

Imperial College London – October 18, 2017 Claude Vallée (CPPM/DESY)

Status and Prospects of PHYSICS BEYOND COLLIDERS at CERN

Study Group mandated by the CERN Management to prepare the next European HEP strategy update (2019-20) coordination: J. Jäckel, M. Lamont, C.V.

Excerpt from the PBC mandate:

"Explore the opportunities offered by the CERN accelerator complex to address some of today's outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world." Time scale: next 2 decades pbc.web.cern.ch

PBC EVENTS

KICK-OFF WORKSHOP, CERN, Sept. 6-7, 2016 > 300 registered participants, 3/4 from outside CERN

Agenda :

- 1. Theorists wishes
- 2. Accelerator complex opportunities
- 3. Potential future of existing programs | Talks

Talks on invitation

4. New ideas: Call for abstracts \rightarrow 33 abstracts submitted, 20 selected for presentations

1st GENERAL WORKING GROUP MEETING, CERN, March 1-2, 2017 Identification of main issues to be studied

FOLLOW-UP OPEN WORKSHOP scheduled at CERN on November 21-22, 2017 https://indico.cern.ch/event/644287/ Progress on projects and new call for abstracts

NB: credit to Collaborations for the plots shown in this presentation

A DECADE OF VIBRANT "DIVERSITY" PHYSICS AT CERN !

~1000 physicists on ~20 experiments

Recent stop of major programs (e.g. CNGS) leaves room to new significant initiatives

CERN v_{μ} beam to Gran Sasso (CNGS) optimized for v_{τ} appearance (E_{ν}^{\sim} 17 GeV)

Channel	Expected background				Expected signal	Observed
	Charm	Had. re-interac.	Large μ -scat.	Total		
$\tau \rightarrow 1h$	0.017 ± 0.003	0.022 ± 0.006	_	0.04 ± 0.01	0.52 ± 0.10	3
$\tau \rightarrow 3h$	0.17 ± 0.03	0.003 ± 0.001	-	0.17 ± 0.03	0.73 ± 0.14	1
$\tau \rightarrow \mu$	0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \rightarrow e$	0.03 ± 0.01	_	-	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.00	0.25 ± 0.05	2.64 ± 0.53	5

OPERA: establishment of $v_{\mu} \rightarrow v_{\tau}$ oscillation

NEUTRINO PLATFORM

DUNE LAr-TPC engineering prototypes to be calibrated in low energy beams in a North Hall extension

Prototypes being assembled in hall extension. *Tight schedule to take beam data before LS2* NB: technology could also be on interest for future DM projects at CERN

AWAKE successful first beam data end 2016 with the establishment of plasma modulation

Goal for 2017/18 is first electron acceleration *Post-LS2 program under preparation*

A project of interest for future high E / high I electron beams

Low E perturbative chiral QCD with mesonic atoms: Discovery of πK atoms and metastable $\pi \pi$ atoms

<u>AFTER LS2</u>: wish to perform similar studies at SPS: Increased statistics (x ~20) would allow quantitative test of chiral SU(3)_L x SU(3)_R symmetry breaking with πK atoms

Search for QCD Critical Point by scan in the (T, μ_B) plane

Scan to be completed until LS2 No indication of CP yet

<u>AFTER LS2</u>: wish to further study QCD deconfinement with open charm

REQUIRED FACILITY UPGRADES S.INE : 20 2.0 LEGACY TPCS WITH ALICE READ-OUT 3 NEW TOP DETECTORS VERTEX DETECTOR (MPD mRPCs 2) (ALIGE ITS?) PROJECTILE BEAM SPECTATOR PETECTOR SIDE-BACKWARD DETECTOR (ALICE ITS2)

Would allow to disentangle statistical/dynamical models in complement of J/ ψ data from NA38/NA50

Main issues: factor 10 increase in beam intensity and high rate data taking

NA61 large acceptance TPC also unique to constrain v beam fluxes

Heavily used by T2K with p-C and p-replica target data

Similar program starting with the US for LBNF

Physics Beyond Colliders at CERN

New idea: NA60++

Revival of NA60 concept to measure low mass dimuons in heavy ions collisions

> New feature: energy scan to revisit QCD phase transition dynamics with a focus on chiral symmetry restoration

