## VBF Higgs Searches @ LHC-CMS PhD 3 Months Report

J. Pela

Imperial College London

2012-02-22



João Pela (Imperial College London)

2012-02-22 1 / 12

イロト イヨト イヨト イヨト

The current knowledge on the field of particle physics is summarized in the Standard Model. Its success comes from explaining a wide variety of experimental results.

#### But still it is incomplete:

- Does not include the physics of dark energy or a full theory of gravity (like general relativity).
- Does not contain a dark matter candidate.
- Needs the inclusion of a <u>spontaneous symmetry breaking mechanism</u> to explain masses of the weak bosons:
  - The easiest way: Higgs Mechanism
  - Suggests: new particle the Higgs boson

#### After 2 years of operation the experiments at the LHC have:

- Narrowed down the allows mass range for the SM Higgs having excluded at 95% confidence level the range 127-600 *GeV*.
- Seen hits of a possible signal around 124 GeV (significance of  $1.5\sigma$  after LEE).

Predicted running condition for 2012 will provide enough data to discover of exclude a SM Higg



イロト イヨト イヨト イヨト

### SM Higgs Production Processes

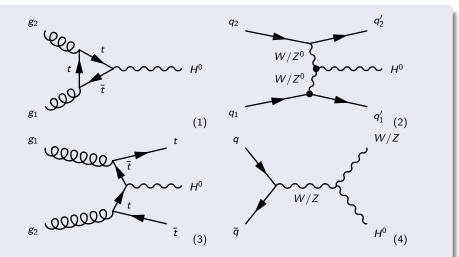
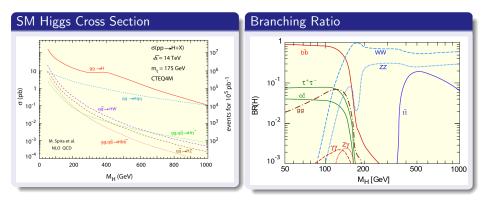




Table: SM Higgs production ordered by highest cross section at the LHC. (1) Gluon Fusion, (2) Vector Boson Fusion, (3)  $t\bar{t}$  Fusion and (4) W/Z associated production.



For the currently allowed experimental mass range for the SM Higgs:

- $\bullet~\text{VBF}$  Signature is a factor of  $\sim$  10 lower then gluon fusion.
- Most important/possible decays  $b\bar{b}$ ,  $\tau\bar{\tau}$ ,  $c\bar{c}$ , gg,  $\gamma\gamma$  and  $Z\gamma$ .

< □ > < <sup>[]</sup> >

#### Theoretical

- Observe Higgs on this channel and measure its cross section and branching ratios for each decay.
- Measure Higgs coupling with Weak Bosons and fermions.
  - Higgs properties.
  - Differentiate between SM Higgs and BSM Higgs.
- Primary channel for discovery if Higgs only decays invisibly.

#### Experimental

VBF cross section is one order of magnitude lower than gluon fusion, but:

- Two additional Forward Jets (can be used for tagging).
- Low hadronic activity in central region (no colour exchange between quarks).
- Higgs decay products (channel dependent) are isolated in central area, allowing easier properties studies.



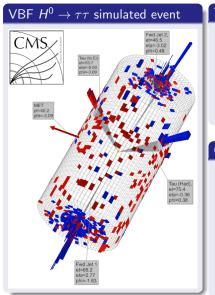
A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

# The LHC-CMS Experiment

### Large Hadron Collider



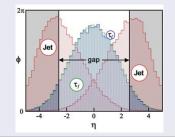
- Located at Franco-Swiss border near Geneva, Switzerland.
- Synchrotron Machine (currently the most powerful in activity).
- Can collide protons up to  $\sqrt{s} = 14$ TeV (during 2012  $\sqrt{s} = 8$  TeV).


### Compact Muon Solenoid

- Located at LHC Point 5.
- General purpose experiment.
- Objective of studying a broad spectrum of physics.
- Classical onion structure.
- Most powerful solenoid ever built (3.8 T).



・ロト ・回ト ・ ヨト ・


# VBF Signature @ CMS



#### Topology

- Two forward jet with resonable  $p_T$ 
  - High  $\Delta \eta$  and low  $\Delta \phi$ .
  - Low hadronic activity between jets (no color exchange between quarks).
  - High dijet invariant mass.
  - Higgs decay products on oposite direction of the dijet (signature specif)
- Additional Higgs Decay products signature.

## Objects $\eta$ distribution



#### Current and finished work

- L1 Rates Study for the VBF Higgs to invisible study (finished, to be revisited)
- Development of dedicated Inclusive L1 Trigger (ongoing)

#### Plans

- Participate on the L1-HLT Inclusive VBF Trigger development, commissioning and maintenance.
- Develop a data analysis based on a VBF Higgs Channel aimed at observation and properties measurement.
- Participate on the trigger related effort (DQM, upgrades,...).



・ロト ・回ト ・ヨト ・

## Rate Studies for a Higgs to Invisible L1 Trigger

Final resulst for this L1 rates study. Always requiring a dijet with  $\Delta \eta > 3$  and testing each variable on 4  $\Delta \phi$  points (no cut, < 2.5, < 2.1 and < 1.8).

