Hadron Spectroscopy and Form Factors in AdS/QCD for Experimentalists

Guy F. de Téramond

University of Costa Rica and SLAC

High Energy Physics Group
Imperial College London
October 4, 2010

I. Introduction

Lattice QCD
Gravity
Holographic Correspondence
II. Gauge/Gravity Correspondence and Light-Front QCD

Higher Spin Modes in AdS Space
III. Light Front Dynamics

Light-Front Fock Representation
Semiclassical Approximation to QCD in the Light Front
Light-Front Holographic Mapping
Light Meson and Baryon Spectrum
IV. Light-Front Holographic Mapping of Current Matrix Elements

Electromagnetic Form Factors
V. Higher Fock Components

Detailed Structure of Space-and Time Like Pion Form Factor

HEP, Imperial College, October 4, 2010

I. Introduction

- QCD fundamental theory of quarks and gluons
- QCD Lagrangian follows from the gauge invariance of the theory

$$
\psi(x) \rightarrow e^{i \alpha^{a}(x) T^{a}} \psi(x), \quad\left[T^{a}, T^{b}\right]=i f_{a b c} T^{c}
$$

- Find QCD Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{4 g^{2}} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+i \bar{\psi} D_{\mu} \gamma^{\mu} \psi+m \bar{\psi} \psi
$$

where $D_{\mu}=\partial_{\mu}-i g T^{a} A_{\mu}^{a}, \quad G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+f_{a b c} A_{\mu}^{b} A_{\nu}^{c}$

- Quarks and gluons interactions from color charge, but ... gluons also interact with each other: strongly coupled non-abelian gauge theory \rightarrow color confinement
- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom

Lattice QCD

- Lattice numerical simulations at the teraflop/sec scale (resolution $\sim L / a$)
- Sums over quark paths with billions of dimensions
- LQCD (2009) > 1 petaflop/sec

- Dynamical properties in Minkowski space-time not amenable to Euclidean lattice computations

Gravity

- Space curvature determined by the mass-energy present following Einstein's equations

$$
\underbrace{R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}}_{\text {geometry }}=\kappa \underbrace{T_{\mu \nu}}_{\text {mater }}
$$

$R_{\mu \nu}$ Ricci tensor, R space curvature
$g_{\mu \nu}$ metric tensor $\quad\left(d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}\right)$
$T_{\mu \nu}$ energy-momentum tensor
$\kappa=8 \pi G / c^{4}$,

- Matter curves space and space determines how matter moves !


```
linear ist?
```



```
Foner reluctece
```

```
\[
\left.d_{y}^{\prime \prime} \Gamma_{v a}^{1}\right)=-\frac{1}{2} \delta\left[y_{g^{\prime \prime}}^{n d}\left(\frac{\partial y_{v d}}{\partial x_{d}}+\frac{\partial y_{a d}}{\partial x_{v}}-\frac{\partial g_{x_{r}}}{\partial x_{d}}\right)\right]
\]
Nuen intalon
```

Annalen der Physik 49 (1916) p. 30

$8-2007$
$8685 A 14$

II. Gauge Gravity Correspondence and Light-Front QCD

- The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD, which provides analytical insights into the confining dynamics of QCD
- Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents ...
- Light-front holography provides a remarkable connection between the equations of motion in AdS and the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL 102, 081601 (2009)]
- Isomorphism of $S O(4,2)$ group of conformal transformations with generators $P^{\mu}, M^{\mu \nu}, K^{\mu}, D$, with the group of isometries of AdS_{5}, a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space

Isometry group: most general group of transformations which leave invariant the distance between two points
Dim isometry group of AdS_{d+1} is $\frac{(d+1)(d+2)}{2}$

- AdS_{5} metric:

$$
\underbrace{d s^{2}}_{L_{\mathrm{AdS}}}=\frac{R^{2}}{z^{2}}(\underbrace{\eta_{\mu \nu} d x^{\mu} d x^{\nu}}_{L_{\mathrm{Minkowski}}}-d z^{2})
$$

