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A Single-arm spectrometer for

@ precision measurements of CP violation in B-hadrons

@ search for new physics in rare b decays
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RICH1:

upstream of the magnet.

momentum range:

Ring Imaging Cherenkov

(RICH) Detectors for ~2-60 GeV/c
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Working Principle: Cherenkov Radiation

A charged particle travelling in a medium, at a
speed faster than the speed of light in that

medium, emits Cherenkov Photons.
i)

cos O =1/nB

Speed of the A,

charged particle B

e /
Opening angle of the cone

of Cherenkov Photons ec

Refractive index

of the medium N
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Photon
Detectors

The RICH1 design was motivated

250 e

il Spherical

Aerogel
Mirror

by the following considerations:

. i —
* Available space \@

VELQ exit window |

» Minimize material within acceptance

» Access to beam pipe Plane

Mirror
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The Requirements

The Choice + High Quantum efficiency 8
Pixel Hybrid photon = High granularity 2.5 x 2.5 mm? g AL,
Detectors (HPDs) = High active to total area 00

64% after close packing

Average OE at 270 nm (%)
[ a1
= m
= (=]

-+ (Good signal to noise ratio

5]
I
=]

Fad
=]

-+ Single photoelectron

deteCtK)n eff|C|enCy ~85% i @ 2 4 & 8 10 12 14 16 1B 20 = M

Batch number

120 mm B

-+ Readout compatible with 25 ns

bunch crossing of LHC signal 5000 e

¥ =0 N tic field noise 160 e
e perable in magnetic fie Threshold 1200 e
& " # B < 50 Gauss (RMS spread 100e)

% local shielding
% offline correction
-+ Withstand radiation dose of 3kRad/yr

ability demonstrated
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The HPD - Internal structure and Working
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@ Vacuum tube

@ Quartz window

@ S20 multi-alkali
photocathode(-20 kV)

@ Cross focusing electron optics

@ Si pixel anode at ground
(1024 elements)

@ Pixel anode bump bonded

to readout chip.
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The HPD - Internal structure and Working
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@ Vacuum tube

@ Quartz window

@ S20 multi-alkali
photocathode(-20 kV)

@ Cross focusing electron optics

@ Si pixel anode at ground
(1024 elements)

@ Pixel anode bump bonded

to readout chip.
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The magnetic field
at the HPD plane
and Local Shielding
for the HPDs.

Notice that the Magnetic
field is not uniform and
varies from tube to tube.
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. H¥ Cranss

I {1 Ganss

Test pattern

with locally
shielded HPD

v
= ~140mm

-'-d-‘---
e

Mu-metal shield grounded
and insulated with ~250um-
thick Kapton foil
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measurements

bk, “""%ii,.&mr.'f.l‘*
Distortion patterns for 50
Gauss transverse field
(top) and 50 Gauss axial
field, overlapped with the

reference 0 Gauss image.




Characterizing the magnetic

Imperial College ch
London . _ N

distortion (My Future Work)

@ Scan a collimated light source over the

entire HPD plane.
@ Find a relationship between the
position of light source on the HPD

window and the signal on Si anode.

@ Develop a map or look up table.
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The magnetic distortion system

TOP VIEW

1 (after oniginal
X' STAGE - &y dwg by Trevar)
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The magnetic distortion system The LED matrix

TOP VIEW o A calculation assuming

! —  (ferona By
X STAGE dg by Treor) the LED to emit photons

CIRCLES | at a rate of 1Mhz shows

INDICATE = .
AREAS that to scan the entire
TOBE OUTER £ .
SCANNED BORDER iy HPD plane with a
MOTION INDICATES' s232) : ;

% resolution of 0.5 mm? will

PHYSICAL

EXTENT .ot} @ SEEa. take 6 months!!

