The LHCb Experiment and the Decay $B_d \rightarrow K^* \mu^+ \mu^-$

Chris Parkinson

1

Chris Parkinson The LHCb Experiment and the Decay $B_d \rightarrow K^* \mu^+ \mu^-$

Outline

- •The LHCb Phyics Programme
- •The decay $B_d \to K^* \mu^+ \mu^-$
- •First Look at 2009 Data in LHCb
- •Future Work

02/03/2010

Chris Parkinson The LHCb Experiment and the Decay $B_d \rightarrow K^* \mu^+ \mu^-$

The LHCb Physics Programme

•The Standard Model

- •Consistent with vast majority of experimental data
- •Conceptual problems: CP Violation, Dark Matter, 3 quark generations...

Search for new physics

- •Is SM picture of CPV complete (CKM) \rightarrow Measurement of γ
- •Explore new physics models → **Rare Decays**

02/03/2010

Rare Decays

- •Flavour-Changing Neutral Currents proceed via loops
 - Rare
 - Virtual particles

- Sensitive to new physics
- Lots of loop processes studied at LHCb
 - $B_s \rightarrow \mu^+\mu^ B_d \rightarrow K^*\mu^+\mu^ B^0 \rightarrow \pi^+\pi^-$

The Decay $B_d \rightarrow K^* \mu^+ \mu^-$

- •FCNC rare decay
- •Described by θ_L , θ_K , ϕ , q^2
- •Theoretically well-calculable in region $1 < q^2 < 6 \text{ GeV}^2$ (theory errors ~ 10%)

•Key Observable:

- •Forward-Backward Asymmetry (A_{FB})
- •Constructed from θ_L
- Allows discrimination
 between SM & NP models

02/03/2010

Current Status of A_{FB} Measurement

The LHCb Experiment and the Decay $B_d \rightarrow K^* \mu^+ \mu^-$

Chris Parkinson

Current Status of A_{FB} Measurement

Chris Parkinson

The LHCb Experiment and the Decay $B_d \rightarrow K^* \mu^+ \mu^-$

$B_d \rightarrow K^* \mu^+ \mu^-$ Analysis

Main analysis issues

Need to understand detector efficiencies

•Recall Alex's talk

Background control

•First look for genuine $K^* \to K\pi$ combinations in data

- •Then use 2009 data for first look at background
 - •VELO open $\rightarrow \sigma_{\text{Vertex}}$, $\sigma_{\text{ImpactParameter}}$ resolution worsened
 - •RICH not fully calibrated $\rightarrow K \pi$ separation impaired
 - •No B/D decays \rightarrow All K π from primary-vertex
 - From Primary Vertex & Ghosts

8

$K^* \rightarrow K\pi$ Search

•Search for genuine K*

•Look for $K\pi FROM PV$

- •Good quality vertex
- •Mass ~ M_{K*}
- •Flight Distance (FD) small
- Good quality tracks
- Impact parameter small
- •Kaon probability large/small

9

02/03/2010

Indication of genuine K* in 2009 data!

Chris Parkinson

K* as background to $B_d \to K^* \mu^+ \mu^-$

•No B/D particles therefore look for $K\pi \text{ NOT FROM PV}$

- •Cut hard on: Flight Distance χ^2 & Impact Parameter χ^2
- •Applied full $B_d \rightarrow K^* \mu^+ \mu$ selection criteria to K* candidates in 2009 data

Conclusions & Future work

K* backgrounds

- •Some evidence for genuine K* above combinatorial background
- •First look at background sources for $B_d \to K^* \mu^+ \mu^-$

New data

- •VELO closed
- Better calibrated RICH

•Give resolution in discriminating quantities

$\bullet B_d \to K^* \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

•Establish control of background

•RICH

Alignment

Shifts

•Find new physics!

02/03/2010