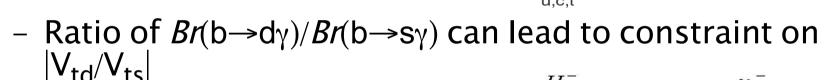
Evidence for b→dγ Transitions Using a Sum of Exclusive Final States

Mark Tibbetts, Imperial College London
On behalf of the BaBar Collaboration


Outline

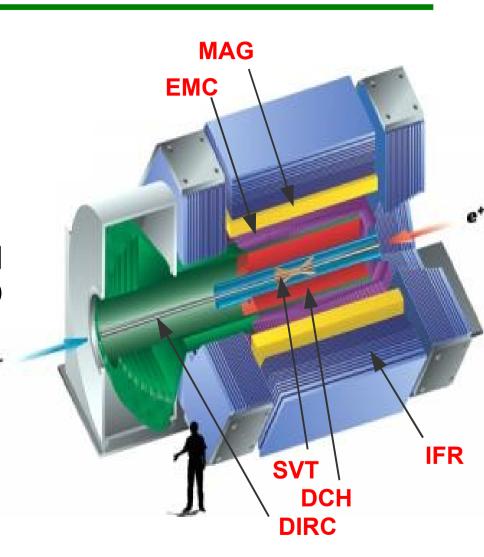
- Theoretical Motivation
- The BaBar Experiment
- Analysis Overview
- Backgrounds
- Fit Strategy
- Results
- Summary and Future Work

Motivation

- b \rightarrow d γ and b \rightarrow s γ are FCNC forbidden at tree level in SM
- Leading order processes are one-loop electroweak penguin diagrams
- SM motivation

SUSY

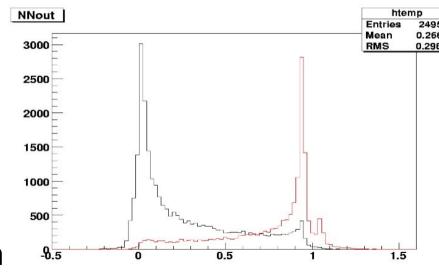
- NP motivation
 - New virtual particles may contribute to the loop (eg. charged Higgs or chargino and squarks in SUSY)
 - SM $Br(b\rightarrow d\gamma)$ is smaller than $Br(b\rightarrow s\gamma)$ due to CKM suppression; could evidence for NP be seen here?


PEP II B Factory

- Asymmetric e⁺e⁻ collider
- Tuned to Y(4S) resonance
 - $-\sqrt{s} = 10.58 \text{GeV}$
 - 3.1GeV e⁺; 9.0GeV e⁻
- Nearly continuous bunch crossing at ~5ns spacing
- ~0.5ab⁻¹ delivered data
 - 460M BB pairs recorded
- Instantaneous luminosity record
 ~1.2x10³⁴cm⁻²s⁻¹

BaBar Detector

- Charged tracks from 5 layer vertex tracker (SVT) and 40 layer He drift chamber (DCH) in 1.5T field (MAG)
- Photons from CsI(TI) crystal EM calorimeter (EMC)
- Pion/kaon PID from DCH dE/dx and Cerenkov detector (DIRC), muon ID from instrumented flux return (IFR)
- Trigger on DCH hits and EMC clusters
 - L1 (hardware) ~2500Hz
 - L3 (software) ~300Hz


Analysis Overview

- Reconstruct 7 exclusive B→X_dγ final states
- Use 2 hadronic mass bins
 - Low mass region dominated by ρ , ω resonances
 - $0.6 \le M(X_d) < 1.0 \text{ GeV}$
 - High mass bin
 - $1.0 \le M(X_d) \le 1.8 \text{ GeV}$
- Reconstruct corresponding B→X_sγ final states
 - Reverse PID requirements from pion to kaon on one track
 - Same selection criteria for X_d and X_s
 ⇒ many uncertainties cancel in ratio

- $B^0 \rightarrow \pi^+(K^+)\pi^-\gamma$
- $B^+ \rightarrow \pi^+(K^+)\pi^0\gamma$
- $B^+ \rightarrow \pi^+(K^+)\pi^-\pi^+\gamma$
- $B^0 \rightarrow \pi^+(K^+)\pi^-\pi^0\gamma$
- $B^0 \rightarrow \pi^+(K^+)\pi^-\pi^-\gamma$
- $B^+ \rightarrow \pi^+(K^+)\pi^-\pi^+\pi^0\gamma$
- $B^+ \rightarrow \pi^+(K^+)\eta\gamma$
 - all $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$

