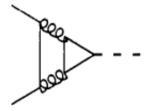


W and Z Measurements with Initial CMS Data

IoP HEPP Meeting 2008

David Wardrope

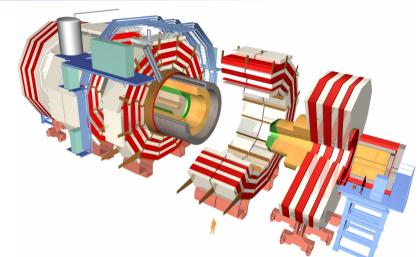
Overview

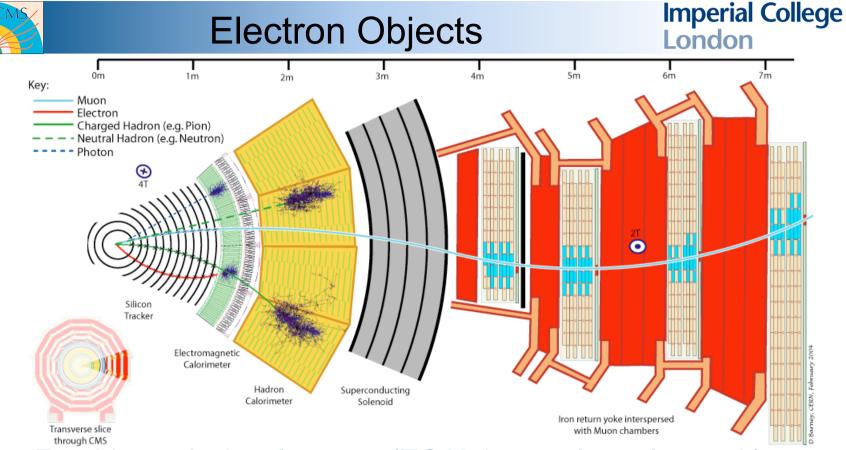

- Motivation for measurements of W and Z using leptons
- The CMS detector
- Electron reconstruction
- Selections of W→ev and Z→ee
- Measuring efficiencies using Tag and Probe
- Estimating background from data
- The cross-section measurement
- Summary

W and Z: Motivation

- W and Z production well-understood theoretically
 - Except for PDF uncertainties, radiative corrections
- Ratios of cross-sections can
 - Provide precision test of standard model
 - Provide information on PDF parameterisations
- Production of W and Z have large cross-sections at LHC: ~190 nb and ~60 nb respectively
 - 10pb⁻¹ sufficient for a significant analysis
- Well isolated leptons with high transverse momenta
 - Distinctive in hadron collisions and readily triggered
- Measurements of W and Z production cross-sections and decays to leptons useful for our understanding of the CMS detector

Philosophy of Analyses

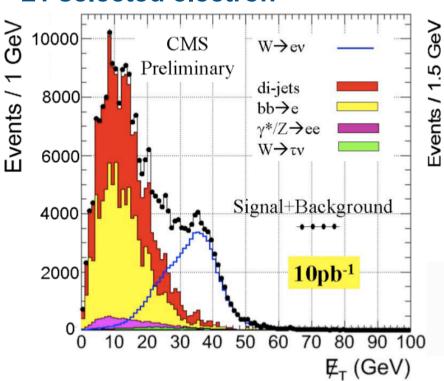

- Focus on early data-taking period (∫Ldt = 10pb⁻¹)
- W and Z measurements will be among the first results from CMS
- The detector will be imperfectly understood
 - The analyses are designed to be insensitive to this
 - Used events fully simulated to represent a misaligned and miscalibrated detector
- Data-driven methods used where possible, rather than relying on Monte Carlo


CMS Detector

- CMS is optimised for a wide range of physics at LHC
 - 4T large radius solenoid

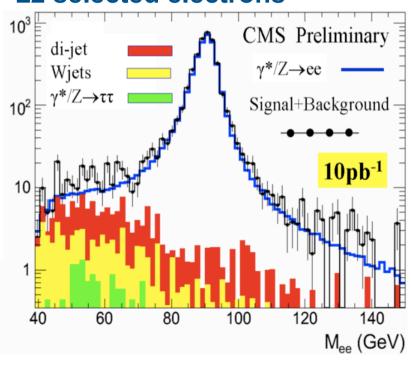
- Large, fine-grained, silicon based inner tracking
- Hermetic, fully active, PbWO₄ crystal electromagnetic calorimeter (ECAL) within the solenoid
- Level 1 trigger system hardware based
- High Level Trigger (HLT) software on commodity PCs

- For this analysis, electrons (ECAL 'supercluster' + track) must
 - Have supercluster, E_T > 20 GeV in ECAL fiducial region
 - Pass track isolation
 - Pass electron identification criteria : cluster shape properties and track-supercluster matching



Robust Selections

Imperial College London


W→ev selection:

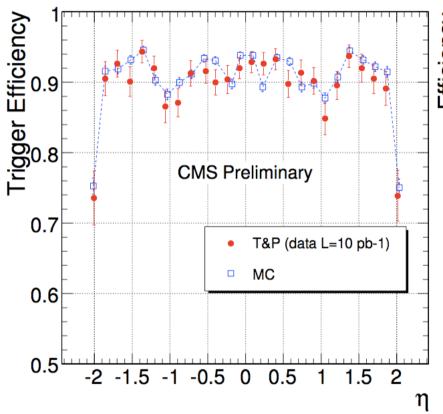
- Pass single electron HLT path
- •≥1 selected electron

Z→ee selection :

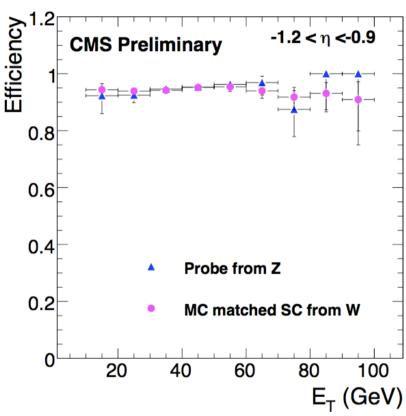
- Pass single electron HLT path
- •≥2 selected electrons

Missing transverse energy after selection

Invariant mass after selection

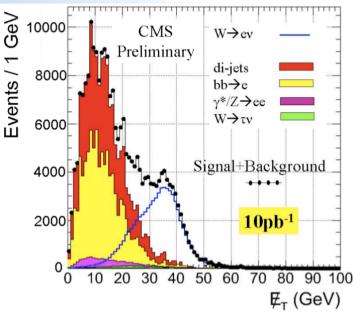

Efficiencies – Tag and Probe

- Trigger, reconstruction and selection measured from data by the "Tag and Probe" method
- An unbiased and pure sample of leptons is selected from Z→II events (single lepton trigger used)
 - One lepton has tight criteria imposed on it, "tagging" the event – it must be able to pass the trigger
 - The probe need satisfy only very loose criteria, ensuring an unbiased sample
 - An invariant mass cut on the tag-probe pair ensures the purity of the probe sample
- The probe sample then used to determine efficiencies



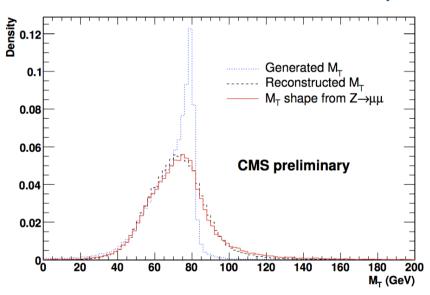
Efficiencies - Example

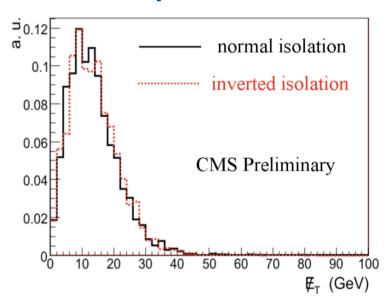
Single muon trigger efficiency for muons with $p_T > 20$ GeV, in selected $Z \rightarrow \mu\mu$ events


Supercluster-Track matching efficiency for superclusters in ECAL fiducial region and $E_T > 20 \text{ GeV}$

W Background Estimation I

- Small electroweak backgrounds can be reliably estimated from simulation
- QCD backgrounds much larger and are difficult to simulate: must be determined from data
 - One jet may fake an electron; missing E_T arises from badly measured energy
 - b decays are source of real electrons
- Two data-driven techniques explored – "Template" and "Matrix"





The "Template" Method

- Templates predefined shapes of distribution of some background discriminating variable
- Determine from data for signal and background
- Simultaneously fit background and signal shapes to distribution observed in selected sample – estimates yields

W→lv shape estimated from Z→ll data

Shape of QCD di-jet background to W→ev

Measuring the Cross-Section

$$\sigma(pp \to W) \times Br(W \to lv) = \frac{N_{observed} - N_{background}}{\varepsilon \times A \times \int L dt} \text{ (Similarly for pp} \to Z)$$

$N_{selected} - N_{bkgd}$	67954 ± 674
Tag&Probe ε_{total}	$65.1\pm0.5~\%$
Acceptance	$52.3 \pm 0.2 \%$
Int. Luminosity	$10 \ pb^{-1}$
$\sigma_{\rm W} \times BR({ m W} \to { m e}\nu$)	$19.97 \pm 0.25~{ m nb}$
cross section used	19.78 nb

•	
$N_{selected}$	3914 ± 63
N_{bkgd}	assumed 0.0
Tag&Probe ε_{total}	$68.1\pm0.6~\%$
Acceptance	$32.39 \pm 0.18 \%$
Int. Luminosity	$10 \ pb^{-1}$
$\sigma_{Z/\gamma^*} \times BR(Z/\gamma^* \to e^+e^-)$	$1775\pm34~\mathrm{pb}$
cross section used	1787 pb

