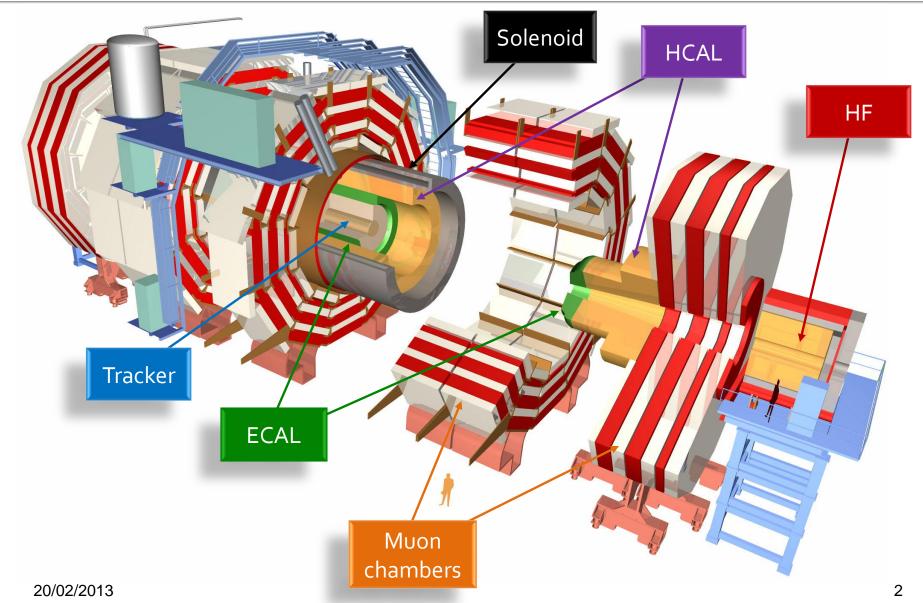
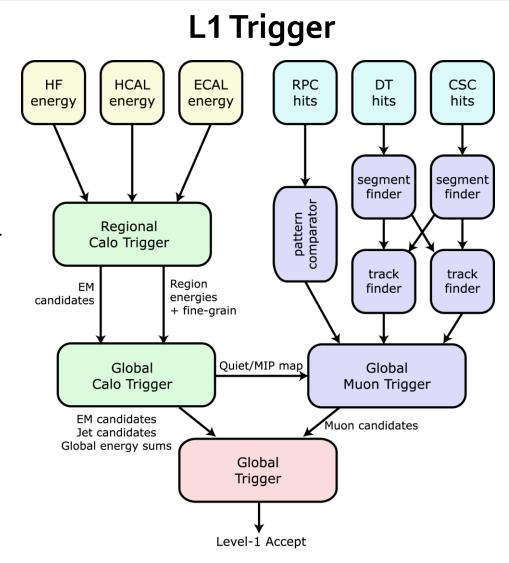

