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I. Introduction

• QCD fundamental theory of quarks and gluons

• QCD Lagrangian follows from the gauge invariance of the theory

ψ(x)→ eiα
a(x)Taψ(x),

[
T a, T b

]
= ifabcT

c

• Find QCD Lagrangian

LQCD = − 1
4g2

Tr (GµνGµν) + iψDµγ
µψ +mψψ

where Dµ = ∂µ− igT aAaµ, Gaµν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν

• Quarks and gluons interactions from color charge, but ... gluons also interact with each other:

strongly coupled non-abelian gauge theory → color confinement

• Most challenging problem of strong interaction dynamics: determine the composition of hadrons in

terms of their fundamental QCD quark and gluon degrees of freedom
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Lattice QCD

• Lattice numerical simulations at the

teraflop/sec scale (resolution∼ L/a)

• Sums over quark paths with billions of dimensions

• LQCD (2009) > 1 petaflop/sec

–a–

← L →

• Dynamical properties in Minkowski space-time

not amenable to Euclidean lattice computations
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Gravity

• Space curvature determined by the mass-energy

present following Einstein’s equations

Rµν −
1
2
Rgµν︸ ︷︷ ︸

geometry

= κ Tµν︸︷︷︸
mater

Rµν Ricci tensor , R space curvature

gµν metric tensor ( ds2 = gµνdx
µdxν )

Tµν energy-momentum tensor

κ = 8πG/c4,

• Matter curves space and space determines

how matter moves !

Annalen der Physik 49 (1916) p. 30
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Holographic Correspondence

HEP, Imperial College, October 4, 2010 Page 6



II. Gauge Gravity Correspondence and Light-Front QCD

• The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field

theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD,

which provides analytical insights into the confining dynamics of QCD

• Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks

and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a

hadron, exact formulae for form factors, physics of angular momentum of constituents ...

• Light-front holography provides a remarkable connection between the equations of motion in AdS and

the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Isomorphism of SO(4, 2) group of conformal transformations with generators Pµ,Mµν,Kµ, D,

with the group of isometries of AdS5, a space of maximal symmetry, negative curvature and a four-dim

boundary: Minkowski space

Isometry group: most general group of transformations which leave invariant the distance between two points

Dim isometry group of AdSd+1 is (d+1)(d+2)
2
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• AdS5 metric:

ds2︸︷︷︸
LAdS

=
R2

z2

(
ηµνdx

µdxν︸ ︷︷ ︸
LMinkowski

−dz2
)

• A distance LAdS shrinks by a warp factor z/R

as observed in Minkowski space (dz = 0):

LMinkowski ∼
z

R
LAdS

• Since the AdS metric is invariant under a dilatation of all coordinates xµ → λxµ, z → λz, the

variable z acts like a scaling variable in Minkowski space

• Short distances xµx
µ → 0 maps to UV conformal AdS5 boundary z → 0

• Large confinement dimensions xµx
µ ∼ 1/Λ2

QCD maps to large IR region of AdS5, z ∼ 1/ΛQCD,

thus there is a maximum separation of quarks and a maximum value of z

• Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the

modes propagating inside AdS
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• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
eϕ(z)

(
ηµνdx

µdxν − dz2
)

where ϕ(z)→ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2
√
g00 = mc2R

eϕ(z)/2

z

• Consider warp factor exp(±κ2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances 〈z〉 ∼ 1/κ
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Higher Spin Modes in AdS Space

(Frondsal, Fradkin and Vasiliev)

• Lagrangian for scalar field in AdSd+1 in presence of dilaton background ϕ(z)
(
xM = (xµ, z)

)
S =

∫
ddx dz

√
g eϕ(z)

(
gMN∂MΦ∗∂NΦ− µ2Φ∗Φ

)
• Factor out plane waves along 3+1: ΦP (xµ, z) = e−iP ·xΦ(z)[

− z
d−1

eϕ(z)
∂z

(
eϕ(z)
zd−1

∂z

)
+
(
µR

z

)2
]

