Early searches for supersymmetry at the LHC in the all-hadronic channel

Tom Whyntie Imperial College London / CMS experiment

Introduction

How do we look for supersymmetry at the LHC?

• What are the challenges of the all-hadronic channel?

How can we guard against mismeasurement?

• Can we use kinematics to constrain fake missing E_T ?

How do we account for Standard Model backgrounds?

• What data-driven tools exist to estimate real missing E_T ?

Introduction

How do we look for supersymmetry at the LHC?

• What are the challenges of the all-hadronic channel?

How can we guard against mismeasurement?

• Can we use kinematics to constrain fake missing E_T ?

How do we account for Standard Model backgrounds?

• What data-driven tools exist to estimate real missing E_T ?

Supersymmetry at the LHC

Supersymmetry is an extension to the Standard Model (SM) that predicts massive, undetectable superpartners to SM particles. These may be produced in LHC proton-proton collisions. Typical experimental signature:

• Large missing transverse energy plus final state objects.

The all-hadronic channel

We consider events with only jets in the final state:

- "Jet": clustered energy deposits in the calorimeters from the hadronisation of partons.
- Tracking information may also be used for identification and/or correction of measured jet energy.

Advantage: no isolated leptons, which can indicate SM processes with *real* missing E_T (typically featuring $W \rightarrow lv$)

• Still leaves $Z \rightarrow \nu\nu$, $W \rightarrow \tau\nu$ (the τ decaying hadronically)

Disadvantage: Large QCD background. Statistically unlikely detector mismeasurements, that produce *fake* missing E_T , start to overwhelm any non-SM signal.

Allowing for mismeasurement

QCD-like events will generally conserve transverse momentum.

Mismeasurement leads to the observation of "fake" missing E_T . The search described here takes the following approach:

• Use only "trusted" physics objects as input to the missing E_T calculations, ignoring unclustered energy and events with "anomalies".

• Use event observables that compensate for object mismeasurements.

Tom Whyntie, Imperial College London

The α_T observable

Dijets: Randall (2008) proposed $\alpha = E^{j2}T / M(\text{dijet})$. We use $\alpha_T = E^{j2}T / M_T(\text{dijet})$:

Denominator:
$$M_T = \sqrt{2E_T^{j1}E_T^{j2}(1 - \cos \Delta \phi)} = \sqrt{H_T^2 - \mathbf{p}_T^2}$$

Numerator: $E_T^{j2} = \frac{1}{2}(H_T - \Delta H_T)$

$$H_{T} = E_{T}^{j1} + E_{T}^{j2}$$
$$\Delta H_{T} = E_{T}^{j1} - E_{T}^{j2}$$

Conserved event, perfect measurement $\Rightarrow \alpha_T = 1/2$

Real missing E_T : Small denom. \Rightarrow large α_T Mismeasurement: Small num. \Rightarrow small α_T Extension to *n*-jets: Generalise ΔH_T

$$\alpha_{T(N)} = \frac{1}{2} \frac{H_T - \min(\Delta H_T)}{\sqrt{H_T^2 - \mathbf{p}_T^2}}$$

Tom Whyntie, Imperial College London

The CMS experiment

Solenoid: 3.8 T magnetic field.

Energy measurements:

- Electromagnetic calorimeter (ECAL);
- Hadronic calorimeter (HCAL).

Tracking: All-silicon tracker.

Muon chambers outside solenoid.

Event selection

Triggers:

• High-Level Trigger (HLT) Single 110 GeV jet.

Pre-selection:

- Jet requirements (also defines event jet multiplicity, *N*):
 - » At least two jets with $p_T > 50 \text{ GeV}$, $|\eta| < 3.0$, EM fraction < 0.9;

» Leading jet $p_T > 100 \text{ GeV}, |\eta| < 2.0$;

» Second jet $p_T > 100 \text{ GeV}$;

- Lepton veto: Reject events with isolated *e* or μ , $p_T > 10 \text{ GeV}$;
- Photon veto: Reject events with isolated γ , $p_T > 25 \text{ GeV}$;
- "Bad" jet veto: Reject events with $p_T > 50$ GeV jets that fail $|\eta|$, EM fraction requirements.

Applying the kinematic cuts

Estimating SM contributions

1) Treat the backgrounds as one, exploiting non-SM signal centrality.

11 of 11

2) Estimate individual SM background contributions, e.g.

 $Z \rightarrow vv + jets$ $Z \rightarrow \mu\mu$ is statistics limited; use W+jets, γ +jets.

Tom Whyntie, Imperial College London

tt + jet(s), W + jet(s), etc.Replace $W \rightarrow \mu \nu$ with $W \rightarrow \tau v$ in data using τ template.

Conclusions

We can look for SUSY in the all-hadronic channel:

• Signature: Large missing E_T + final state jets.

Non-SUSY backgrounds can be controlled with kinematics:

- Mismeasured QCD events are the dominant SM background;
- Compensating observables, e.g. α_T , can suppress these.

Tools exist for estimating real missing E_T SM backgrounds.

Thanks for listening – any questions?