Supersymmetry searches with the α_T variable and trigger upgrade studies at CMS

Mark Baber Imperial College London

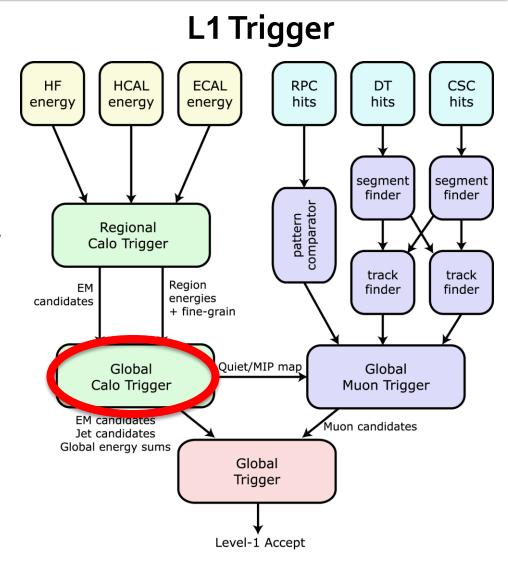


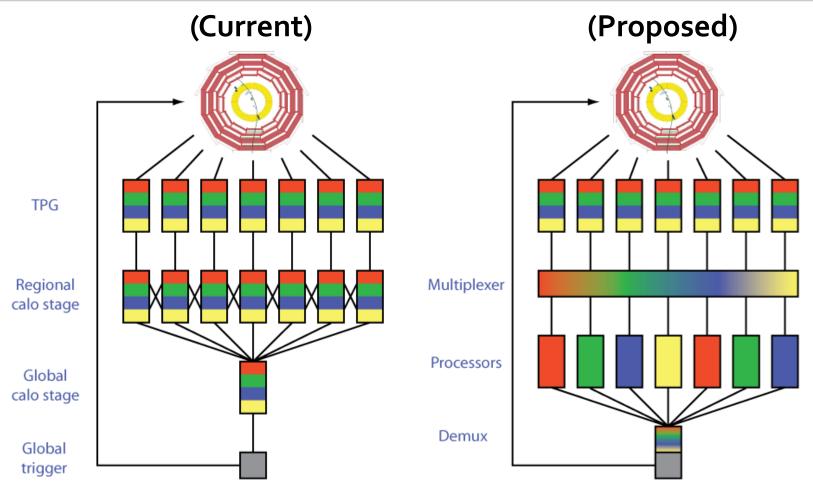
Outline

- CMS detector
- L1 Trigger
- LHC upgrade
- Supersymmetry searches at the LHC
- Supersymmetry α_T analysis
- Current exclusions
- Conclusion


CMS detector

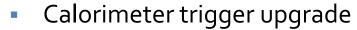
L1 Trigger


- 40 MHz bunch crossing rate
 - L1 → 100 kHz
 - HLT \rightarrow 1 kHz
- Global Calorimeter Trigger
 - Builds calorimeter objects for Global Trigger: Jets, e/γ , ...
- Measurement of event quantities:
 - $E_{\mathrm{T}} \equiv \sum \vec{p}_{\mathrm{T}}$
 - $H_{\mathrm{T}} \equiv \sum E_{\mathrm{T}}^{j_i}$


L1 Trigger

- 40 MHz bunch crossing rate
 - L1 → 100 kHz
 - HLT \rightarrow 1 kHz
- Global Calorimeter Trigger
 - Builds calorimeter objects for Global Trigger: Jets, e/γ , ...
- Measurement of event quantities:
 - $E_{\mathrm{T}} \equiv \sum \vec{p}_{\mathrm{T}}$
 - $H_{\mathrm{T}} \equiv \sum E_{\mathrm{T}}^{j_i}$

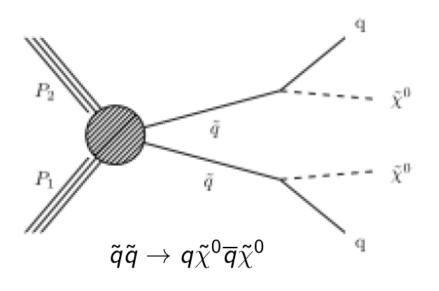
Trigger architectures


Fully pipelined trigger

Time-Multiplexed Trigger

LHC upgrade

- Upgrade in energy and luminosity
 - $\sqrt{s} = 13/14 \text{ TeV}, \mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Expect : ~50 pileup
 - Trigger design : ~20 pileup



- Time-multiplexed trigger architecture
- MP7 Fast, high bandwidth, redundancy
- Enables lowering of thresholds → Measurement of Higgs properties
- Increased sensitivity of new physics searches
- Jet reconstruction studies
 - Higher granularity Trigger tower-level $(\Delta\eta imes \Delta\phi = 0.087 imes 0.087)$
 - New jet shapes Circular
 - Different jet size Fat/thin
 - Event-by-event pileup subtraction

SUSY - Searches at the LHC

- Decay is model dependent
 - ⇒ Search for common signatures

Hadronic signature

- Strong pair production of sparticles
- Decay cascade to the Lightest Supersymmetric Particle (LSP)
- → Hadronic final states
- \rightarrow Large \mathbb{Z}_{T} (LSP)