OFXY i
STAGE
(EXCLUDING o
)y CABLES) \ | : : ;

GANTRY y RS It is very important to
WITH / ‘Basss -

LIGHT — = eresa
SOURCE Ny develop a strategy and

pattern, which has an

-+

adequate resolution and

) SPACING
X STAGE _‘J AROUND

,, | PERIMETER \| 8o is less time consuming.
ALL DIMENSION o == 70,0 N
ARE IN MM '
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> The HPDs are extremely elegant * The distortion system is in
photon detectors providing advance stages of

* good quantum efficiency manufacture and will be

* good signal to noise delivered to CERN around

* excellent resolution Easter.

* Their operating conditions in * The DAQ and analysis
LHCb: not optimal software is yet to be

» Performance can be restored with written.

* local shielding
* calibration

% Offline correction
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Spare slides
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Magnetic Distortion System - Light Bar, Model 071205 - | TOPVIEW

(after onginal
dwg by Trevor)
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Particle Identification (PID)

in LHCDb:

Ring Imaging Cherenkov (RICH)

Detectors
10
S |
-
=
aly J
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» 4 liguidsollid
z 0!
% TOF, FWHM=100 ps
E
=9
oy
10
16! 10 10° 10

p(GeVic)

/K Separation by different PID methods
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(a) Response curve shows

excellent signal to noise separation

(b) QE of a single HPD

(c)The average QE(%) at 270 nm

versus the HPD batch number
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Si pixel array
(1024 elements)

\ Ceramic carrier

. 41 Crauss

==

Electrode

. (0 Gauss

Solder
bump
bonds

Binary
electronics
chip
CERN/EP-TA2
Optical input

window

The field vectors around the HPD plane and under the mternal shelf

‘(\ ',, Y,
H Helmholtz coils !

CE XY translation
- tables

—
I.l

H Mumetal
shield
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RICH1:
1/4 scale prototype

away
parked POSITION Ll bn
POSITION
& C4F10 Gas
Q‘:’g(;‘-_\ﬁ
&
&
QgQ '+
sean, | AN NS T
Aerogel .
Mirror [
240mm focal length
U B
) 400 mm "
RICH 1 206 —
/ HPD shields
Photocathode plane
06—,
Fatima Soomro Simulated magnetic field inside a Mu-metal
array enclosed in RICH1 shielding box
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TOP VIEW

, (after onginal
X' STAGE dwg by Trevor)

Average OE at 270 nm (%)
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Moving
Screen

OPTICAL COLLIMATION

PA/ADC / PC

R. Mountain, Syracuse University
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SPOT SIZE FWHM [mm]

7.0

6.0

5.0

SPOT SIZE vs GAP LENGTH

@ DATAC (1 led, delrin 1 mm diam, 5/8 thk)
CALC, simplified collimator, 1 mm, 5/8 thk

A DATAD (1 led, delrin 1+0.3 mm diam, 3/4+1/4 thk) .
e CALC, simplified collimator, 0.3 mm, 1/4 thk

O DATAE (1 led, delrin 0.3+1+0.3 mm diam, 1/4+3/4+1i4 thk) .
e==CALC, simplified collimator, 0.3 mm, 1 1/4 thk

B DATAF (1 led, delrin 1+0.3 mm diam, 3/4+1/4 thk, 5/16 thrd) . A

—— CALC, airy disk fwhm, 0.3 mm

5 10 15 20 25 30 35 40 45 50 55 60
GAP LENGTH L [mm]

DII EII F'I

LHCb RICH1 Mag Cal Meeting, 05 Sep 2007 - 5
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RICH2

Photodetectors x[

z

Flat Mirror
‘ 4,2_0m_rad

Spherical
Mirror

CF,

2510 —
| [=-2.54 5.00

[I0o00onnog .10

Anode 17 ﬂ L_

Smallest LEDs found
— Linear LED arrays

* 3.0 mm diam, 5.0 mm pitch (round)

« 1.3 mm length, 1.8 mm pitch (rectangul 1293/, 8910 , ,
. ) i @3.04000f O00Q507.0
— Matrix LED arrays IECE I
-3.5