Φ(z) =M2Φ(z)

where PµP
µ =M2 invariant mass of physical hadron with four-momentum Pµ

• Define spin-J mode Φµ1···µJ with all indices along 3+1 and shifted dimensions ΦJ(z) ∼ z−JΦ(z)

• Find AdS wave equation[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)
zd−1−2J

∂z

)
+
(
µR

z

)2
]

ΦJ(z) =M2ΦJ(z)
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III. Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t+ z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+

HEP, Imperial College, October 4, 2010 Page 11



Light-Front Fock Representation

• LF Lorentz invariant Hamiltonian equation for the relativistic bound state system

PµP
µ|ψ(P )〉 =

(
P−P+−P2

⊥
)
|ψ(P )〉 =M2|ψ(P )〉

• State |ψ(P )〉 is expanded in multi-particle Fock states |n〉 of the free LF Hamiltonian

|ψ〉 =
∑
n

ψn|n〉, |n〉 = { |uud〉, |uudg〉, |uudqq〉, · · · }

with k2
i = m2

i , ki = (k+
i , k

−
i ,k⊥i), for each constituent i in state n

• Fock components ψn(xi,k⊥i, λzi ) independent of P+ and P⊥ and depend only on relative partonic

coordinates: momentum fraction xi = k+
i /P

+, transverse momentum k⊥i and spin λzi
n∑

i=1

xi = 1,
n∑

i=1

k⊥i = 0.
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Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• ComputeM2 from hadronic matrix element

〈ψ(P ′)|PµPµ|ψ(P )〉=M2〈ψ(P ′)|ψ(P )〉

• Find

M2 =
∑
n

∫ [
dxi
][
d2k⊥i

]∑
`

(
k2
⊥` +m2

`

xq

)
|ψn(xi,k⊥i)|2 + interactions

• Semiclassical approximation to QCD:

ψn(k1, k2, . . . , kn)→ φn
(

(k1 + k2 + · · ·+ kn)2︸ ︷︷ ︸
M2

n

)
with k2

i = m2
i for each constituent

• Functional dependence of Fock state |n〉 given by invariant mass

M2
n =

( n∑
a=1

kµa

)2
=
∑
a

k2
⊥a +m2

a

xa

Key variable controlling bound state: off-energy shell E =M2−M2
n
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• In terms of n−1 independent transverse impact coordinates b⊥j , j = 1, 2, . . . , n−1,

M2 =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥jψ∗n(xi,b⊥i)
∑
`

(
−∇2

b⊥`
+m2

`

xq

)
ψn(xi,b⊥i) + interactions

• Relevant variable conjugate to invariant mass

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j
∣∣∣

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system ζ2 = x(1− x)b2
⊥

• To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties

are encoded in the hadronic mode φ(ζ) from

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

factoring angular ϕ, longitudinal X(x) and transverse mode φ(ζ)
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• Ultra relativistic limit mq → 0 longitudinal modes X(x) decouple (L = Lz)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ)

where the confining forces from the interaction terms is summed up in the effective potential U(ζ)

• LF eigenvalue equation PµP
µ|φ〉 =M2|φ〉 is a LF wave equation for φ

(
− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) =M2φ(ζ)

• Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable

• Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to

find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time

• Semiclassical approximation to light-front QCD does not account for particle creation and absorption

but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism
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Light-Front Holographic Mapping ΦP (z) ⇔ |ψ(P )〉

• LF Holographic mapping found originally matching expressions of EM and gravitational form factors of

hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]

• Upon substitution z→ζ and φJ(ζ) ∼ ζ−3/2+Jeϕ(z)/2 ΦJ(ζ) in AdS WE[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)
zd−1−2J

∂z

)
+
(
µR

z

)2
]

ΦJ(z) =M2ΦJ(z)

find LFWE (d = 4) (
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φJ(ζ) = M2φJ(ζ)

with

U(ζ) =
1
2
ϕ′′(z) +

1
4
ϕ′(z)2 +

2J − 3
2z

ϕ′(z)

and (µR)2 = −(2− J)2 + L2

• AdS Breitenlohner-Freedman bound (µR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0