SM backgrounds

W + jets

Z + jets

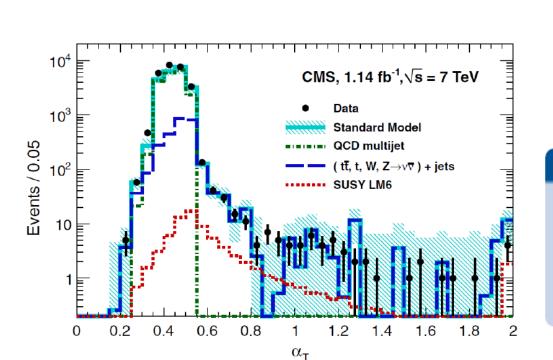
ullet $t,\,tar{t}$ production

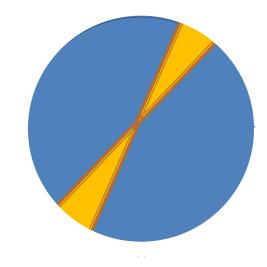
QCD multijets

: $W \to l \nu$, where e/μ not reconstruction/ fail isolation

au misidentified as jet

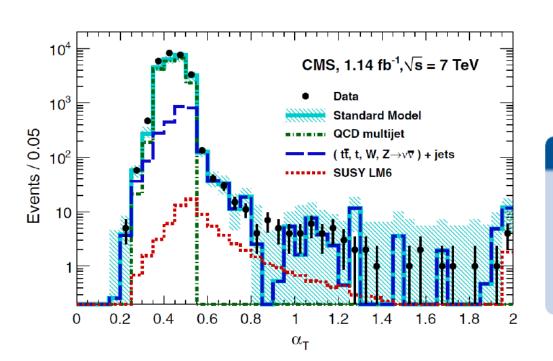
: $Z \rightarrow \nu \overline{\nu}$, irreducible background

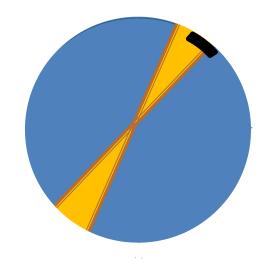

: \mathbb{Z}_T from semi-leptonic decay of t and b quarks


: Fake and real \mathbb{Z}_{T} , dominant background

 $: \alpha_{\rm T} = 0.5$

- Dimensionless variable to discriminate events with small/fake E_{T}
- QCD dijet event

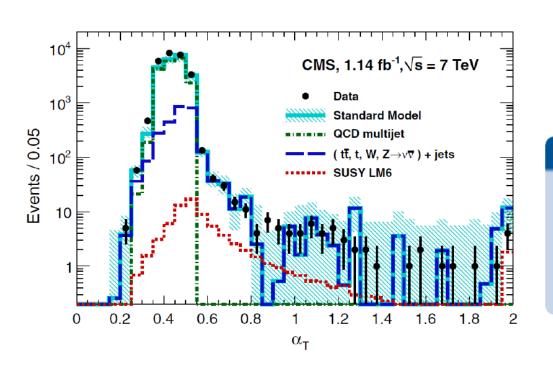

- $M_{\rm T} \equiv \sqrt{H_{\rm T}^2 H_{\rm T}^2}$
- $ightharpoonup H_{
 m T} \equiv \sum E_{
 m T}^{j_i},
 ot\! H_{
 m T} \equiv |\sum ec p_{
 m T}^{j_i}|$

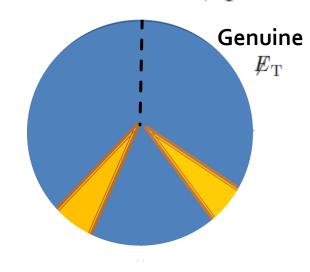


: $\alpha_{\rm T} = 0.5$

: $\alpha_{\rm T} < 0.5$

- Dimensionless variable to discriminate events with small/fake F_T
- QCD dijet event
 - Event mismeasurement

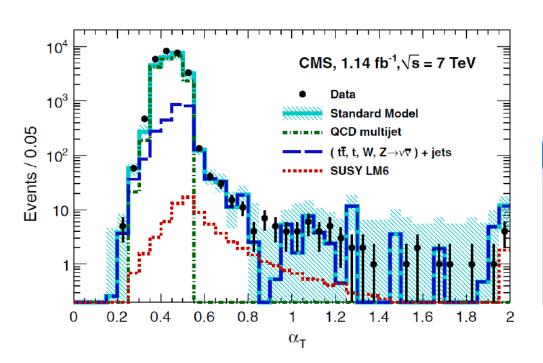


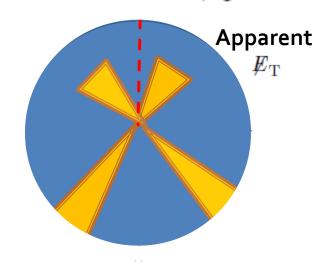

- $ightharpoonup lpha_{
 m T} \equiv E_{
 m T}^{j_2}/M_{
 m T}$
- $\blacktriangleright M_{\rm T} \equiv \sqrt{H_{\rm T}^2 H_{\rm T}^2}$
- $ightharpoonup H_{
 m T} \equiv \sum E_{
 m T}^{j_i}, \ H_{
 m T} \equiv |\sum ec{p}_{
 m T}^{j_i}|$