March ¢ « 2.0 mm diam, 2.5 mm pitch (round) 1o 52.2
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The angle of emission is given by:

1
B UOn(h)

cos @ =

and the number of photons by:

* B\l
aN _ NODlemz@
d) A
Az 3 6 )
Ms 4.6010 [{M}A)- /Y (cm) sin” ©

Fatima Soomro
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The
Cherenkov
radiation
condition:
The same, but let us consider how a
charged particle interacts with the medium ¢ real M

m and

En 0< cos(@ )< 1 /
Conservationof i If:
energy and momentum LN :8 Nk Ww<<ym= E

k<< fym= p
The behavior of a photon in >= R
a medium is described by 5 then:
the dispersion relation S k_ L 1
: ¢ cos@ =
i) B e

March 6, 2008 Fatima Soomro X 2%
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pa ek hack

bumps: 50 pm pitch
sensor and FE-chip connected Ph&n or In
using bump and flip chip technology E-20 um high
(faibure rate ~ 104 ~J000 [ chip, 48000/ module

l

l 300um G «Silicon sensor

) (U ——

l%& T — = = Solder bumps
_‘F
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RICH1 Design

Photon detector
................ plane 14 by 7 Hybrid ..
Photon Detectors
(HPDs)

Quartz Windows
UV transparent

Flat Mirrors

Glass mirror i
planes

VELO Exit
Window 2mm
aluminium

Gas Enclosure
supports mirrors
and aerogel,
contains C,F,

Lower Photon
detector plane
Mounted on lower
shield

Radiation length(total) of
RICH1 is 8 X,

March 6, 2008

Upper Magnetic
Shielding Protecting
HPDs, mounted on
cavern wall, supports
upper HPDs

Spherical Mirrors
Lightweight carbon
fibre mirrors 1.5%
radiation length

Beampipe
made from
beryllium

RICH1 Exit
Window
Carbon fibre

Magnetic
Flux—

Upper
Magnetic
Shield

beam-line

Lower Magnetic
Shielding mounted
on cavern floor,
supports lower HPDs
and Gas Enclosure

Trigger
Tracker

Lower
Magnetic
Shield

L
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Pile-up system
Calorimeters
Muon system

Full detector
information
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40 MHz 9 :I Momentum Resolution I
¢ = Der
o L — 4
Level-0: 05F P
»  prof Custom Electronics ++++
W, e, h, Y 0.4 ; -
03F
1 MHz 02F
l 0.1F
HLT: .
Confirm level-0 81 o b e e e L
I e h, y alleys 8001 p distribution for B tracks
- inclusive/exclusive Events Filter Farm
selections
kiHZ 0 20 40 60 RO 100 120 140
2 p [GeVic]
Figure 123, Scheme of the LHCb trigger.
The purpose of the LO trigger is to reduce the LHC beam crossing rate of 40 MHz to the rate
of 1 MHz with which the entire detector can be read out. Due to their large mass, B mesons decays
produce often particles with large transverse momentum (pT) and energy (ET) respectively. The
Level-0 trigger attempts to reconstruct:
e the highest E1 hadron, electron and photon clusters in the calorimeters,
» the two highest pt muons in the muon chambers.
In addition there is a pile-up system in the VELO, which estimates the number of primary pp in-
teractions in each bunch crossing. The calorimeters calculate the total observed energy and an
Fatima Soomro 30
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Figure 2: Basic principle of detecting the primary vertex PV
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Impact Parameter Resolution
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The fraction of events with more than one interaction in LHCB is expected to be
about 20 % at the nominal luminosity. In this note we describe a system of two backward
Si-planes plus associated electronics Tor pile-up detection. A simple coincidence matrix
technique is used for trigger processing at Level-0. The retention of single-events is 95 %
for a pile-up rejection factor of 5. More P-events can be taken with a looser Level-0 trigger
when rejecting the pile-up events. Moreover, double events can be reconstructed when
the two interaction vertices are found to be more than a few cm apart. Additionally, the

svstem can be used for luminosity monitoring.