- A distance L_{AdS} shrinks by a warp factor z / R as observed in Minkowski space $(d z=0)$:

$$
L_{\mathrm{Minkowski}} \sim \frac{z}{R} L_{\mathrm{AdS}}
$$

- Since the AdS metric is invariant under a dilatation of all coordinates $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, the variable z acts like a scaling variable in Minkowski space
- Short distances $x_{\mu} x^{\mu} \rightarrow 0$ maps to UV conformal AdS $_{5}$ boundary $z \rightarrow 0$
- Large confinement dimensions $x_{\mu} x^{\mu} \sim 1 / \Lambda_{\mathrm{QCD}}^{2}$ maps to large IR region of $\mathrm{AdS}_{5}, z \sim 1 / \Lambda_{\mathrm{QCD}}$, thus there is a maximum separation of quarks and a maximum value of z
- Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS
- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \rightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining
 any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Higher Spin Modes in AdS Space

(Frondsal, Fradkin and Vasiliev)

- Lagrangian for scalar field in AdS_{d+1} in presence of dilaton background $\varphi(z) \quad\left(x^{M}=\left(x^{\mu}, z\right)\right)$

$$
S=\int d^{d} x d z \sqrt{g} e^{\varphi(z)}\left(g^{M N} \partial_{M} \Phi^{*} \partial_{N} \Phi-\mu^{2} \Phi^{*} \Phi\right)
$$

- Factor out plane waves along $3+1: \quad \Phi_{P}\left(x^{\mu}, z\right)=e^{-i P \cdot x} \Phi(z)$

$$
\left[-\frac{z^{d-1}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)
$$

where $P_{\mu} P^{\mu}=\mathcal{M}^{2}$ invariant mass of physical hadron with four-momentum P_{μ}

- Define spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 and shifted dimensions $\Phi_{J}(z) \sim z^{-J} \Phi(z)$
- Find AdS wave equation

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi_{J}(z)=\mathcal{M}^{2} \Phi_{J}(z)
$$

III. Light Front Dynamics

- Different possibilities to parametrize space-time [Dirac (1949)]
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- Instant form: hypersurface defined by $t=0$, the familiar one
- Front form: hypersurface is tangent to the light cone at $\tau=t+z / c=0$

$$
x^{+}=x^{0}+x^{3} \quad \text { light-front time }
$$

$x^{-}=x^{0}-x^{3} \quad$ longitudinal space variable
$k^{+}=k^{0}+k^{3} \quad$ longitudinal momentum $\quad\left(k^{+}>0\right)$
$k^{-}=k^{0}-k^{3} \quad$ light-front energy
$k \cdot x=\frac{1}{2}\left(k^{+} x^{-}+k^{-} x^{+}\right)-\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}$
On shell relation $k^{2}=m^{2}$ leads to dispersion relation $k^{-}=\frac{\mathbf{k}_{\perp}^{2}+m^{2}}{k^{+}}$

Light-Front Fock Representation

- LF Lorentz invariant Hamiltonian equation for the relativistic bound state system

$$
P_{\mu} P^{\mu}|\psi(P)\rangle=\left(P^{-} P^{+}-\mathbf{P}_{\perp}^{2}\right)|\psi(P)\rangle=\mathcal{M}^{2}|\psi(P)\rangle
$$

- State $|\psi(P)\rangle$ is expanded in multi-particle Fock states $|n\rangle$ of the free LF Hamiltonian

$$
|\psi\rangle=\sum_{n} \psi_{n}|n\rangle, \quad \quad|n\rangle=\{|u u d\rangle,|u u d g\rangle,|u u d \bar{q} q\rangle, \cdots\}
$$

with $k_{i}^{2}=m_{i}^{2}, \quad k_{i}=\left(k_{i}^{+}, k_{i}^{-}, \mathbf{k}_{\perp i}\right)$, for each constituent i in state n

- Fock components $\psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}^{z}\right)$ independent of P^{+}and \mathbf{P}_{\perp} and depend only on relative partonic coordinates: momentum fraction $x_{i}=k_{i}^{+} / P^{+}$, transverse momentum $\mathbf{k}_{\perp i}$ and spin λ_{i}^{z}

$$
\sum_{i=1}^{n} x_{i}=1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i}=0
$$

Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Compute \mathcal{M}^{2} from hadronic matrix element

$$
\left\langle\psi\left(P^{\prime}\right)\right| P_{\mu} P^{\mu}|\psi(P)\rangle=\mathcal{M}^{2}\left\langle\psi\left(P^{\prime}\right) \mid \psi(P)\right\rangle
$$

