The Daya Bay Reactor Antineutrino Experiment

measuring the mixing angle $\theta_{\rm 13}$

Christopher White

Transforming Lives. Inventing the Future. www.iit.edu

Neutrinos have mass? I didn't even know they were Catholic!

Black Diamond **Ev** Neutrino Carabiner

Neutrino Mixing: PMNS Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric, K2K, MINOS, T2K, etc. $\theta_{23} \sim 45^{\circ}$ Reactor Accelerator $\theta_{13} < 12^{\circ}$ Solar KamLAND $\theta_{12} \sim 30^{\circ}$

Known: $|\Delta m_{32}^2|$, $\sin^2 2\theta_{23}$, Δm_{21}^2 , $\sin^2 2\theta_{12}$ Unknown: $\sin^2 2\theta_{13}$, δ_{CP} , Sign of Δm_{32}^2 Importance of θ_{13}

- It is one of the key parameters in determining the leptonic mixing matrix.
- What is v_e fraction of v_3 ?

• U_{e3} is the gateway to CP violation in neutrino sector:

Imperial College, May 20, 2009

Fogli etal., hep-ph/0506083

What Should Be Done ?

· APS Neutrino Study Group:

• An expeditiously deployed multidetector reactor experiment with sensitivity to \overline{v}_{e} disappearance down to $\sin^{2} 2\theta_{13} = 0.01$, an order of magnitude below present limits.

• Neutrino Scientific Assessment Group:

The United States should mount one multi-detector reactor experiment sensitive to \overline{v}_{e} disappearance down to $\sin^{2}2\theta_{13}\sim 0.01$.

Reactor Antineutrinos \overline{v}_e

 Fission processes produce neutron rich isotopes which beta decay quickly, releasing huge numbers of low-energy antineutrinos...

Christopher White, IIT

Chooz: First Attempt In Measuring θ_{13}

Measure ratio of interaction rates in multiple detectors

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$
Small-amplitude oscillation
due to θ_{13} integrated over E
$$Large-amplitude oscillation due to \theta_{12}$$

$$U = 10^{-10} e^{\frac{1}{9}} e$$

100

detector 2

10

Baseline (km)

detector 1

0.

0.3

Christopher White, IIT

Imperial College, May 20, 2009

The Daya Bay Collaboration

Europe (3) (9) Political Map of the World, June 1999 ~ 218 collaborators JINR, Dubna, Russia **Kurchatov** Institute, Russia **Charles University, Czech Republic** 111-7 North America (15)(~83) Asia (18) (~126) BNL, Caltech, Cincinnati, George Mason Univ., **IHEP**, Beijing Normal Univ., Chengdu Univ. LBNL, Iowa State Univ., Illinois Inst. Tech., of Sci. and Tech., CGNPG, CIAE, Dongguan Princeton, RPI, UC-Berkeley, UCLA, Polytech. Univ., Nanjing Univ., Nankai Univ., Univ. of Houston, Univ. of Wisconsin, Shandong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Virginia Tech., Univ. of Hong Kong, Univ. of Illinois-Urbana-Champaign Anteretics'

Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Christopher White, IIT

Imperial College, May 20, 2009

• Utilize the Daya Bay nuclear power complex to:

determine $\sin^2 2\theta_{13}$ with a sensitivity of 0.01

by measuring deficit in v_e rate and spectral distortion.

How to measure $sin^22\theta_{13}$ to 0.01

CHOOZ: R=1.01±2.8%(stat) ±2.7%(syst), $sin^22\theta_{13} < 0.17$ Higher statistics

- 40 ton-GW \rightarrow 1400 ton-GW at Daya Bay
- Statistical error 0.2% in 3 years.

Lessons from past experience:

- Need near and far detectors
- Chooz: Good Gd-LS
- Palo Verde: Go deeper, good muon system
- KamLAND: No fiducial cut, lower threshold

Parameter	Relative error	Daya Bay
Reaction cross section	1.9 %	Cancel out, Near/far
Number of protons	0.8 %	Reduced to <0.3%, filling tank with load cell
Detection efficiency	1.5 %	Reduced to ~0.2%, 3-layer detector
Reactor power	0.7 %	Reduced to ~0.1%, Near/far
Energy released per fission	0.6 %	Cancel out, Near/far
Chooz Combined	2.7 %	

Christopher White, IIT

Imperial College, May 20, 2009

Baseline optimization and site selection

Inputs to the process:

- Flux and energy spectrum of reactor antineutrino
- Systematic uncertainties of reactors and detectors
- Ambient background and uncertainties
- Position-dependent rates and spectra of cosmogenic neutrons and ⁹Li