- Dimensionless variable to discriminate events with small/fake \mathbb{F}_{T}
- QCD dijet event

- $: \alpha_{\rm T} = 0.5$
- Event mismeasurement : $\alpha_{\rm T} < 0.5$
- Jets recoiling against genuine ${/\!\!E_{
 m T}}: \, lpha_{
 m T} > 0.5$

- $M_{\rm T} \equiv \sqrt{H_{\rm T}^2 H_{\rm T}^2}$
- $ightharpoonup H_{\mathrm{T}} \equiv \sum E_{\mathrm{T}}^{j_i}, H_{\mathrm{T}} \equiv |\sum \vec{p}_{\mathrm{T}}^{j_i}|$


• Dimensionless variable to discriminate events with small/fake \mathbb{F}_{T}

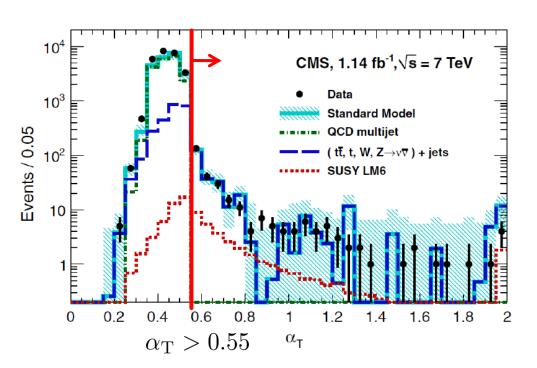

• QCD dijet event : $lpha_{
m T}=0.5$

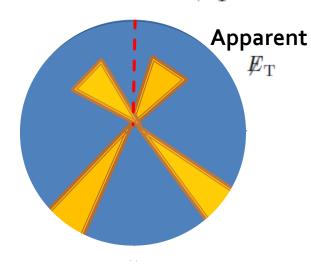
• Event mismeasurement : $\alpha_{\rm T} < 0.5$

• Jets recoiling against genuine ${/\!\!E_{
m T}}:\,lpha_{
m T}>0.5$

• Severe mismeasurement : $lpha_{
m T} > 0.5$

- $M_{\rm T} \equiv \sqrt{H_{\rm T}^2 H_{\rm T}^2}$
- $ightharpoonup H_{
 m T} \equiv \sum E_{
 m T}^{j_i}, \not H_{
 m T} \equiv |\sum ec{p}_{
 m T}^{j_i}|$

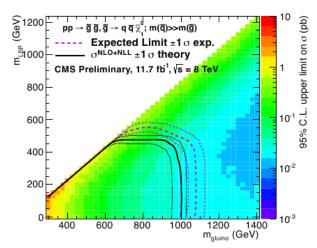

• Dimensionless variable to discriminate events with small/fake \mathbb{F}_{T}


• QCD dijet event : $lpha_{
m T}=0.5$

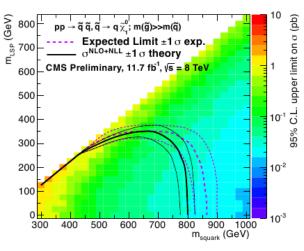
• Event mismeasurement : $\alpha_{\rm T} < 0.5$