- Find

$$
\mathcal{M}^{2}=\sum_{n} \int\left[d x_{i}\right]\left[d^{2} \mathbf{k}_{\perp i}\right] \sum_{\ell}\left(\frac{\mathbf{k}_{\perp \ell}^{2}+m_{\ell}^{2}}{x_{q}}\right)\left|\psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}\right)\right|^{2}+\text { interactions }
$$

- Semiclassical approximation to QCD:

$$
\psi_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right) \rightarrow \phi_{n}(\underbrace{\left(k_{1}+k_{2}+\cdots+k_{n}\right)^{2}}_{\mathcal{M}_{n}^{2}})
$$

with $k_{i}^{2}=m_{i}^{2}$ for each constituent

- Functional dependence of Fock state $|n\rangle$ given by invariant mass

$$
\mathcal{M}_{n}^{2}=\left(\sum_{a=1}^{n} k_{a}^{\mu}\right)^{2}=\sum_{a} \frac{\mathbf{k}_{\perp a}^{2}+m_{a}^{2}}{x_{a}}
$$

Key variable controlling bound state: off-energy shell $\mathcal{E}=\mathcal{M}^{2}-\mathcal{M}_{n}^{2}$

- In terms of $n-1$ independent transverse impact coordinates $\mathbf{b}_{\perp j}, j=1,2, \ldots, n-1$,

$$
\mathcal{M}^{2}=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \mathbf{b}_{\perp j} \psi_{n}^{*}\left(x_{i}, \mathbf{b}_{\perp i}\right) \sum_{\ell}\left(\frac{-\nabla_{\mathbf{b}_{\perp \ell}}^{2}+m_{\ell}^{2}}{x_{q}}\right) \psi_{n}\left(x_{i}, \mathbf{b}_{\perp i}\right)+\text { interactions }
$$

- Relevant variable conjugate to invariant mass

$$
\zeta=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right|
$$

the x-weighted transverse impact coordinate of the spectator system (x active quark)

- For a two-parton system $\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$

- To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties are encoded in the hadronic mode $\phi(\zeta)$ from

$$
\psi(x, \zeta, \varphi)=e^{i M \varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}}
$$

factoring angular φ, longitudinal $X(x)$ and transverse mode $\phi(\zeta)$

- Ultra relativistic limit $m_{q} \rightarrow 0$ longitudinal modes $X(x)$ decouple $\quad\left(L=L^{z}\right)$

$$
\mathcal{M}^{2}=\int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}}+\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta)
$$

where the confining forces from the interaction terms is summed up in the effective potential $U(\zeta)$

- LF eigenvalue equation $P_{\mu} P^{\mu}|\phi\rangle=\mathcal{M}^{2}|\phi\rangle$ is a LF wave equation for ϕ

$$
(\underbrace{-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}}_{\text {kinetic energy of partons }}+\underbrace{U(\zeta)}_{\text {confinement }}) \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Eigenmodes $\phi(\zeta)$ determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time
- Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism

Light-Front Holographic Mapping

$$
\Phi_{P}(z) \Leftrightarrow|\psi(P)\rangle
$$

- LF Holographic mapping found originally matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT $(2006,2008)]$
- Upon substitution $z \rightarrow \zeta$ and $\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\varphi(z) / 2} \Phi_{J}(\zeta)$ in AdS WE

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi_{J}(z)=\mathcal{M}^{2} \Phi_{J}(z)
$$

find LFWE $\quad(d=4)$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

with

$$
U(\zeta)=\frac{1}{2} \varphi^{\prime \prime}(z)+\frac{1}{4} \varphi^{\prime}(z)^{2}+\frac{2 J-3}{2 z} \varphi^{\prime}(z)
$$

and $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

- AdS Breitenlohner-Freedman bound $(\mu R)^{2} \geq-4$ equivalent to LF QM stability condition $L^{2} \geq 0$
- Scaling dimension τ of AdS mode Φ_{J} is $\tau=2+L$ in agreement with twist scaling dimension of a two parton bound state in QCD
- Positive dilaton background $\varphi=\kappa^{2} z^{2}: U(z)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)$
- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta\left|\phi(z)^{2}\right|=1$

$$
\phi_{n L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)
$$

LFWFs $\phi_{n, L}(\zeta)$ in physical spacetime for dilaton $\exp \left(\kappa^{2} z^{2}\right)$: a) orbital modes and b) radial modes

Light Meson and Baryon Spectrum

Regge trajectories for the $\pi(\kappa=0.6 \mathrm{GeV})$ and the $I=1 \rho$-meson and $I=0 \omega$-meson families ($\kappa=0.54 \mathrm{GeV}$)

Same multiplicity of states for mesons and baryons!

