QCD 50<p_hat<170

S_{eff}/B_{eff}, distribution

8.3

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

R_{iso}=0.45

Kinematic Variables

Mass Resolutions

Measuring Electron Rejection Efficiency on Electrons using Z->ee

- Based on tag-probe method used by Egamma people
 - Use events triggered by Single Iso elec HLT
 - Tag: electron passing offline and HLT Id Require only 1 per event
 - Probe: τ candidate passing isolation but without applying e-rej criteria
 AND not collinear to Tag electron
 - Then plot M_(tag-probe) for:
 - a) No e-rejection criteria applied. Events in window=N_{tot}
 - b) With reversed e-rejection (τ -veto) criteria applied . Events in window=N_{τ veto}
 - Contrary to tag-probe method of Egamma we define $M_{(tag-probe)}$ energy and direction of τ candidate and not track information.
 - $\epsilon_{\tau \, veto} = N_{\tau \, veto}/N_{tot}$ and hence can get the e-rej efficiency $\epsilon_{e \, veto} = 1 \epsilon_{\tau \, veto}$

View of M_(tag+probe)

Probe = Ctf Track of 1-prong τ candidate 0.22 E^{HT}T3x3/PTLdgTr>0.1 0.2 0.18 No cut 0.16 0.14 E^{HT}T3x3/PTLdgTr<0.1 0.12 0.1 0.08 0.06 0.04 0.02 90 100 110 120 20 80 M_{e+trk} [GeV/c²] Large lower tail since combining "good" electron with CTF track of calo τ matching 2nd MCe from Z that does not appear in elec cand list (Bad elec)

Probe = Calo Jet of τ candidate

Feasibility of measurement

 $M_{e+\tau jet}$ for Z->ee and backgrounds with no e-rej criteria applied

 $M_{e+\tau jet}$ for Z->ee and backgrounds with reverse e-rej (τ veto) criteria

applied

Tau tagging efficiency measurement method (I)

- Method based on CMS Note 2006/074 (see backup)
 (A. Nikitenko, A. Kalinowski). ORCA based, 30fb⁻¹
 - Ratio of x-sections of Z→II / Z→ττ→I+τ-jet using events (I = e in this study) which fire single-lepton trigger

$$\varepsilon_{\tau \operatorname{tag}} = \frac{N_{e\tau \operatorname{jet}}^{\operatorname{meas}} - N_{ee}^{\operatorname{bkg}}}{N_{ee}^{\operatorname{meas}} - N_{ee}^{\operatorname{bkg}}} \times \frac{BR(Z \to ee)}{BR(Z \to \tau\tau \to e \ \tau - \operatorname{jet})} \times \frac{\varepsilon_{HLT_{1e}^{ee}}}{\varepsilon_{HLT_{1e}^{e\tau \operatorname{jet}}}} \times \frac{\varepsilon_{e}^{ee}}{\varepsilon_{mass\,reco}^{e\tau \operatorname{jet}}}$$
• Parameters which can be extracted from data:
• N^{\operatorname{meas}}_{e+\operatorname{tau-jet}}, N^{\operatorname{meas}}_{ee},
• Br(Z \to ee), Br(Z \to e+\tau) from e.g LEP
• Parameters known from MC or data:
• N^{\operatorname{bkg}}_{e+\operatorname{tau-jet},ee}, \operatorname{eff}_{HLT}, \operatorname{eff}_{\operatorname{mass\,reco}}

Tau tagging efficiency measurement method (II)

- Definition of efficiencies
 - Want to measure τ tagging efficiency on as a pure sample of τ jets as possible, so apply electron rejection selections with efficiency $\epsilon_{\tau q}$ before τ Id is applied

 $\varepsilon_{\text{mass reco}}^{e\tau \text{ jet}} = \varepsilon_{e \,\text{E}_{\text{T}}} \times \varepsilon_{\tau \,\text{E}_{\text{T}}} \times \varepsilon_{\tau \,\text{q}} \times \varepsilon_{\text{m}_{\text{T}}^{e-\text{MET}}} \times \varepsilon_{n \,\text{Jets}} \times \varepsilon_{\Delta \phi_{e\tau}} \times \varepsilon_{E_{\nu}} \times \varepsilon_{m \,\text{sel}}$

- Definition of efficiency measured in note
 - For purpose of note Ldg Track finding efficiency was factored in efficiency

 $\varepsilon_{\tau \operatorname{tag}} = \varepsilon_{\operatorname{Ldg Tr}} \times \varepsilon_{\operatorname{iso}} \times \varepsilon_{1 || 3}$

• This is a global efficiency given that electron rejection criteria are satisfied

Efficiency as a function of t jet E_T is underway, results by end of week
 K.A Petridis
 IOP Lancaster

Tau tagging efficiency measurement result

Summary of Zà ee selection efficiencies (cumulative)

- Assumptions made
 - Statistical errors in Zà ee events assumed negligible
 - Background events passing the Zà ee events assumed negligible
 - Systematic errors were not considered
- tau-id efficiency:
 - (40.5+/-6.3)% (Global and error only statistical). But topology & selection dependent
 - Errors and systematics are under estimation

$\sigma imes BR$ [pb]	1700
single e HLT ($E_T > 15 \text{ GeV}$)	58%
pixel match gsf e ($E_T > 16 \text{ GeV}$)	57%
$\mathrm{gsf}e^+e^-$ pairs with $\mathrm{m}_{ee}>$ 70 GeV/c ²	30%
Events for $100 \mathrm{pb}^{-1}$	51,000