Antineutrino Detection

Signal and Event Rates

$\mathbf{\Lambda}$
Daya Bay
13

Daya Bay near site	840
Ling Ao near site	760
Far site	90

events/day per 20 ton module

 $\overline{v}_{e} + p \rightarrow e^{+} + n$ $0.3 b \qquad \rightarrow + p \rightarrow D + \gamma (2.2 \text{ MeV}) \quad (\text{delayed})$ $49,000 b \qquad \rightarrow + \text{Gd} \rightarrow \text{Gd}^{*} \rightarrow \text{Gd} + \gamma \text{'s (8 MeV) (delayed)}$

Prompt Energy Signal

Delayed Energy Signal

Detection Efficiencies

Geant4-based simulations

Prompt e⁺ Signal

1 MeV cut for prompt positrons: >99%

Delayed n Signal

6 MeV cut for delayed neutrons: 91.5% 0.22% uncertainty assuming $\Delta E = 1\%$

Detector Steel Tank

Delivery of first detector steel tank to Daya Bay Assembly Building

Detector Acrylic Vessel System

Pair of nested acrylic vessels 3.1-m and 4-m diameter, fabricated from UVT acrylic

Assembly of 4m Acrylic Vessel Prototype

Detector Reflective Panels

PMT Ladders with Radial Light Shield

individual conical magnetic shields from 16 µm-thick Finemet→ foil

3 mm thick P-95 acrylic (black matte) as radial shield

eight PMT ladders with 192 8"-PMTs (R5912)

magnetic shield reduces charge variation due to the local magnetic field from 25% to 5%.

Liquid Scintillator Detector Target

0.1% Gadolinium-Liquid Scintillator

- Proton-rich target
- Easily identifiable n-capture signal above radioactive backgrounds
- Short capture time ($\tau \sim 28 \ \mu s$)
- Good light yield

$\overline{v_e} + p$	→ e+ +	n	
	0.3 b	→ + p	o → D + γ (2.2 MeV) (delayed)
	49,000 b	→ + ($\mathrm{Gd} \to \mathrm{Gd}^*$
			└→ Gd + γ's (8 MeV)
Isotopic	Abundanc	е	(delayed)
Gd(152)	0.200		(, , , ,
Gd(154)	2.18	¹⁵⁵ Gd	Σγ=7.93 MeV
Gd(155)	14.80	157 Gd	
Gd(156)	20.47	Gu	
Gd(157)	1 5.65		
Gd(158)	24.84		
Gd(160)	21.86	other Gd is small neutr	otopes with high abundance have very on capture cross sections

Gd-LS

- Daya Bay experiment will use 200 ton normal liquid scintillator and 200 ton 0.1% gadolinium-loaded liquid scintillator (Gd-LS).
 Gd-TMHA + LAB + 3g/L PPO + 15mg/L bis-MSB
- The stability of the Gd-LS has been tested for two years with IHEP prototype detector (half ton Gd-LS) and high temperature aging tests in lab.
- All Gd-LS will be produced as one batch on-site, to ensure IDENTICAL detectors. The mixing equipment has been tested at IHEP and will be reassembled on-site.
- 4-ton production test is on-going.

AD is filled with liquids from three reservoirs: GD-LS, LS, and MO

3-zones of detector have to be filled simultaneously to avoid stresses on the acrylic vessels

We assemble and fill pairs of detectors. Filling within ~2 weeks from each other.

AD Filling and Target Mass Measurement

Christopher White, IIT

Imperial College, May 20, 2009

Design criteria from physics considerations

Item	Requirement	Justification
Target mass at far site	≥80 T	Achieve sensitivity goal in three years over al-
		lowed Δm_{31}^2 range
Precision on target mass	≤0.3%	Meet detector systematic uncertainty baseline
		per module
Energy resolution	$\leq 15\%/\sqrt{E}$	Assure accurate calibration to achieve re-
		quired uncertainty in energy-threshold cuts
		(dominated by energy threshold cut)
Detector efficiency error	<0.2%	Should be small compared to target mass un-
		certainty
Positron energy threshold	≤1 MeV	Fully efficient for positrons of all energies
Radioactivity singles rate	≤50 Hz	Limit accidental background to less than
		other backgrounds and keep data rate man-
		ageable

key feature of experiment: "identical detectors" at near and far sites

Antineutrino Detector Event Distributions

Detector-Related Uncertainties

		Absolute measuremer	Relat nt meas	ive surement	
Sourc	e of uncertainty	Chooz	I	Daya Bay	(relative)
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	<0.01	< 0.01
Total detect	or-related uncertainty	1.7%	0.38%	0.18%	0.12%
					Def: Dave Bay TDI