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5 \mathrm{GeV}$

- Δ spectrum identical to Forkel, Beyer and Frederico and Forkel and Klempt

IV. Light-Front Holographic Mapping of Current Matrix Elements

[S. J. Brodsky and GdT, PRL 96, 201601 (2006)]

- EM transition matrix element in QCD: local coupling to pointlike constituents

$$
\left\langle\psi\left(P^{\prime}\right)\right| J^{\mu}|\psi(P)\rangle=\left(P+P^{\prime}\right) F\left(Q^{2}\right)
$$

where $Q=P^{\prime}-P$ and $J^{\mu}=e_{q} \bar{q} \gamma^{\mu} q$

- EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in AdS with extended mode $\Phi(x, z)$

$$
\int d^{4} x d z \sqrt{g} A^{\ell}(x, z) \Phi_{P^{\prime}}^{*}(x, z) \overleftrightarrow{\partial}_{\ell} \Phi_{P}(x, z)
$$

- Are the transition amplitudes related ?
- How to recover hard pointlike scattering at large Q out of soft collision of extended objects?
[Polchinski and Strassler (2002)]
- Mapping at fixed light-front time: $\Phi_{P}(z) \Leftrightarrow|\psi(P)\rangle$
- Electromagnetic probe polarized along Minkowski coordinates, $\left(Q^{2}=-q^{2}>0\right)$

$$
A(x, z)_{\mu}=\epsilon_{\mu} e^{-i Q \cdot x} V(Q, z), \quad A_{z}=0
$$

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z \partial_{z}-z^{2} Q^{2}\right] V(Q, z)=0
$$

- Solution $V(Q, z)=z Q K_{1}(z Q)$
- Substitute hadronic modes $\Phi(x, z)$ in the AdS EM matrix element

$$
\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), \quad \Phi(z) \rightarrow z^{\tau}, \quad z \rightarrow 0
$$

- Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons Φ_{P} and $\Phi_{P^{\prime}}$, with the non-normalizable mode $V(Q, z)$ dual to external source [Polchinski and Strassler (2002)].

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} V(Q, z) \Phi_{J}^{2}(z) \rightarrow\left(\frac{1}{Q^{2}}\right)^{\tau-1}
$$

At large Q important contribution to the integral from $z \sim 1 / Q$ where $\Phi \sim z^{\tau}$ and power-law point-like scaling is recovered [Polchinski and Susskind (2001)]

Electromagnetic Form-Factor

[S. J. Brodsky and GdT, PRL 96, 201601 (2006); PRD 77, 056007 (2008)]

- Drell-Yan-West electromagnetic FF in impact space [Soper (1977)]

$$
F\left(q^{2}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \mathbf{b}_{\perp j} \sum_{q} e_{q} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{k=1}^{n-1} x_{k} \mathbf{b}_{\perp k}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2}
$$

- Consider a two-quark π^{+}Fock state $|u \bar{d}\rangle$ with $e_{u}=\frac{2}{3}$ and $e_{\bar{d}}=\frac{1}{3}$

$$
F_{\pi^{+}}\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{b}_{\perp} e^{i \mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}(1-x)}\left|\psi_{u \bar{d} / \pi}\left(x, \mathbf{b}_{\perp}\right)\right|^{2}
$$

with normalization $F_{\pi}^{+}(q=0)=1$

- Integrating over angle

$$
F_{\pi^{+}}\left(q^{2}\right)=2 \pi \int_{0}^{1} \frac{d x}{x(1-x)} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right)\left|\psi_{u \bar{d} / \pi}(x, \zeta)\right|^{2}
$$

where $\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$

- Compare with electromagnetic FF in AdS space

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} V(Q, z) \Phi_{\pi^{+}}^{2}(z)
$$

where $V(Q, z)=z Q K_{1}(z Q)$

- Use the integral representation

$$
V(Q, z)=\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)
$$

- Find

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{1} d x \int \frac{d z}{z^{3}} J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right) \Phi_{\pi^{+}}^{2}(z)
$$

- Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized

$$
\psi(x, \zeta, \varphi)=e^{i M \varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}}
$$

