

Bryn Mathias Imperial College

Contents

LHC Machine
CMS Detector
SuperSymmetry
Kinematic Selection
Data Driven Background Estimation
Discovery Potential

The Large Hadron Collider

Design $\mathcal{L} \approx 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ $\sqrt{s} = 14 \text{ TeV}$

2010-2011 $\mathcal{L} \approx 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$

CMS

The Compact Muon Solenoid

Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla

 Trigger on: calorimeter Deposits & Muon Chamber Hits
Global Calorimetry Trigger selects Jet candidates and missing energy

SuperSymmetry

GERN

Motivations: Natural Extension to SM Light SUSY provides solution to hierarchy problem Provides a Dark Matter candidate Predictions: Multitude of new particles ➢If R-Parity conserving, large missing energy signature

Kinematic SelectionIdeal Dijet $\widehat{\Sigma}_{jets} \mathbf{p}_T = 0$ $\widehat{\Sigma}_{jets} \mathbf{p}_T = 0$

Real Missing \mathbf{p}_T

CMS.

At LHC, primary background is QCD. How to reduce this background?

Kinematic Selection 2

Define $\alpha = \frac{\mathbf{p}_{T2}}{m_{jj}}$ (L. Randall & D. Tucker-Smith) In the Massless limit + Hadron $\implies \alpha_T = \frac{\sqrt{E_T^{j_2}/E_T^{j_1}}}{\sqrt{2(1-\cos\Delta\phi)}}$ machine Ideal Dijet Real Missing $p_T > 100 \text{ GeV}$ $|\eta_{j1}| < 2$ Energy $\alpha_T = 0.5$ events/fb⁻ **10⁶** Poor energy

 $\alpha_T > 0$

Cuts

resolution

 $\alpha_T < 0.5$

CMS

Multi-jet Extension

Njets merged to form most conservative dijet

Extended up to 6 Most conservative Jets combination selected

<u>+ Additional Cut</u> $p_T(jet \ n > 2) > 50 \text{ GeV}$

Standard Model Missing Energy Signals

 W^{\pm}

Miss one lepton/

No tau veto

 W^{\downarrow}

 $\overline{\nu}$.

CMS

Miss Lepton

Can we reduce these backgrounds?

tŦ

α_T discovery potential

Parameter to test alpha T against

Bryn Mathias. Imperial college London

CMS

Questions?

CERN

Data Driven Background Estimation

Repeat Analysis with muons ignored offline. Gives a clean signal, however low statistics with 100pb⁻¹ of data.

CMS

Clean signal above $E_{\gamma} = 100 \text{ GeV}$

Multi-Jet Events

Dijet Events

Bryg Mathias for inperial cost lege London < 3. Right: a zoomed version for $0.46 < \alpha_T < 0.6$.

Event Selection

- Preselection cuts & Trigger (still from 10 TeV studies)
 - Trigger: jet110.
 - Define clean jet environment:
 - Veto electrons or global muons with $P_{T} > 10 \text{ GeV}$
 - Veto Photons with $P_T > 25 \text{ GeV}$
 - Jets $P_T > 50 \text{ GeV}$, $|\eta|$ jets < 3 ($F_{em} < 0.9$)
 - No jet candidate with P_T > 50 GeV which was not selected. We cannot affort to have unidentified high p_T objects in the detector => MET!
 - Two jets with $p_T > 100$ GeV.
 - $|\eta|$ leading jet < 2.

$$H_{T} = \sum_{i=1}^{n} p_{T}^{jet_{i}} > 350 \text{ GeV}$$

This selection also defines the jet multiplicity.

23 Feb. 2010

Henning Flächer

14

Bryn Mathias. Imperial college London

Sample

1 0	-:			l'abrat ~	- 0	
tan B	$sign(\mu)$	σ NLO	(LO)	lightest q	χ_1°	
		(pb)	(pb)	(GeV)	(GeV)	
10	+	54.86	(43.28)	$410 (\tilde{t}_1)$	97	
35	+	9.41	(7.27)	582 (\tilde{t}_1)	141	
20	+	45.47	(34.20)	446 (\tilde{t}_1)	94	
				~ .		

Sample	m_0	$m_{1/2}$	A_0	$\tan\beta$	$sign(\mu)$	σ NLO	(LO)	lightest q	χ_1^0
	(GeV)	(GeV)				(pb)	(pb)	(GeV)	(GeV)
LM1	60	250	0	10	+	54.86	(43.28)	$410 (\tilde{t}_1)$	97
LM2	185	350	0	35	+	9.41	(7.27)	$582 (\tilde{t}_1)$	141
LM3	330	240	0	20	+	45.47	(34.20)	446 (\tilde{t}_1)	94
LM4	210	285	0	10	+	25.11	(19.43)	483 (\tilde{t}_1)	112
LM5	230	360	0	10	+	7.75	(5.96)	$603 (\tilde{t}_1)$	145
LM6	85	400	0	10	. +	4.94	(3.84)	649 (\tilde{t}_1)	162
LM7	3000	230	0	10	+	6.79	(3.82)		
LM8	500	300	-300	10	+	12.19	(8.81)	546 (\tilde{t}_1)	121
LM9	1450	175	0	50	+	39.79	(23.28)		

Robustness One random jet in each event rescaled

