Towards a Measurement of V_{ub} with LHCb

February 20, 2013

William Sutcliffe Towards a Measurement of V_{ub} with LHCb 1/13

• • = • • = •

3

< ∃⇒

-

э

- 1. Background and motivation.
- 2. Previous measurements.
- 3. V_{ub} with LHCb
- 4. Initial generator level study

э

1 - Current Status of $|V_{ub}|$

Semi-Leptonic B Decays:

Inclusive $(\bar{B}
ightarrow X_u l ar{
u}_l)$

Exclusive $(\bar{B}_0
ightarrow \pi^+ I ar{
u}_I)$

 $|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$ $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$

• Leptonic B decays $(B^+ \rightarrow \tau^+ \nu_{\tau})$:

1 - $|V_{ub}|$ Constraints on the Unitarity Triangle

$$V_{CKM}V_{CKM}^{\dagger} = 1 \implies$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$
(+ 5 others)

LHCD

[1] CKMfitter Group, J. Charles et al. ICHEP conference (July 2012)

æ

- e^+e^- B factories BaBar and Belle: $|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$
- Inclusive Approach:
 - □ Measure partial branching fraction, $\Delta B(B \rightarrow X_u l^- \nu)$.
 - □ Large background $B \rightarrow X_c I^- \nu$.
 - □ Exploit kinematic endpoint of $B \rightarrow X_c I^- \nu$.
 - □ Extrapolate to full phase space.
 - Dominate uncertainty due to uncertainty on *m_b*.

э

- ▶ BaBar, Belle and CLEO: $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$
- Exclusive Approach:
 - □ Exclusive final state $(\bar{B}_0 \rightarrow \pi^+ l^- \bar{\nu}_l)$

$$\begin{array}{ll} & \frac{d\Gamma}{dq^2} = \\ & \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_+(q^2)|^2 \end{array}$$

- $|f_+(q^2)|^2$ predicted by lattice QCD
- □ Uncertainty dominated by $|f_+(q^2)|^2$.

[2] J. Beringer et al., Determination of V_{ub} and V_{cb} (Particle Data Group). Phys. Rev. D86, 010001 (2012).

- Large pion backgrounds.
- Other possible decays: $\Lambda_b o p \mu^- \bar{\nu}_\mu$ and $\bar{B}_s o K^+ \mu^- \bar{\nu}_\mu$

► Advantages of $\Lambda_b \rightarrow p\mu^- \bar{\nu}_\mu$: □ $f_{\Lambda_b}/(f_u + f_d) \sim 0.40$ and $f_{\Lambda_b}/f_s \sim 3$ □ Proton provides a more distinctive final-state.

3 - $\Lambda_b ightarrow p \mu^- ar{ u}_\mu$ with LHCb

- Displaced secondary vertex.
- μ and p tracks.
- Muon systems
- 2 RICH detectors for PID
- Proton, kaon and pion separation

 $|ec{p}|=2
ightarrow100~{
m GeV/c}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

3 - RICH PID performance

æ

-

• High K-p misidentification rate below 10 GeV/c.

Generator level sample of pp to inclusive B events.

 \square At least one lepton with $p_{\rm T} > 1.5 \ {\rm GeV/c}$.

Search for p, K^+ and π^+ from the decay chain of a B hadron.

- Require p, K^+ and π^+ to vertex with a muon with $p_T > 1.5 \text{ GeV/c.}$
- Plot signal samples of $\Lambda_b \to p \mu^- \bar{\nu}_\mu$ and $\bar{B}_s \to K^+ \mu^- \bar{\nu}_\mu$
- Weight signal samples using:

$$\square ~~B(\Lambda_b o
ho\mu^- ar{
u}_\mu) pprox B(B_s o K^+ \mu^- ar{
u}_\mu) \sim 10^{-4}$$

Efficiencies of generator level cuts.

 \Box Λ_b and B_s production fractions.

- $|V_{ub}|$ is important constraining for CKM physics.
- \sim \sim 3σ discrepancy between exclusive and inclusive measurements.
- Yet to be observed $\Lambda_b \rightarrow p \mu^- \bar{\nu}_{\mu}$ is a promising decay.
- Generator level studies indicate that proton backgrounds are low.
- Future Work:
 - □ Determine exact selection criteria for a measurement of $\Delta B(\Lambda_b \rightarrow p\mu^- \bar{\nu}_{\mu}).$

Thanks for listening. Any questions?

御下 ・ヨト ・ヨト

æ