The use of dedicated Si-detector planes plus trigger electronics is proposed here for this
purpose (see also [2]). Since the interaction point distribution of LHC has a sigma of 5 em |, a
double vertex resolution of 1 cm is enongh to separate the primary and secondary vertices for
~ 90% of events with two interactions. In fig.1 the proposed planes are indicated in the LHUB
vertex detector set-up.

consists of two planes (A and B) parallel to each other (fig.2). Every plane is a wheel with 6
Silicon counters. In both planes the radii of track hits, 4 and g, are recorded. The hits
belonging to one track have the following simple relation:

Rp Zp — Zpy
i, Z 4 —Z,rvl'.'

(1)

where Zg, Z 4 are the detector positions and Zpy- is the position of the (unknown) track origin
on the beam axis (i.e. primary vertex). The ratio of the two measurements uniquely relates to a
certain z-position along the beam axis. The resolution in Zpy- is limited by mltiple scattering
and the chosen effective strip width of the detectors (see table 1). The latter effect dominates.
The coincidence matrix method makes use of relation (1) in a correlation plot of 174 vs. Rp.
The vertex information can be extracted by summing the entries in a wedge between lines of
constant fiy /R -ratio. The corresponding z-position is obtained by applying formula (1).
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Project Costs (kCHF)

Why silicon
Item RICH1 RICH?2
Hieatanics, Brla 2R o 20 » Low ionization energy ( good signal )
Photodetectors 1473 2290
Electronics 537 814 » Long mean free path ( good charge
Gas system, monitoring 365 365 . .
da 102 s collection efficiency )
S i o » High mobility ( fast charge collection )
» Low multiple scattering
Total Cost (incl. spares) 7677 kCHF » Little cooling required

March 6, 2008 Fatima Soomro



Charge sharing

Back-scattering

menaar chip (eg, silicon)
2

Righ resistivity nelype silicon
'

- mingle plxsl
read-oul cell

Hyhbrid pixel deteciors comprise a CMOS readout
chip which contains a matrix of identical pixels
each of which i1s connected by bump bonding
(see below) to a comesponding element of a
semiconductor  sensor. Where  high  energy
ionizing particles are 0 he detected the sensor
material chosen is generally high resistivity Si for
reasons of cost and uniformity of response. For
x-ray detection higher-Z sensor materials may he
preferred

March 6, 2008

7um RMS lateral spread
(300 um-thickness,

90 V bias)

Not significant if E_<E;/2

18% probability
<E> = EIJH’IE
Reduced effect if low cut
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+ Combination of vacuum

photocathode and solid-state

technologies

AV

¢ (Gain &
,_ Eg ~Ey,
36 eV
Eg=eAV
window -
N
4 E 4
Photo- Photo-
cathode electrom
Focusing - i
electrodes +
" VACULUM
I-\- T
7 T
Silicon
SENSOT \\
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Weak charged current ~ (u,lg, Q)ael(lﬁl?S}Vﬁ &. r v101duU0ll allsCs 1Ol QuUals TTALE

d Weak eigenstate$ grg "rotated" combination of flavour states
“unmixed Weak charged ¢ t~@c ) (l-79)v,(d
/’ Nl;acay “ g'
cre d' Vud Vus V d b'
T "'TT_ s'| = :

cd cs
\., ’ Wl}ﬁre : Vaa Vs Vo d
Sl Vi ke el S

Cs

“mixed dECHY"Cab1bbo-Kobayash1—Maska KGKM) atl;lx b
ts th
. lements give weak ; : 2
=K. hi-Mask KM
Mixing phase measuratﬁe > Vi, s'gé%veen b Cablbivﬂghaﬁ—l askawa (CKM) matrix

dependent decay rate, H‘ﬂﬁﬁ!ﬁaﬁﬁée
and “unmixed” decays interfere!

