

Calibration of Magnetic Distortions in the LHCb-RICH1 Photon Detectors

The LHCb Detector

b bbar Cross section = $500 \ \mu b$ $10^{12} b$ bbar pairs in one year

A Single-arm spectrometer for

• precision measurements of CP violation in B-hadrons

search for new physics in rare b decays

> **Ring Imaging Cherenkov** (**RICH**) **Detectors** for Particle Identification (PID) in LHCb:

RICH1: upstream of the magnet. momentum range: ~2-60 GeV/c radiators: Aerogel, n=1.03, L=5 cm C_4F_{10} ,n=1.0014, L= 95 cm

RICH1

RICH2

T3

RICH2: downstream of the magnet momentum range 60 to beyond 100 GeV/c radiator: CF_4 , n=1.0005, L=180 cm

March 6, 2008

Working Principle: Cherenkov Radiation

A charged particle travelling in a medium, at a speed faster than the speed of light in that medium, emits Cherenkov Photons.

 $\theta_{\rm c}$

 $\cos \theta_{c} = 1/n\beta$

Speed of the charged particle

Opening angle of the cone of Cherenkov Photons βC

Refractive index of the medium **n**

c m

The RICH1 Detector

- The RICH1 design was motivated
- by the following considerations:
- Available space
- Minimize material within acceptance
- Access to beam pipe

Photon Detectors for the RICH Detectors:

The Choice Pixel Hybrid photon Detectors (HPDs)

Imperial College

London

The Requirements High Quantum efficiency

- High granularity 2.5 x 2.5 mm²
- High active to total area 64% after close packing
- Good signal to noise ratio
- Single photoelectron detection efficiency ~85%
- Readout compatible with 25 ns
- bunch crossing of LHC
- Operable in magnetic field
- ★ B < 50 Gauss
- ★ local shielding
- * offline correction
- Withstand radiation dose of 3kRad/yr

ability demonstrated

Fatima Soomro

signal 5000 e noise 160 e Threshold 1200 e (RMS spread 100e)

The HPD – Internal structure and Working

The HPD – Internal structure and Working

The magnetic field at the HPD plane and Local Shielding for the HPDs.

Notice that the Magnetic field is not uniform and varies from tube to tube.

Mu-metal shield grounded and insulated with ~250µmthick Kapton foil

reference 0 Gauss image.

Characterizing the magnetic distortion (My Future Work)

- Scan a collimated light source over the entire HPD plane.
- Find a relationship between the position of light source on the HPD window and the signal on Si anode.
- Develop a map or look up table.

March 6, 2008

The magnetic distortion system

The magnetic distortion system The LED matrix

A calculation assuming the LED to emit photons at a rate of 1Mhz shows that to scan the entire HPD plane with a resolution of 0.5 mm² will take 6 months!!

It is very important to develop a strategy and pattern, which has an adequate resolution and is less time consuming.

March 6, 2008

Conclusion and current status

- The HPDs are extremely elegant photon detectors providing
- good quantum efficiency
- * good signal to noise
- * excellent resolution
- Their operating conditions in
 - LHCb: not optimal
- Performance can be restored with
- * local shielding
- * calibration
- * offline correction

The distortion system is in advance stages of manufacture and will be delivered to CERN around Easter.
The DAQ and analysis software is yet to be

written.

Spare slides

Particle Identification (PID) in LHCb: Ring Imaging Cherenkov (RICH) Detectors

π/K Separation by different PID methods

(a) Response curve shows
excellent signal to noise separation
(b) QE of a single HPD
(c)The average QE(%) at 270 nm
versus the HPD batch number

March 6, 2008

The field vectors around the HPD plane and under the internal shelf.

March 6, 2008

Fig 4 a, b: Double cross pattern distortions on a shielded HPD with an axial (a) 5.0 mT field applied and a transverse (b) 5.0 mT field applied. The distorted patterns are plotted with squares, overlapped to the reference (0 mT) image.

Fig 4 a, b: Double cross pattern distortions on a shielded HPD with an axial (a) 5.0 mT field applied and a transverse (b) 5.0 mT field applied. The distorted patterns are plotted with squares, overlapped to the reference (0 mT) image.

March 6, 2008

OPTICAL COLLIMATION

March 6, 2008

Smallest LEDs found

- Linear LED arrays
 - 3.0 mm diam, 5.0 mm pitch (round)
 - 1.3 mm length, 1.8 mm pitch (rectangul
- Matrix LED arrays
 - 2.0 mm diam, 2.5 mm pitch (round) 10

March (

The angle of emission is given by:

$$\cos \Theta = \frac{1}{\beta * n(\lambda)}$$

and the number of photons by:

$$\frac{dN}{d\lambda} = N_0 \cdot l \cdot \frac{\sin^2 \Theta}{\lambda^2}$$

$$N\Big|_{\lambda_1}^{\lambda_2} = 4.6 \cdot 10^6 \cdot \Big[\frac{1}{\lambda_2(A)} - \frac{1}{\lambda_1(A)}\Big] \cdot l(cm) \cdot \sin^2 \Theta$$

sensor and FE-chip connected using bump and flip chip technology (failure rate ~ 10⁻⁴)

March 6, 2008

RICH1 Design

Radiation length(total) of RICH1 is 8 X_0

The purpose of the L0 trigger is to reduce the LHC beam crossing rate of 40 MHz to the rate of 1 MHz with which the entire detector can be read out. Due to their large mass, B mesons decays produce often particles with large transverse momentum (p_T) and energy (E_T) respectively. The Level-0 trigger attempts to reconstruct:

- the highest E_T hadron, electron and photon clusters in the calorimeters,
- the two highest p_T muons in the muon chambers.