NA60+

10 m

Main issues: Experiment siting and strength/resources of the Collaboration

Vertex spectrometer,

Ser of the series of the serie

C. Vallée, Imperial, 18 Oct. 2017

Physics Beyond Colliders at CERN

nuon spectrometer to

COMPASS

a large acceptance spectrometer in the intermediate x-domain between H1/ZEUS and HERMES/JLAB

COMPASS I

Muon beam data taking completed in 2012, focused on quark spin contribution to proton spin

Longitudinal spin

<u>0</u>_ x_{Bi}=0.0036 (i = 0) ☆ EMC SMC x_{Bi}=0.0045 △ E143 E155 + Q^2 X_{Bi}=0.0055 小 HERMES COMPASS'07 (160 GeV) x_{Bi}=0.0070 O CLAS W>2.5 COMPASS'11 (200 GeV) pre g^p(x_{Bj}, LSS 05 NLO x_{Bi}=0.0090 x_{Bi}=0.012 $c_i = 0.7 \cdot (17.3 - i(x_{p_i}))$ x_{Bi}=0.017 x_{Bi}=0.024 к_{ві}=0.035 _x_{Bi}=0.077 (i = 10) 0.00 ·///06 .x_{Bi}=0.22 ᠃ᠿ᠃᠂᠕᠂ᡬ᠅ᠿ 0. ____X_{Bi}=0.29 ₽ ⊙⊙…⊕… ··· ∅໓∧ -∰------ ♦-- ♦---- ♦-- ♦ ____X_{BI}=0.41 ..x_{Bi}=0.57 ◊ጨ∿∾∧…ቲ₽ x_{Bj}=0.74 40 0 $Q^{2} (GeV^{2}/c^{2})$ 10 Improved precision on g₁ at low x

Transverse spin

C. Vallée, Imperial, 18 Oct. 2017

Physics Beyond Colliders at CERN

X

COMPASS I(+II): SPECTROSCOPY AND PRIMAKOV

16

<u>2014+15+18: DY</u> : Transverse Momentum Dependent (TMD) QCD effects in the valence regime Measurement complementary to SiDIS : opposite asymmetries expected

DY statistics	NH ₃	Al (7cm)	W	NA3	NA10	E537	E615
K^- beam	14,000	2,800	29,600	700			
\overline{p} beam	15,750	2,750	22,500			387	

Main issues: Competition, cost of RF separated beam, Collaboration long term support

New idea: "MU-E" experiment: direct measurement of the dominant contribution to the theoretical error on $(g-2)_{\mu}$ from μ -e elastic scattering

> High statistics space-like measurement could reduce by factor 2 the current error derived from time-like processes

 μ^+

Vacuum polarisation

Full t range accessible thanks to high energy μ beam boost, self normalized measurement Might be feasible with reasonable resources within the (modified) COMPASS setup

Main issue: systematic effects (control needed at 10⁻⁵ level)

New idea: Fixed Target physics with LHC beams

Internal gas target (LHCb, AFTER)

Upstream of LHCb and/or ALICE

e.g. SMOG or polarized HERMES-like

p-p: High precision TMD measurements (polarized target) and charm at high x p-A: Nuclear PDFs

New idea: Fixed Target physics with LHC beams cont'd

Crystal extraction Upstream Vertex beam of LHCb and/or **ALICE Bent-crystal** as primary collimator UA9 $\frac{dN_{i}}{N_{0i}d\cos\theta_{i}} = \frac{1}{2} (1 + \alpha P_{i} \cos_{i}\theta_{i})$ Proton beam

5m 10m 15m 20n

Proposed for measurement of magnetic and electric moments of short lived baryons *Could test anomalous moments of heavy quarks*

Main issue of LHC internal fixed targets: compatibility with other LHC programs/goals

ANTIMATTER FACTORY

4 running experiments devoted to Antiproton and Antihydrogen properties

2.5 more in preparation to test gravity of Antihydrogen: AEGIS/GBAR/ALPHA-g

Antiproton Properties

Magnetic moment:

ATRAP gain in precision of ~3 orders of magnitude using new method with single trapped antiproton