Ref: Daya Bay TDR

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Antineutrino Detector Assembly at Daya Bay

March 2009: Assembly building occupancy Summer 2009: Near Hall occupancy Summer 2010: Near Hall ready for data Summer 2011: Far Hall ready for data

Deployment of Antineutrino Detectors

2. Filling detectors underground with liquids

3. Moving on < 0.5% tunnel grade when full (~110 t)

4. Lifting full detector (~110t) into water pool

5. Swapping detectors optional

 Detector modules enclosed by 2.5 m of water to shield energetic neutrons produced by cosmic-ray muons and gamma-rays from the surrounding rock

- Divided by Tyvek into Inner and Outer regions
- Reflective Paint on ADs improves efficiency
- Calibration LEDs placed according to simulations

RPC Cover over Water Pool

RPC Assembly

-RPC module delivering table, which can lift the module to the height on module rack. Gas system is behind the module rack.

Automated Calibration System

HKU MO clarity device

Major Prototype Test Results:

- Completed >20 years worth of cycling
- No liquid dripping problem
- Tested limit switch precision and reliability

Each unit deploys 3 sources: ⁶⁸Ge, ²⁵²Cf, LED

Civil Construction

Christopher White, IIT

Imperial College, May 20, 2009

Civil Construction

Daya Bay Is Moving Forward Quickly

Groundbreaking Ceremony: Oct 13, 2007

- October 2007, Ground Breaking
- March 2009, Surface Assembly Building Occupancy
 - Antineutrino detector (AD) test assembly
- Summer 2009, Daya Bay Near Hall Occupancy
- Fall 2009, the first AD complete, Dry-run test starts
- Summer 2010, Daya Bay Near Hall Ready for Data
- Summer 2011, Far Hall Ready for Data
- Three years' data taking reach full sensitivity.

Signal and Backgrounds in detector

Sensitivity of Daya Bay

Christopher White, IIT

Daya Bay experiment is designed to measure $\sin^2 2\theta_{13} < 0.01$ at 90% CL in 3 years of data taking.

Daya Bay is the most sensitive reactor θ_{13} experiment.

• Day Bay is funded, civil and detector construction are progressing. Data taking at near site will begin in 2010.

• 3-zone detector design allows observation of antineutrino signal without event reconstruction.

• Daya Bay will use eight "identical" antineutrino detectors Relative detector systematic error < 0.38%.

• Detectors are movable. Swapping is an option but not required to reach baseline sensitivity.

• Summary of signal and background:

	Daya Bay Near	Ling Ao Near	Far Hall
Baseline (m)	363	481 from Ling Ao	1985 from Daya Bay
		526 from Ling Ao II	1615 from Ling Ao
Overburden (m)	98	112	350
Radioactivity (Hz)	<50	<50	<50
Muon rate (Hz)	36	22	1.2
Antineutrino Signal (events/day)	930	760	90
Accidental Background/Signal (%)	<0.2	<0.2	< 0.1
Fast neutron Background/Signal (%)	0.1	0.1	0.1
⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2

• Summary of statistical and systematic budgets:

Source	Uncertainty
Reactor power	0.13%
Detector (per module)	0.38% (baseline)
	0.18% (goal)
Signal statistics	0.2%

Christopher White, III

Imperial College, May 20, 2009

Summary

- Daya Bay will reach a sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$
- Civil construction has begun
- Subsystem prototypes exist
- Long-lead orders initiated
- Daya Bay is moving forward:
 - Surface Assembly Building end of 2008
 - DB Near Hall installation activities begin middle of 2009
 - Assembly of first AD pair end of 2009
 - Commission Daya Bay Hall by Spring 2010
 - LA Near and Far Hall installation activities begin early in 2010
 - Data taking with all eight detectors in three halls by early 2011

If $\sin^2 2\theta_{13} > 0.01$, Then:

Study CP violation in the neutrino sector

• How can we exist?

Thank You

2-zone Prototype at IHEP

Phase-I, started in

- 0.5 ton unloaded LS
- 45 8" PMTs with reflecting top and bottom

2-zone Prototype at IHEP

- 0.5 ton unloaded LS
- 45 8" PMTs with reflecting top and bottom

Phase-I, started in 2006, ended in Jan. 2007

61 IHEP Prototype filled with 0.1% Gd-LS

Gd-TMHA complex synthesis

Phase-II, filled with half-ton 0.1% Gd-LS, started in Jan. 2007 and keep running until now.

The prototype is also used for the FEE and Trigger boards testing.

The Daya Bay Nuclear Power Complex

- 12th most powerful in the world (11.6 GW_{th})
- One of the top five most powerful by 2011 (17.4 GW_{th})
- Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