Backgrounds

- Contributions from generic B and continuum backgrounds
- Generic B events with high energy (HE) photon from asymmetric π⁰/η decay
 - Veto events where the HE photon used in B reco can make a π^0/η with any other photon in the event
- Continuum backgrounds (dominant)
 - Arise from any HE photon, eg. ISR or π^0/η decay
 - Combine event shape and 'tag B' information variables (eg. Lepton content of rest of the event) in Neural Net to discriminate between BB and udsc events

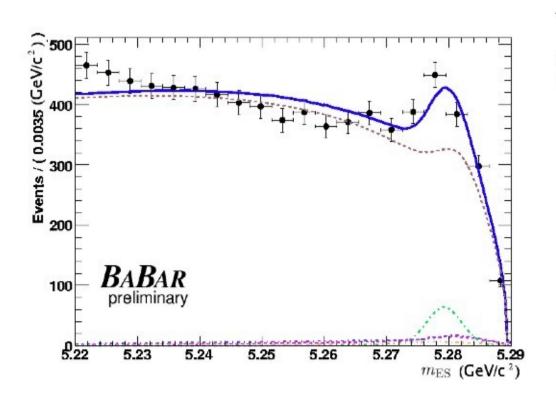
Fit Strategy

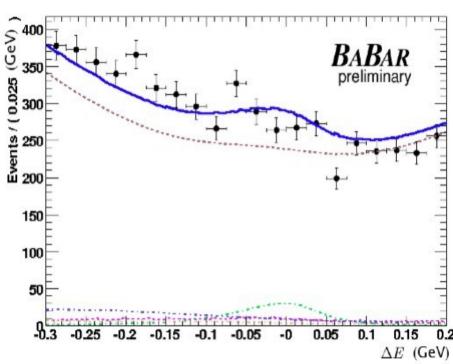
- Common BaBar reco B kinematic variables
 - Beam energy substituted mass (m_{ES}) of reco B; peaks at B mass for signal

$$m_{ES} = \sqrt{\frac{1}{4} s - |p_B^*|^2}$$

* Denotes CM frame

 Difference in beam energy and energy of reco B (ΔE); peaks at 0 for signal

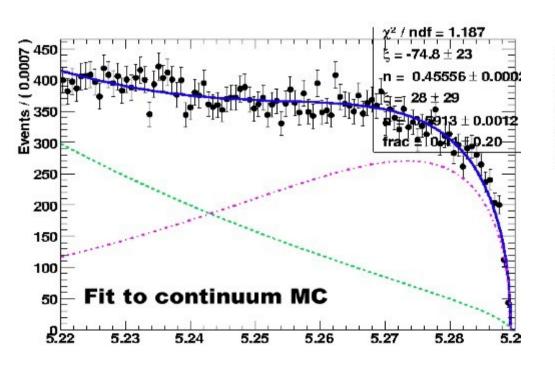

$$\Delta E = E_B^* - \frac{1}{2} \sqrt{s}$$

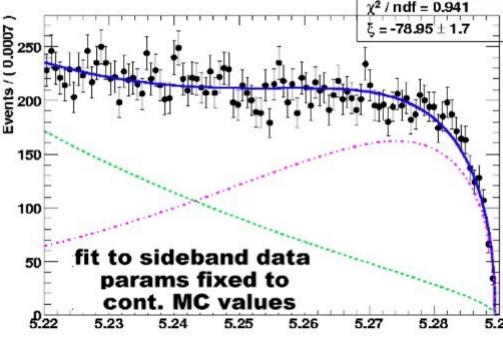

- Signal yield is extracted from a 2D Maximum Likelihood Fit to ΔE and m_{FS} distributions
- PDF shapes are optimised on signal and generic MC samples and then fit to data – blind analysis

Results

Preliminary result for the 1.0-1.8GeV mass bin for B→X_dγ final states were presented at LP '07 (arXiv:0708.1652v1)

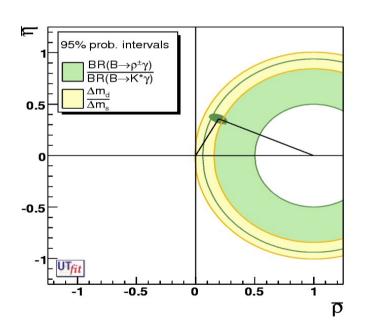
$$\sum_{i=1}^{7} Br(B \to X_d \gamma)_{1.0 < m_{X_d} < 1.8 GeV} = 3.1 \pm 0.9 (stat.)_{-0.5}^{+0.6} (sys.) \pm 0.5 (model) \times 10^{-6}$$

