

The standard model, supersymmetry and CMS

Sam Rogerson

Introduction

- The standard model
- Supersymmetry
- Initial issues
- Constraining our models
- Signals of supersymmetry
- SUSY at CMS

The standard model

- Majority of evidence so far in good agreement with standard model predictions,
 - Electroweak Precision Observables [EWPO]
 (anomalous magnetic moment of electron, M_t, M_w)
 - Rare Decays (B-physics)
- Evidence for discrepancies and limitations,
 - Anomalous magnetic moment of the muon a_μ
 - Relic Ω_{CDM}
 - Quadratic divergences in radiative corrections to m_H

Supersymmetry

- Superpartners with $\Delta s = \frac{1}{2}$
- Must be a broken symmetry,
 - No observations of these particles yet
 - Need to introduce new mass terms to the lagrangian

$$q \rightarrow \tilde{q}$$
 $l \rightarrow \tilde{l}$
 $v \rightarrow \tilde{v}$
 $W^{\pm} \rightarrow \tilde{W}^{\pm}, Z^{0} \rightarrow \tilde{Z}$
 $g \rightarrow \tilde{g}$
 $Y_{W} \rightarrow \tilde{B}$
 $H \rightarrow \tilde{H}$
 $\tilde{W}^{\pm}, \tilde{B} \rightarrow \tilde{\chi}^{0}$
 $\tilde{W}^{\pm}, \tilde{H} \rightarrow \tilde{\chi}^{\pm}$

Initial issues

- Similar problem to SM parameters
- Get 19 → 104< (depending on symmetry breaking mechanism) parameters
- 3 problems,
 - Motivation for fine tuning (same as SM)
 - Enormous parameter space computational issues
 - No predictive ability

The MSSM

- Many parameters, but can still realise "appealing" behaviour of SUSY
- Relax constraints on baryon and lepton number conservation
- Enforce R-parity, defined as $R = (-1)^{3(B-L)+2S}$
- B,L: baryon-, lepton- number, S: spin
- R_{SM}=+1, R_{SUSY}=-1, leads to *only* pair-production
- LSP particle is stable $\rightarrow \Omega_{\text{CDM}}$ candidate!

Further constraints

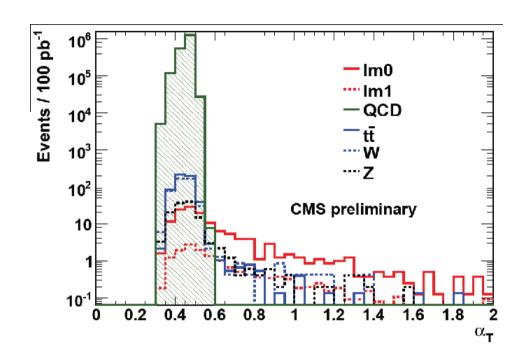
- Would be good to make predictions
 - Insist on universality at the GUT scale i.e.
 - Gaugino masses $M_1 = M_2 = M_3 = m_{1/2}$ - Sfermion masses $A_b = A_t = A_\tau = A_0$
- Require two more parameters for the higgs sector
 - tan(β) ratio of Higgs field vacuum expection
 - Sign of μ Higgs mixing parameter
- Results in the constrained MSSM (CMSSM)
- Have reduced SUSY to 4 parameters and a sign

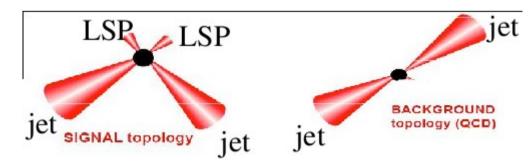
Making predictions

- Essential that one doesn't get too hung up on the theory...
- Look at how EWPOs (m_Z, m_W, etc.) and rare decays (BR(b→sγ), etc.) can constrain our parameter space
- Do a multi-parameter fit,
 minimising a global χ² function

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{SM_{i}}^{obs} - f_{SM_{i}}^{fit})}{\sigma(f_{SM_{i}})^{2}} + \dots$$

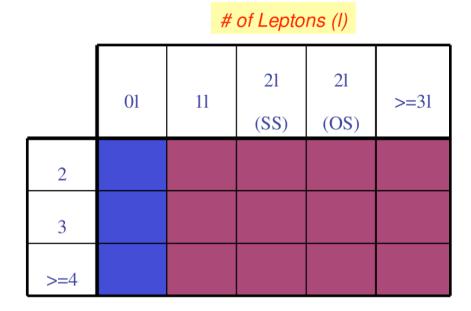
Signs of supersymmetry

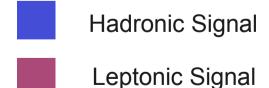



- What specific signals could one get from SUSY at the LHC?
 - Same Sign Dilepton
 - Suppressed in SM so a low background channel
 - Main background is QCD Dijet, top quark, electroweak boson production
 - Opposite Sign Dilepton
 - e.g. $\tilde{\chi}_2^0 \rightarrow l \, l \, \tilde{\chi}_1^0$
 - Linear rise with invariant mass of leptons, with a cut-off at the kinematic limit (characterised by $m_{\tilde{\chi}^0_-} m_{\tilde{\chi}^0_-}$)
 - Can calculate the position of this cut off beforehand

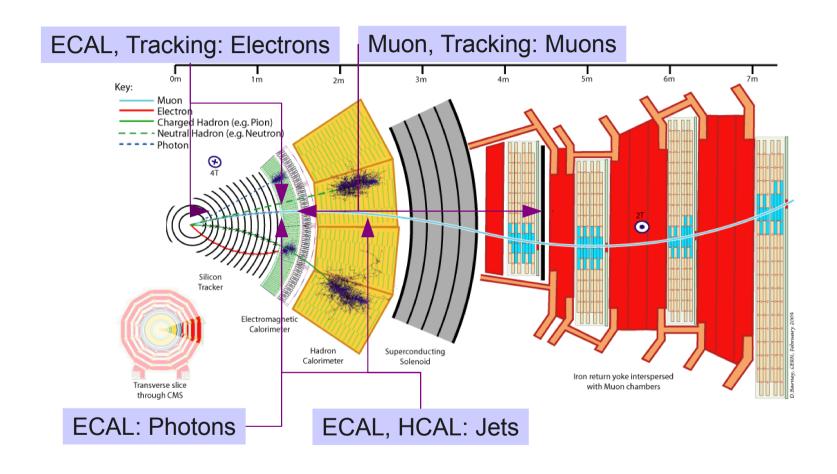
Signs of SUSY - ME_T

- Both signals also have missing E_T (LSP escaping)
- Can parametrise this with α_T, the "balance" of the event jets
- Allows for effective cuts on the SM background




SUSY at CMS

of Jets + # Photons


- Missing E_T don't need absolute \sqrt{s}
- Cuts in place to eliminate main background
- Several leptonic signals
 → ECAL plays an
 important role
- Ol events have the highest cross-section

SUSY at CMS (2)

Can see that SUSY requires analysis of data from all the different components of CMS

Summary

- Can phenomenologically motivate constraints on general SUSY
- Have well defined signals for SUSY at CMS
- For particular models can generate likelihood functions to limit parameter space
- Good prospects for the understanding of new physics at the LHC