#### $5e33 - \langle PU \rangle = 28$

| MET [Ge       | eV] (with Di | jet $E_{\perp}$ | > 20 [ | GeV]) | Dijet $E_{\perp}$ | [GeV] (wit | h MET | > 30 [ | GeV]) |
|---------------|--------------|-----------------|--------|-------|-------------------|------------|-------|--------|-------|
| $\Delta \phi$ | no cut       | 2.5             | 2.1    | 1.8   | $\Delta \phi$     | no cut     | 2.5   | 2.1    | 1.8   |
| 10kHz         | 32           | 32              | 32     | 32    | 10kHz             | 28         | 28    | 24     | 24    |
| 5kHz          | 35           | 35              | 35     | 35    | 5kHz              | 32         | 32    | 32     | 32    |
| 2kHz          | 41           | 41              | 41     | 41    | 2kHz              | 52         | 48    | 44     | 44    |
| 1kHz          | 47           | 47              | 47     | 46    | 1kHz              | 68         | 68    | 64     | 64    |
| 500Hz         | 54           | 54              | 54     | 53    | 500Hz             | 92         | 92    | 88     | 88    |

Results used to define the working point for this trigger, which was already proposed to the TSG to be included on a future L1 Trigger menus. Proposed trigger:

- Dijet  $E_{\perp} > 20 \text{ GeV} + \text{fwd/bkwd} + \Delta \eta_{ii} > 3 + MET > 40 \text{ GeV}$
- Dijet  $E_{\perp} > 50~{
  m GeV} + {
  m fwd/bkwd} + \Delta\eta_{ii} > 3 + MET > 30~{
  m GeV}$

#### 7e33 - < PU >= 32

| MET [GeV] (with Dijet $p_{\perp} > 20$ [GeV]) |        |     |     |     |  |  |  |
|-----------------------------------------------|--------|-----|-----|-----|--|--|--|
| $\Delta \phi$                                 | no cut | 2.5 | 2.1 | 1.8 |  |  |  |
| 10kHz                                         | 36     | 36  | 36  | 36  |  |  |  |
| 5kHz                                          | 40     | 40  | 40  | 40  |  |  |  |
| 2kHz                                          | 47     | 47  | 47  | 46  |  |  |  |
| 1kHz                                          | 54     | 54  | 54  | 54  |  |  |  |
| 500Hz                                         | 67     | 66  | 66  | 64  |  |  |  |

| Dijet $p_{\perp}$ | Dijet $p_{\perp}$ [GeV] (with $MET > 30$ [GeV]) |     |     |     |  |  |  |  |
|-------------------|-------------------------------------------------|-----|-----|-----|--|--|--|--|
| $\Delta \phi$     | no cut                                          | 2.5 | 2.1 | 1.8 |  |  |  |  |
| 10kHz             | 32                                              | 32  | 32  | 32  |  |  |  |  |
| 5kHz              | 40                                              | 40  | 40  | 40  |  |  |  |  |
| 2kHz              | 64                                              | 60  | 60  | 56  |  |  |  |  |
| 1kHz              | 76                                              | 76  | 76  | 76  |  |  |  |  |
| 500Hz             | 100                                             | 100 | 96  | 92  |  |  |  |  |

João Pela (Imperial College London)

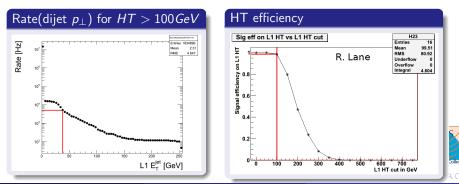
## Development of dedicated Inclusive L1 Trigger

It would be desirable to have a dedicated Inclusive L1 Trigger (i.e. Higgs decay independent):

- Single trigger for all VBF signature analysis
  - Less systematics comparing analysis
  - More people using a trigger usually means it will become better understood
- No dependence in the Higgs decay
  - Get all possible decays (thus a Model Independent trigger)
- Can be used for a WW scattering analysis.

Trigger would be based only on the forward dijet present on the VBF signature

### Types of trigger studied


Always requiring a dijet with  $\Delta \eta > 3$  and testing each variable on 4  $\Delta \phi$  points (no cut, < 2.5, < 2.1 and < 1.8).

- Invariant Mass
  - Benefit from the very high *M*<sub>inv</sub> of the dijet system.
  - Not yet implemented on the L1 Hardware but possible.
- Transverse Invariant Mass
  - Better suppression of QCD, less PU dependency and lower error associated (only x-y dependence).
  - Not yet implemented on the L1 Hardware but possible.
- HT (Vectorial Sum of the Hadronic Energy)
  - Theoretically best variable to separate signal from background.
  - Already implemented on L1 Hardware.

## Results

### Trigger types:

- $M_{Inv}$ : Unusable. To get acceptable rates have to cut too high on Jet  $p_{\perp}$  or  $M_{Inv}$  losing signal efficiency.
- $M_{\perp}$ : Promising. Rate of 5kHz with MT > 50 GeV no  $\Delta \phi$  cut and dijet  $p_{\perp} \sim 45 GeV$  giving a signal efficiency of  $\lesssim 70\%$  (see R. Lane talk)
- *HT*: Most promising. Rate of 5kHz with *HT* > 100*GeV* no  $\Delta \phi$  cut and dijet  $p_{\perp} \sim 40 GeV$  giving a signal efficiency of  $\lesssim 98\%$  (see R. Lane talk)



#### Overview

- There will be a VBF Higgs to Invisible dedicated trigger for 2012.
- Most likely an inclusive VBF trigger will be included soon, which should cover most of the 2012 data.
- 2012 will be an exciting year for all the LHC experiments.
- Imperial College CMS Group highly involved on the trigger effort for VBF analysis.
  - Which will evolve quickly with data to a full analysis effort aimed at publication of the (soon to be discovered) Higgs Boson properties.



A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A