(provided that CP violation in decay -
amp“’[ude is neg |ig ib|e) Unitarity of the CKM matrﬂygflfeg%?éﬁ%hships between

the rows and columns 2V Vi

Elements give weak

couplings between b

One of these
indirect CP violation (type I): Re{ane(t.66k0.02xkipo3 N4 ¥ VH)

in complex plane:
indirect CP violation (type Il):  imh{®)itanils7 tkiong)s!'10-2

. cd cb
in complex plane:
direct CP violation: Re(s') = (2.5 £ 0.4) x 10-° v Unitarity triangle"

35
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The B° has two ways to

decay into J/y Kq: Jiy
b Vor g
“unmixed” decay: Eo = By ~
no phase d .VGSQ
Similar to K mixing (CPLEAR): measure
- w0 interference between mixed and unmixed
d K° - Kg ;
decay. Choose a simple tree decay to a
“mixed” decay: _ CP eigenstate where we do not expect CP
phase of Viq4! c violation in the decay amplitude: J/ypKg.
- - - Jiy
d E t b c “unmixed

1 T Ve < W+ ecay”
Eo . " t : B° ] b ~ cs*/g /—\d\)’
' ~ = JyK
Via \ KO - Ki BO VRs
\ RO A

“mixed decay”

= Time-dependent interference Vib" Vid

term proportional to: th th*
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Checklist direct/indirect CP violation

K meson system B meson system
indirect CP violation
Expected to be small,
(type I): \/ (1964) hard to observe
Re(¢) = (1.66 + 0.02) x 10-3 |Re(ep)| < 5 x 103

indirect CP violation

(type II):

direct CP violation:

March 6, 2008

v’ (1967) v’ (2001)

Im(s) = (1.57 £ 0.02) x 103 sin2p = 0.725 +0.037
!
v/ (1988/99) 2004!
This seminar:
Re(s') = (2.5 £0.4) x 10-6 1 Bo N K"'Tr_

2. B+ - DK rr*mr]K*

Fatima Soomro 37



Measurement of arg(Vp) u

Aleksan, Dunietz, and Kayser, T

Z. Phys. C 54, 653 (1992) d
W,
In principle possible with

s v
B? _ - Dt
d d

But: the interference term is tiny!

BO — D+mr—is strongly suppressed because d
of small V, and Vg4! (Doubly Cabibbo-suppressed)
D+
C
Via| b . u
=Y N i 0 T
B b 't ' B d d

March 6, 2008 Fatima Soomro
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Measurement of arg(Vp) u

Aleksan, Dunietz, and Kayser,

Z. Phys. C 54, 653 (1992) S
W-* ”
The solution: b o’ c
use BS0 instead of BO! E 0 -
(Vo is large!) S s s

No longer possible at Y(4S) B factories!
Must be done at hadron colliders: LHCDb

March 6, 2008 Fatima Soomro
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B0 — K+~

* Interference between two
diagrams of comparable
strength: tree and penguin.

* Only one of them carries a
phase (tree = b — u transition,
Vi)

= Expect (direct) CP violation!

* But cannot predict size of
effect because relative
strength tree-penguin only
poorly known!

March 6, 2008
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“penguin diagram”
(loop decay)
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There is another diagram:
The electroweak penguin!

The isospin-
related decay
B - K0

At first sight expect the same
asymmetry as for B? - K+r—...
(just replace spectator u by d)
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...but wait!
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Only contributing to B* decay — does it influence the CP asymmetry?



Detector requirements
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Rare decays: B, — K'upn

¢ :The invariant mass squared of the dilepton system
8, :The angle of the positive lepton in the dimuon rest frame wrt the

B flight direction.
8, :The angle of the Kaon in the K rest frame wrt the B flight

direction.
@ : The angle between the dilepton and the KT decay planes in the

B rest frame. —
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