• Jets recoiling against genuine ${E_{
m T}}:\,lpha_{
m T}>0.5$

• Severe mismeasurement : $lpha_{
m T} > 0.5$



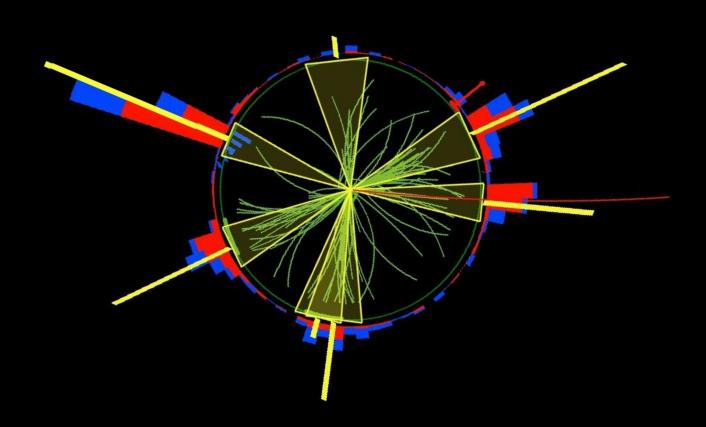
- $M_{\rm T} \equiv \sqrt{H_{\rm T}^2 H_{\rm T}^2}$
- $ightharpoonup H_{\mathrm{T}} \equiv \sum E_{\mathrm{T}}^{j_i}, \not H_{\mathrm{T}} \equiv |\sum \vec{p}_{\mathrm{T}}^{j_i}|$



SUSY - Simplified model exclusion

- Analysis method
 - Bin events in $H_{
 m T}$
 - Fit background and signal expectations
 - Set limits
- Current limits set with 8 TeV, 11.7 fb⁻¹ data
- Future of the analysis
 - Parked data → Compressed spectra
 - 13/14 TeV data → Increase in sensitivity

$$\tilde{g}\tilde{g}
ightarrow q \overline{q} \tilde{\chi}^0 q \overline{q} \tilde{\chi}^0$$


$$ilde{q} ilde{q} o q ilde{\chi}^0 \overline{q} ilde{\chi}^0$$

Conclusion

- Research centred around SUSY searches and LHC upgrade
- Work on developing jet reconstruction algorithms for the upgrade
- Develop the α_T analysis of 8 TeV parked data
 - → Compressed spectra
- First analysis of 13/14 TeV data in 2015
 - Discovery! (or improve current limits)

Backup

Analysis cuts

• Jet
$$E_{\mathrm{T}} > 50 \; \mathrm{GeV}$$
 and $|\eta| > 3$

$$(\eta \equiv -\ln[\tan(\theta/2)])$$

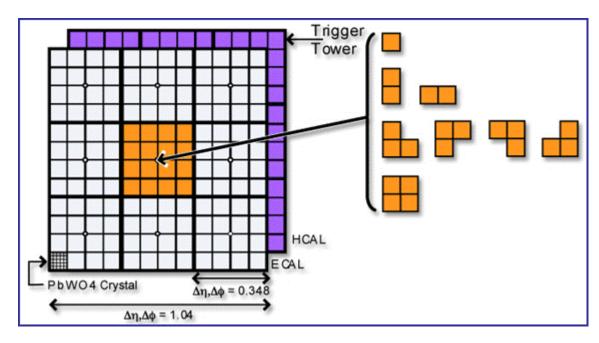
- Lead and second jet $E_{
 m T}>100~{
 m GeV}$
- Lead jet $|\eta| < 2.5$
- $\alpha_{\rm T} > 0.55$
- $H_{\rm T} > 275 \; {\rm GeV}$

Event vetoes

- Jet $E_{
 m T} > 50~{
 m GeV}$ and $|\eta| > 3$ / abnormal calorimeter signals
- Isolated e/μ $p_{\rm T}>10~{\rm GeV}$
- Isolated $\gamma p_{
 m T} > 25~{
 m GeV}$

Data control samples

• $W + \text{jets} \rightarrow l\nu, Z + \text{jets} \rightarrow \mu \overline{\mu}, \gamma + \text{jets}$


Problems with the SM

- Unification of the force coupling constants
 - Unified at GUT scale in SUSY
- Dark matter
 - No candidate for DM in SM
 - SUSY has several candidates: neutralino, sneutrino, ...
- Heirarchy problem
 - Mass of Higgs dependent on energy cut off
 - Require a high precision of fine tuning (10³²)
 - Quadratic divergences of Higgs mass cancelled by sparticles
 - Resulting in logarithmic divergence
 - Require that the stop mass < 400 GeV

Jet algorithms

Current algorithm

- (One of) Proposed algorithms
 - Create jet candidates
 - Select top 12 (or all) jets
 - Determine median jet E_T
 - Use for PU subtraction