• Scaling dimension τ of AdS mode ΦJ is τ = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD
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• Positive dilaton background ϕ = κ2z2 : U(z) = κ4ζ2 + 2κ2(L+ S − 1)

• Normalized eigenfunctions 〈φ|φ〉 =
∫
dζ |φ(z)2| = 1

φnL(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ

2ζ2/2LLn(κ2ζ2)

• Eigenvalues

M2
n,L,S = 4κ2 (n+ L+ S/2)

ΦHΖL

Ζ

HaL

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

ΦHΖL

Ζ

HbL

0 2 4 6 8 10

-0.5

0.0

0.5

LFWFs φn,L(ζ) in physical spacetime for dilaton exp(κ2z2): a) orbital modes and b) radial modes
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Light Meson and Baryon Spectrum 4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1

0

0
6-2010
8796A5

1 2 3 4

2

4

6

M2

L

0-+ 1+- 2-+ 4-+3+-
JPC

n=3

π(1800)
π

2
(1880)

π
2
(1670)

π(1300)

π

b(1235)

n=2 n=1 n=0

0
09-2009

8796A1
1 2 3 4

2

4

6

M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)

a4(2040)
f4(2050)

n=2 n=1 n=0

Regge trajectories for the π (κ = 0.6 GeV) and the I=1 ρ-meson and I=0 ω-meson families (κ = 0.54 GeV)
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Same multiplicity of states for mesons and baryons!
4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1

0

2

4

(a) (b)
6

0 1 2 3 4
9-2009
8796A3

M2

L

0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)

N(2200)

N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)

Δ(1920)

Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Parent and daughter 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV

• ∆ spectrum identical to Forkel, Beyer and Frederico and Forkel and Klempt
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IV. Light-Front Holographic Mapping of Current Matrix Elements
[S. J. Brodsky and GdT, PRL 96, 201601 (2006)]

• EM transition matrix element in QCD: local coupling to pointlike constituents

〈ψ(P ′)|Jµ|ψ(P )〉 = (P + P ′)F (Q2)

where Q = P ′ − P and Jµ = eqqγ
µq

• EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in

AdS with extended mode Φ(x, z)∫
d4x dz

√
g A`(x, z)Φ∗P ′(x, z)

←→
∂ `ΦP (x, z)

• Are the transition amplitudes related ?

• How to recover hard pointlike scattering at large Q out of soft collision of extended objects?

[Polchinski and Strassler (2002)]

• Mapping at fixed light-front time: ΦP (z) ⇔ |ψ(P )〉
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• Electromagnetic probe polarized along Minkowski coordinates, (Q2 = −q2 > 0)

A(x, z)µ = εµe
−iQ·xV (Q, z), Az = 0

• Propagation of external current inside AdS space described by the AdS wave equation[
z2∂2

z − z ∂z − z2Q2
]
V (Q, z) = 0

• Solution V (Q, z) = zQK1(zQ)

• Substitute hadronic modes Φ(x, z) in the AdS EM matrix element

ΦP (x, z) = e−iP ·x Φ(z), Φ(z)→ zτ , z → 0

• Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons ΦP and ΦP ′ ,

with the non-normalizable mode V (Q, z) dual to external source [Polchinski and Strassler (2002)].

F (Q2) = R3

∫
dz

z3
V (Q, z) Φ2

J(z)→
(

1
Q2

)τ−1

10 2 3 4 5

0.4

0

0.8

1.2

J(
Q

,z
), 

Φ
(z

)

z
5-2006
8721A16

At large Q important contribution to the integral from z ∼ 1/Q where Φ ∼ zτ and power-law

point-like scaling is recovered [Polchinski and Susskind (2001)]
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Electromagnetic Form-Factor

[S. J. Brodsky and GdT, PRL 96, 201601 (2006); PRD 77, 056007 (2008)]

• Drell-Yan-West electromagnetic FF in impact space [Soper (1977)]