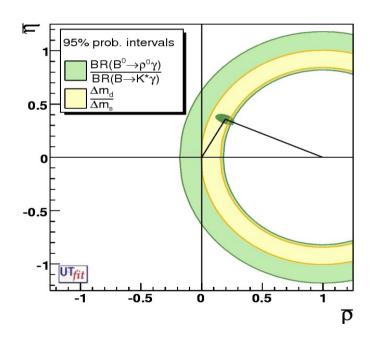

Summary and Future Work


- LP result is first evidence for non-resonant hadronic b→dγ transitions
- Above results only uses 380M BB pairs, final round of analysis will move to the full dataset
- Analysis is re-blinded and parameterisation being re-optimised
 - Improved continuum PDF for m_{FS}
- Plan to increase hadronic mass upper limit to 2.2GeV
- Looking at possibility of including some $2\pi^0$ modes
 - $B^+ \rightarrow \pi^+ \pi^0 \pi^0 \gamma$; $B^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \gamma$
- Considering how to extrapolate measurement to fully inclusive value and obtain limit on |V_{td}/V_{ts}|

Backup Slides

Continuum Fit


- LP result showed poor fit to the continuum background
- Now used a revised fit strategy 2 argus for udsc instead of one
- udsc MC and data sidebands show how fit has improved



Motivation

- $|V_{td}/V_{ts}|$ can be extracted from the ratio of inclusive BFs
- Currently constrained by exclusive modes $B \rightarrow (\rho, \omega) \gamma B \rightarrow K^* \gamma$ and neutral B mixing results

• In SM A_{cp} for $b\to d\gamma \sim 10\%$ compared to $\sim 1\%$ in $b\to s\gamma$; any deviations due to new physics may be more evident in $b\to d\gamma$ A_{cp}

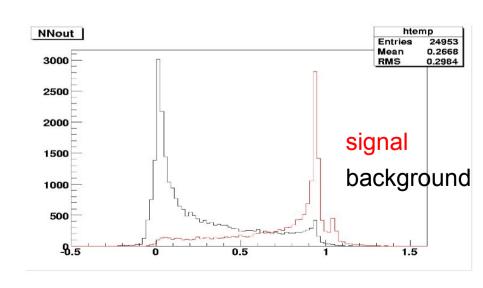
Event Selection

- Current analysis uses ~80% of total Y(4S) dataset
- Initial skim rejects ~98% of total data by looking for events with
 - At least 1 neutral EMC deposit with 1.15 < E* < 3.5 GeV (* denotes Y(4S) frame)
 - At least 2 reco tracks with |p_T|>0.1GeV, >11 DCH hits, (x,y) DOCA to IR <1.5cm, |DOCA(z)|<10cm
 - Ratio of 2nd FW moment to 0th <0.9 in Y(4S) frame
- Remaining backgrounds
 - Continuum with HE photon (eg. ISR or π^0/η decay)
 - Generic B decays with HE photon from π⁰/η decay

Candidate Reconstruction

- Quality cuts minimise combinatoric backgrounds
- High Energy Photon has energy 1.15<E*<3.5GeV in CM frame and EMC deposit >4 crystals
- $\pi^0(\eta)$ candidates constructed from photon pairs with invariant mass 117<m $_{\gamma\gamma}$ <145MeV (470<m $_{\gamma\gamma}$ <620MeV) required to have $|p_{lab}|$ >0.3GeV
- Tracks require |p_{lab}|>0.3GeV
 - X_d candidates all tracks must pass pion PID
 - X_s candidates one track must pass kaon PID and all others pass pion PID

Candidate Reconstruction


- X_d candidate required to have mass 0.6<M(X_d)<1.8GeV
- B candidate cuts use common BaBar kinematic variables
 - Δ E = E_B* ½ √s; peaks at 0 for signal
 - $m_{ES} = \sqrt{(\frac{1}{4}s |p_B^*|^2)}$; peaks at B mass for signal
- Require |ΔE|<0.3GeV and m_{ES}>5.22GeV
- In events with multiple B candidates the candidate with the closest π⁰/η mass to PDG is used
 - Candidates without neutral X_d daughter highest vertex χ^2 candidate chosen

Background Suppression

- Continuum background
 - Dominates for this analysis
 - Event shape variables can help reduce this
 - θ_B* B-meson production angle wrt beam axis
 (CM frame)
 - θ_T Angle between photon and trust axis of ROE (ROE are all tracks and neutrals not used to reconstruct the B)
 - Legendre moments
 - Tag information from ROE
 - Lepton/Kaon content

