RICH Detector Alignment at LHCb with 2009 Collision Data

Christopher Blanks 29 March 2010

IoP 2010 at University College London

Contents

- Introduction to LHCb & its RICH detectors,
- Misalignments of the RICH in theory & in practice,
- A walkthrough of RICH alignment & latest results,
- RICH PID performance,
- Summary.

The LHCb Experiment

A forward detector $(2 < \eta < 5)$ for precision measurement of CP violation and rare B-decays:

The LHCb RICH Detectors

A forward detector (2<η<5) for precision measurement of CP violation and rare B-decays:

2 RICH detectors distinguish charged particles by mass over a momentum range of 2 to ~100 GeV/c.

RICH1 in Detail

A charged track emits a cone of Cherenkov light on passing through the radiators (Aerogel & C₄F₁₀ Gas),

Mirrors focus these cones into rings on 2 banks of photon detectors positioned out of LHCb acceptance.

Cosmic event display provided by S. Koblitz (CERN)

RICH1 Particle Identification

An event display from real data show "rings" projected on to the photon detector plane:

Detector acceptance

Saturated track: particle hypotheses indistinguishable Photons clearly favour the Kaon ring hypothesis Ring distortions due to detector geometry

29 March 2010

C Blanks

RICH Misalignments

Misalignment is observed relative to tracking:

Seen as a distribution $\Delta \theta = A \sin \varphi + B \cos \varphi$:

Fitting Procedure

RICH output is split into bins of φ then fitted with Gaussian peak on a straight-line background,

LHCb output re-plotted using Gaussian μ and fitted with:

 $\Delta \theta = A \sin \varphi + B \cos \varphi$

Real Data from RICH1

Without alignment, real data shows less than optimal resolution in RICH1 – we expected $\sigma = 1.6$ mrad!

The $\Delta \theta$ vs. φ alignment plot was not very helpful. Where is the expected sinusoidal deviation?

Real Data from RICH1

29 March 2010

RICH1 Mirror Configuration

The **central flat mirrors** see >99% all selected photons.

RICH1 Misalignments by Quadrant

29 March 2010

-0.01

-0.015

Left, Down

1

2

3

4

5

C Blanks

200

6

φ [rad]

12/18

ГН

Aligning RICH1 Spherical Mirrors

How do we compare mirror misalignment to our function: $\Delta \theta = A \sin \varphi + B \cos \varphi$?

13/18

RICH1 Spherical Mirrors Aligned

29 March 2010

Aligned Resolution RICH1

The latest MC production with data-like configuration: $\sigma = 1.57$ mrad.

Corrections expected from survey: < 2 mrad.

Correction	A, Up	C, Up
Local Ry	-1.45 mrad	-1.87 mrad
Local Rz	+1.22 mrad	+2.88 mrad
	A, Down	C, Down
	A, Down +1.34 mrad	C, Down +0.43 mrad

The performance of the RICH system is measured by its efficiency at separating between charged particle species, e.g. π vs. K:

This example plot shows the efficiency of π identification

& misidentification as a K (considering only these two possible hypotheses) for known π selected from K_s decays in data.

π-K separation plot provided by A. Powell (Oxford)

RICH Performance Improvement

C Blanks

Summary

- LHCb finally took collision data last year,
- Fitting & alignment strategies developed on MC were successfully applied to real data,
- RICH alignment has greatly contributed to improved PID performance,
- There is still room for improvement and more work to be done,
- RICH improvements are just one example of our evolving understanding at LHCb,
- New data is just around the corner.

Back up

Aligned Resolution RICH2

The latest MC production with data-like configuration: $\sigma = 0.67$ mrad.

Corrections expected from survey: < 2 mrad or < 3 mm.

Correction	RICH2	
Local Rx	-0.68 mrad	
Local Ry	1.27 mrad	
Correction	А	С
Correction Local Tx	A -3.16 mm	C 4.05 mrad

RICH Performance Improvement

With RICH improvements, LHCb can now find $\phi \rightarrow KK$:

φ -> KK selection plots provided
by A. Powell (Oxford)

Where next?

Despite improvement from alignment, RICH resolution is far from MC prediction: **RICH1 2.35 > 1.57 mrad RICH2 0.91 > 0.67 mrad**

Sph1 Flt6 ¢-bin 10 of 20

The key may already be found:

Mirror-aligned RICH1 data shows a misalignment between photon detectors (*in one φ-bin*).

The RICH group expects improved alignment with more data.

Which HPDs Do We See?

A threshold of 15K photons gives a Top 8 HPDs per mirror pair and includes 98% γ.

A-Side C-Side

Which HPDs Do We See?

A threshold of 15K photons gives a Top 8 HPDs per mirror pair and includes 98% γ.

A-Side C-Side

цнср

page 22

29 March 2010

Multiple Peaks in φ -bins