F (q2) =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥j
∑
q

eq exp
(
iq⊥ ·

n−1∑
k=1

xkb⊥k
)
|ψn(xj ,b⊥j)|2

• Consider a two-quark π+ Fock state |ud〉 with eu = 2
3 and ed = 1

3

Fπ+(q2) =
∫ 1

0
dx

∫
d2b⊥eiq⊥·b⊥(1−x)

∣∣∣ψud/π(x,b⊥)
∣∣∣2

with normalization F+
π (q=0) = 1

• Integrating over angle

Fπ+(q2) = 2π
∫ 1

0

dx

x(1− x)

∫
ζdζJ0

(
ζq

√
1− x
x

)∣∣∣ψud/π(x, ζ)
∣∣∣2

where ζ2 = x(1− x)b2
⊥
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• Compare with electromagnetic FF in AdS space

F (Q2) = R3

∫
dz

z3
V (Q, z)Φ2

π+(z)

where V (Q, z) = zQK1(zQ)

• Use the integral representation

V (Q, z) =
∫ 1

0
dx J0

(
ζQ

√
1− x
x

)
• Find

F (Q2) = R3

∫ 1

0
dx

∫
dz

z3
J0

(
zQ

√
1− x
x

)
Φ2
π+(z)

• Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if

LFWF is factorized

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

• Find

X(x) =
√
x(1− x), φ(ζ) =

(
ζ

R

)−3/2

Φ(ζ), ζ → z

• Same results from mapping of gravitational form factor [S. J. Brodsky and GdT, PRD 78, 025032 (2008)]
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• Expand X(x) in Gegenbauer polynomials (DA evolution equation [Lepage and Brodsky (1980)])

X(x) =
√
x(1− x) = x(1− x)

∞∑
n=0

anC
3/2
n (2x− 1)

• Normalization ∫ 1

0

dx

x(1− x)
X2(x) =

∑
n

Pn = 1

〈Cλn |Cλm〉 =
∫ 1

0
dxxλ−1/2(1− x)λ−1/2Cλn(2x− 1)Cλm(2x− 1)

=
21−4λπΓ(n+ 2λ)
n!(n+ λ)Γ2(λ)

• Compute asymptotic probability Pn=0 (Q→∞)

Pn=0 =
π2

32
' 0.3

(
a0 =

3π
4

)
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V. Higher Fock Components (S. Brodsky and GdT)

• LF Lorentz invariant Hamiltonian equation for the relativistic bound state system

PµP
µ|ψ(P )〉 =M2|ψ(P )〉,

where PµP
µ = P−P+ −P2

⊥ ≡ HLF

• HLF sum of kinetic energy of partons H0
LF plus an interaction HI , HLF = H0

LF +HI

• Expand in Fock eigenstates of H0
LF : |ψ〉 =

∑
n ψn|n〉,(

M2 −
n∑
i=1

k2
⊥i +m2

xi

)
ψn =

∑
m

〈n|V |m〉ψm

an infinite number of coupled integral equations

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is the 4-point effective interaction HI = ψψV (ζ2)ψψ wich leads

to qq → qq , qq → qq, q → qqq and q → qqq

• Create Fock states with extra quark-antiquark pairs. No mixing with qqg Fock states (gsψγ ·Aψ)

• Explain the dominance of quark interchange in large angle elastic scattering
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Detailed Structure of Space-and Time Like Pion Form Factor

• Holographic variable for n-parton hadronic bound state

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j
∣∣∣

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• Form factor in soft-wall model expressed as N−1 product of poles along vector radial trajectory

[Brodsky and GdT (2008)]
(
Mρ

2 → 4κ2(n+ 1/2)
)

F (Q2) =
1(

1 + Q2

M2
ρ

)(
1 + Q2

M2
ρ′

)
· · ·
(

1 + Q2

M2
ρN−2

)
• Higher Fock components in pion LFWF

|π〉 = ψqq/π|qq〉τ=2 + ψqqqq/π|qqqq〉τ=4 + · · ·

• Expansion of LFWF up to twist 4 (monopole + tripole)

κ = 0.54 GeV,Γρ = 130, Γρ′ = 400, Γρ′′ = 300 MeV, Pqqqq = 13%
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