- Errors in table are purely statistical
- Systematic errors anticipated
 - Int lumi ~ 10%
 - Signal yield ~5% (for W→ev)
 - Acceptance ~1%

Summary

- In recent months, CMS has focused on preparing analyses for early data
 - (https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults)
- Measurement of inclusive pp→W→Iv and pp→γ*/Z→II
 - Detector simulated with miscalibration and misalignment
 - Robust selections applied to account for these imperfections
 - Realistic, data-driven methods developed to determine efficiencies and signal and background yield
- Important to "rediscover" the Standard Model
 - For understanding CMS
 - Step toward potential discoveries
- These analyses will be further developed and LHC collision data is eagerly anticipated later in 2008

ADDITIONAL SLIDES

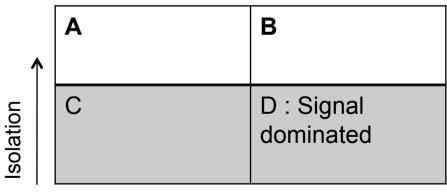
Selections – Electrons Additional

Imperial College London

- ECAL fiducial region is |η|<1.4442 and 1.56<|η|
 <2.5 (excludes the barrel-endcap transition)
- Track Isolation :
 - sum over all tracks with $p_T > 1.5$ GeV, within an annular cone (limits $0.02 < \Delta R < 0.6$) centred on the electron : $\sum_{t=ab} \left(\frac{p_T^{track}}{p_T^{ele}}\right)^2 < 0.02$

• Electron Identification:

- cuts on ratio of hadronic energy deposited behind supercluster to supercluster energy
- Cluster shape in η
- Matching between supercluster position and track direction at vertex in both η and φ

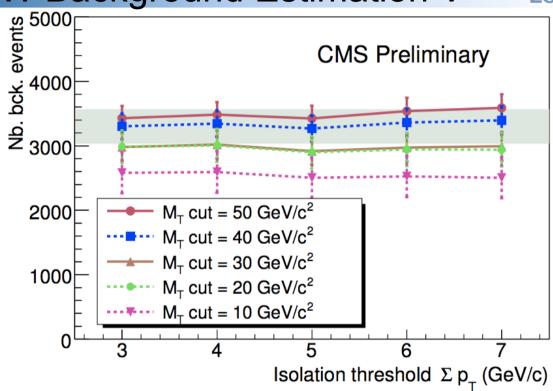


W Background Estimation IV

Imperial College London

- "Matrix" method has been used to estimate background
 - Uses two uncorrelated background discriminating variables to form 4 regions – 1 signal dominated and the others ~ signal free
 - Number of QCD background events in signal region DN_{OCD}

$$N_{QCD} = \frac{N_B N_C}{N_A}$$


Missing Energy

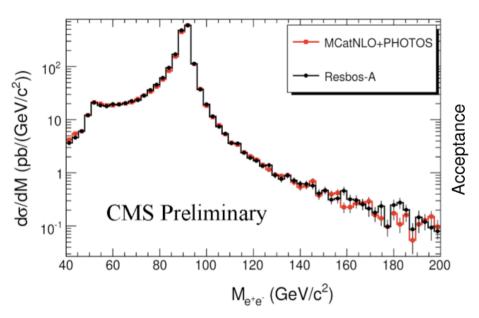
Can estimate signal contamination of regions A, B and C

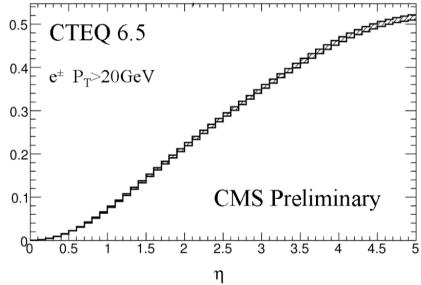
W Background Estimation V

- Background events in W signal region evaluated by matrix method, for various definitions of background regions (signal region fixed)
- True number of background events with statistical uncertainties are shown as grey band

Theoretical Uncertainties I

- The theoretical uncertainties expected in the measurement of the pp→γ*/Z→II inclusive cross section have been studied
 - Higher order terms & EWK corrections, PDF and renormalisation scales
- Using MC@NLO interfaced to PHOTOS, the overall theoretical uncertainty has been demonstrated to be ≈ 1%
- Comparisons were carried out between MC@NLO+PHOTOS and ResBos-A




Theoretical Uncertainties II

Imperial College London

Comparison of γ*/Z→ee invariant mass distributions between MC@NLO+PHOTOS and ResBos-A

Uncertainty on acceptance of γ^*/Z —ee due to PDFs, against electron $|\eta|$ cut