- Find

$$
X(x)=\sqrt{x(1-x)}, \quad \phi(\zeta)=\left(\frac{\zeta}{R}\right)^{-3 / 2} \Phi(\zeta), \quad \zeta \rightarrow z
$$

- Same results from mapping of gravitational form factor [S. J. Brodsky and GdT, PRD 78, 025032 (2008)]
- Expand $X(x)$ in Gegenbauer polynomials (DA evolution equation [Lepage and Brodsky (1980)])

$$
X(x)=\sqrt{x(1-x)}=x(1-x) \sum_{n=0}^{\infty} a_{n} C_{n}^{3 / 2}(2 x-1)
$$

- Normalization

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x(1-x)} X^{2}(x)=\sum_{n} P_{n}=1 \\
\left\langle C_{n}^{\lambda} \mid C_{m}^{\lambda}\right\rangle= & \int_{0}^{1} d x x^{\lambda-1 / 2}(1-x)^{\lambda-1 / 2} C_{n}^{\lambda}(2 x-1) C_{m}^{\lambda}(2 x-1) \\
= & \frac{2^{1-4 \lambda} \pi \Gamma(n+2 \lambda)}{n!(n+\lambda) \Gamma^{2}(\lambda)}
\end{aligned}
$$

- Compute asymptotic probability $P_{n=0} \quad(Q \rightarrow \infty)$

$$
P_{n=0}=\frac{\pi^{2}}{32} \simeq 0.3 \quad\left(a_{0}=\frac{3 \pi}{4}\right)
$$

V. Higher Fock Components

- LF Lorentz invariant Hamiltonian equation for the relativistic bound state system

$$
P_{\mu} P^{\mu}|\psi(P)\rangle=\mathcal{M}^{2}|\psi(P)\rangle
$$

where $P_{\mu} P^{\mu}=P^{-} P^{+}-\mathbf{P}_{\perp}^{2} \equiv H_{L F}$

- $H_{L F}$ sum of kinetic energy of partons $H_{L F}^{0}$ plus an interaction $H_{I}, \quad H_{L F}=H_{L F}^{0}+H_{I}$
- Expand in Fock eigenstates of $H_{L F}^{0}:|\psi\rangle=\sum_{n} \psi_{n}|n\rangle$,

$$
\left(\mathcal{M}^{2}-\sum_{i=1}^{n} \frac{\mathbf{k}_{\perp i}^{2}+m^{2}}{x_{i}}\right) \psi_{n}=\sum_{m}\langle n| V|m\rangle \psi_{m}
$$

an infinite number of coupled integral equations

- Only interaction in AdS/QCD is the confinement potential
- In QFT the resulting LF interaction is the 4-point effective interaction $H_{I}=\bar{\psi} \psi V\left(\zeta^{2}\right) \bar{\psi} \psi$ wich leads to $q q \rightarrow q q, q \bar{q} \rightarrow q \bar{q}, q \rightarrow q q \bar{q}$ and $\bar{q} \rightarrow \bar{q} q \bar{q}$
- Create Fock states with extra quark-antiquark pairs. No mixing with $q \bar{q} g$ Fock states $\left(g_{s} \bar{\psi} \gamma \cdot A \psi\right)$
- Explain the dominance of quark interchange in large angle elastic scattering

Detailed Structure of Space-and Time Like Pion Form Factor

- Holographic variable for n-parton hadronic bound state

$$
\zeta=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right|
$$

the x-weighted transverse impact coordinate of the spectator system (x active quark)

- Form factor in soft-wall model expressed as $N-1$ product of poles along vector radial trajectory [Brodsky and GdT (2008)] $\quad\left(\mathcal{M}_{\rho}{ }^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)\right)$

$$
F\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{N-2}}^{2}}\right)}
$$

- Higher Fock components in pion LFWF

$$
|\pi\rangle=\psi_{q \bar{q} / \pi}|q \bar{q}\rangle_{\tau=2}+\psi_{q \bar{q} q \bar{q} / \pi}|q \bar{q} q \bar{q}\rangle_{\tau=4}+\cdots
$$

- Expansion of LFWF up to twist 4 (monopole + tripole)
$\kappa=0.54 \mathrm{GeV}, \Gamma_{\rho}=130, \Gamma_{\rho^{\prime}}=400, \Gamma_{\rho^{\prime \prime}}=300 \mathrm{MeV}, P_{q \bar{q} q \bar{q}}=13 \%$

