THE LISA GRAVITATIONAL WAVE
MISSION



Gravitational Waves

Radiated by asymmetric changes in mass
distributions (quadrupole moment or higher)

Transverse, area preserving periodic strain in

spacetime

h=10-20
near earth
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Gravitational Waves

Appear as time-dependent tidal forces in free-falling
detector

Fractional change in proper distance:
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Strain amplitude of binary source approximated as:

ho = 1.5 x 10721 ( / )2/3 ( ! )_1 (M )5/3
10-3Hz 1kpc Mg

Observation of increasing binary orbital frequency

(eg. Hulse Taylor binary)
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LISA

High power, predictable sources radiate below
10mHz

Terrestrial gravity gradient/seismic noise limits earth
based detectors to f>1Hz

LISA target frequency range: 10-4-10-"Hz

Galactic binaries and extragalactic supermassive black
hole binaries

Laser interferometry — frequency analysis of phase
differences reveals periodic path length changes
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Gravitational Reference Sensor
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Instrument Noise

Optical path noise
Eg. Laser shot and phase noise

Mimics change in arm length

Acceleration noise
Real arm length changes due to spurious forces
Dominates at low frequency (f<2mHz), scaling as 1 /f

A major component is due to Coulomb and Lorentz forces
caused by test mass charging
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The Particle Environment
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Test Mass Charging

E<100MeV /n

Primaries do not reach
test mass (TM)

100-400MeV /n

Primaries stop in TM

400-2000MeV /n

Primaries pass through,

secondary protons stop
in TM

E>2000MeV /n

Primary & secondary
protons pass though,
secondary electrons
stop
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LISA Pathfinder

Technology

demonstrator for
launch in 2012

Single spacecraft
at the L1 Lagrange
point

Observe charging
and monitor
particle fluxes

LISA Technology Package [ESA]
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Charge Management

UV photoelectron emission to maintain Q <10°e

Two discharge modes: rapid/continuous

Charge fluctuations in time domain have coherent
Fourier components in frequency domain

Minimise Q through continuous discharge, matching
charge/discharge rate (within 0.1% for LISA)

Charge rate varies due to stochastic arrival of
particles:

Q(t) = Qt + 6Q(1)
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LISA Pathfinder: Charge Management
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LISA Pathfinder: Radiation Monitor

Use radiation monitor to
validate models and track
short term flux changes

Try to characterise transfer
function between monitor data
and test mass charge rate

Develop radiation monitors

and charge management for
LISA
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