Background Suppression

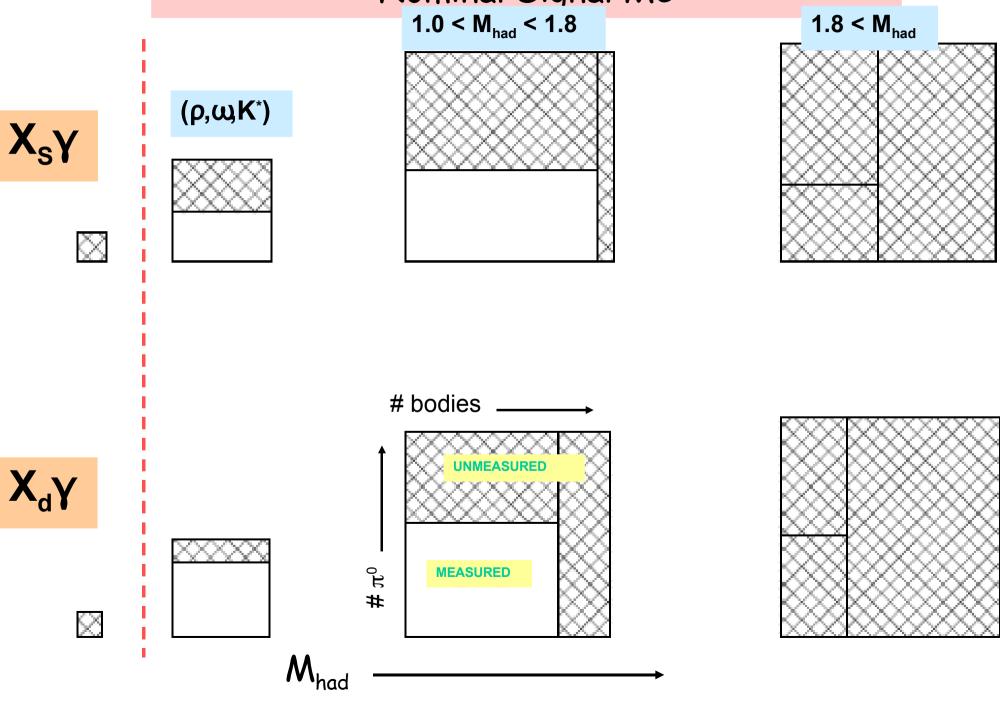
- Continuum background
 - To discriminate continuum from background MVA techniques widely used at BaBar
 - We use 12 event shape and tag variables and combine them in a NN with 2 hidden layers
 - NN is trained on MC to find optimum combination of variables which maximises S/√(S+B)
 - Cut >0.83 on NN output

Signal Efficiency

 Efficiency of cuts on signal X_d MC for 1.0-1.8GeV mass bin

Cut	Value	Efficiency	Cumulative
Mass Region	1.0-1.8GeV	100	100
γ 2 ^{n d} Moment	<0.002	98.9	98.9
γ No Crystals	>4	100	98.9
γ dist to nearest EMC deposit	>25cm	98.3	97.1
γ No dead/noisy EMC crystals	none	100	97.1
Vertex χ2 prob	>0.02	89	86.5
$\pi 0$ mass	117-145MeV	82	85.4
Track momentum	>0.3GeV	92.4	77.3
$\pi 0$ momentum	>0.3GeV	98.3	73.9
$ \cos\! heta_{T} $	<0.8	95	69.2
γ π 0 veto	105-155MeV	89.5	62.1
γη veto	500-590MeV	94.7	58.9
pion PID	passes	81	43.7
NN output	>0.83	51.4	20.6
ΔE^*	-0.3-0.2GeV	89.2	16.3
mES	>5.22GeV	92.9	15.7

Measured quantity:


$$\mathsf{R}_{\mathsf{obs}} = \frac{\sum_{i=1}^{7} Br(B \to X_d^i \gamma)}{\sum_{i=1}^{7} Br(B \to X_s^i \gamma)}$$

Electroweak quantity

$$R_{EW} = \frac{\Gamma(b \to d \gamma)}{\Gamma(b \to s \gamma)} = \kappa \frac{\sum_{i=1}^{7} Br(B \to X_{d}^{i} \gamma)}{\sum_{i=1}^{7} Br(B \to X_{s}^{i} \gamma)}$$

How well can we determine κ ?

Breakdown of Measured/Unmeasured Width Nominal Signal MC

Initial plans:

- $X_s\gamma$ fragmentation has been measured well, and correction factors derived. We can apply those correction factors to $X_d\gamma$ and see how K changes.
- Alternative X_sγ model based on R_sγ for ~10 resonances developed; simulate corresponding R_dγ and see how K changes.