In addition there is a pile-up system in the VELO, which estimates the number of primary pp interactions in each bunch crossing. The calorimeters calculate the total observed energy and an

Figure 2: Basic principle of detecting the primary vertex PV.

- Vertex resolution
 - ~10 μm in x,y; 50 μm in z
- Proper time resolution ~ 40 fs
- B Mass resolution ~ 15 MeV

The fraction of events with more than one interaction in LHCB is expected to be about 20 % at the nominal luminosity. In this note we describe a system of two backward Si-planes plus associated electronics for pile-up detection. A simple coincidence matrix technique is used for trigger processing at Level-0. The retention of single-events is 95 % for a pile-up rejection factor of 5. More *B*-events can be taken with a looser Level-0 trigger when rejecting the pile-up events. Moreover, double events can be reconstructed when the two interaction vertices are found to be more than a few cm apart. Additionally, the system can be used for luminosity monitoring.

The use of dedicated Si-detector planes plus trigger electronics is proposed here for this purpose (see also [2]). Since the interaction point distribution of LHC has a sigma of 5 cm, a double vertex resolution of 1 cm is enough to separate the primary and secondary vertices for $\sim 90\%$ of events with two interactions. In fig.1 the proposed planes are indicated in the LHCB vertex detector set-up.

The basic idea of the method exploits the geometry of the detecting system. The pile-up detector consists of two planes (A and B) parallel to each other (fig.2). Every plane is a wheel with 6 Silicon counters. In both planes the radii of track hits, R_A and R_B , are recorded. The hits belonging to one track have the following simple relation:

$$\frac{R_B}{R_A} = \frac{Z_B - Z_{PV}}{Z_A - Z_{PV}},\tag{1}$$

where Z_B , Z_A are the detector positions and Z_{PV} is the position of the (unknown) track origin on the beam axis (i.e. primary vertex). The ratio of the two measurements uniquely relates to a certain z-position along the beam axis. The resolution in Z_{PV} is limited by multiple scattering and the chosen effective strip width of the detectors (see table 1). The latter effect dominates. The coincidence matrix method makes use of relation (1) in a correlation plot of R_A vs. R_B . The vertex information can be extracted by summing the entries in a wedge between lines of constant R_B/R_A -ratio. The corresponding z-position is obtained by applying formula (1).

Project Costs (kCHF)

To

Item	RICH1	RICH2
Mechanics, Optics	527	1204
Photodetectors	1473	2290
Electronics	537	814
Gas system, monitoring	365	365
Aerogel	102	-
Total:	3004	4673
tal Cost (incl. spares)	7	677 kCHF

Why silicon

- Low ionization energy (good signal)
- Long mean free path (good charge collection efficiency)
- > High mobility (fast charge collection)
- Low multiple scattering
- Little cooling required

March 6, 2008

Checklist direct/indirect CP violation

	K meson system	B meson system
indirect CP violation (type I):	$\sqrt{(1964)}$ Re(ε) = (1.66 ± 0.02) × 10 ⁻³	Expected to be small, hard to observe <mark> Re(ε_B) < 5 × 10⁻³</mark>
indirect CP violation (type II):	$\sqrt{(1967)}$ Im(ε) = (1.57 ± 0.02) × 10 ⁻³	$\sqrt{(2001)}$ sin2 β = 0.725 ± 0.037
direct CP violation:	$\sqrt{(1988/99)}$ Re(ϵ ') = (2.5 ± 0.4) × 10 ⁻⁶	2004! This seminar: 1. $B^0 \rightarrow K^+\pi^-$ 2. $B^+ \rightarrow D^0[K_S\pi^+\pi^-]K^+$

${f B^0} ightarrow {f K^+} \pi^-$

- Interference between two diagrams of comparable strength: tree and penguin.
- Only one of them carries a **phase** (tree = b \rightarrow u transition, V_{ub}).
- ⇒ Expect (direct) CP violation!
- But cannot predict size of effect because relative strength tree-penguin only poorly known!

The isospinrelated decay $B^{\pm} \rightarrow K^{\pm}\pi^{0}$

At first sight expect the same asymmetry as for $B^0 \rightarrow K^+\pi^-...$ (just replace spectator u by d)

Only contributing to B⁺ decay – does it influence the CP asymmetry?

Detector requirements

 ϕ : The angle between the dilepton and the K π decay planes in the B rest frame.

111ai 011 0, 2000