Significant improvement expected soon from BASE

<u>Mass</u>: Regular ASACUSA progress with cold 1- and 2-photon spectroscopy of antiprotonic Helium

$$\frac{(-q/m)_{\overline{p}}}{(q/m)_{p}} - 1 = 1(69) \times 10^{-12}$$

<u>Charge/Mass</u>: High precision BASE measurement with cyclotron frequency

Antihydrogen Properties cont'd: gravitation

2.5 experiments now devoted to a direct measurement

positronium

antiprote

converter

AEGIS in-flight deviation of Hbar atoms by gravitation

Statistical method

aratina

grating 2

Physics before contenent of the sign

Further deceleration of antiprotons from 5 MeV to 100 KeV kinetic energy

Will increase by 2 orders of magnitude the antiproton trapping efficiency

Under commissioning for first connection to GBAR in 2017

Secures antimatter physics for the next decade

11 MHz K⁺ decays in detector

Signal regions: ~100 evts expected until LS2

Detector fully operational in 2016, first year of quasi-nominal operation

New idea: $K^{\circ} \rightarrow \pi^{\circ}vv$ rare decay (KLEVER)

K⁰ decays complementary to K⁺ decays for the CKM matrix and BSM searches. Would require a new high intensity K⁰ beam.

~50 events could be collected with a similar but basically new detector.

Competition from starting KOTO at JPARC:

few evts expected in coming years, upgrade by factor ~10 foreseen > 2025

Main issues: actual sensitivity vs competition, cost of new beam and upgraded detector

- Long-lived objects
- Interact very weakly with matter

Models	Final states
HNL, SUSY neutralino	$l^+\pi^-, l^+K^-, l^+\rho^-\rho^+ \rightarrow \pi^+\pi^0$
Vector, scalar, axion portals, SUSY sgoldstino	l^+l^-
HNL, SUSY neutralino, axino	$l^+l^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

Intermezzo cont'd: the Hidden Sector

Production + decay of new particle: 2 couplings → needs high intensity **Invisible decay of new particle:** accommodates lower intensity

A similar situation as the search for neutrino oscillations in the 70 – 80's: do not know if they exist and where they stand !

<u>AFTER LS2</u> : NA62++

Wish to run ~1 year in beam dump mode to look for Heavy Neutral Leptons

> → possible intermediate step towards a more ambitious beam dump facility

Compact beam dump: ~11 λ_l Cu-based beam-defining collimator (TAX) radioprotection-compliant even if target removed

Flagship program for a comprehensive investigation of the Hidden Sector in the few GeV domain *Exploits the unique high-E/ high-I SPS features*

SHiP physics reach

34

SHiP optimisation

Comprehensive Design Study ongoing

Magnetized hadron absorber → shorter muon shielding and high acceptance. Muon yields and charm cross sections to be measured in test beams. Background estimations can benefit from NA62 data.

Main issue: maximize physics reach to justify high investment of a new beamdump facility

BEAM DUMP FACILITY

Conceptual design ongoing at CERN. Foreseen to be sited close to the North Area

An opportunity for a new post-CNGS high intensity general facility at CERN

Wish to extend the method to $\mu / \pi / K / p$ beams

Process	New Physics	Sensitivity	
1. e ⁻ Z ->e ⁻ Z + E _{miss}			
 A´-> e+e⁻ A´-> invisible alps milli-Q 	Dark Sector: Dark Photons and DM New light states (V,S) weakly coupled to e- ⁸ Be excess	10 ⁻³ < <i>ε</i> <10 ⁻⁶ M _{A´} ~ sub-GeV mQ <10 ⁻⁵ -10 ⁻⁷ e M _{mQ} ~ sub-GeV	
2. μ ⁻ Ζ->μ ⁻ Ζ+ Ε _{miss}			
$ ◊ Z_{\mu} → νν, \mu^{+}\mu^{-} ◊ a_{\mu} ◊ \mu → τ conversion $	$(g-2)_{\mu}$ anomaly, New Z _µ from L _µ -L _τ gauged symm., scalars coupled to μ LFV	α _μ < 10 ⁻¹¹ -10 ⁻⁹ σ _{μτ} /σ _μ < 10 ⁻⁹ -10 ⁻⁸	
3. π(K)p-> M ^o n + E _{miss}			
↔ K _L -> invisible ↔ K _S -> invisible ↔ π ⁰ , η, η´-> invisible	CP, CPT symmetry Bell-Steinberger Unitarity, new WC particles: NHL, φφ, VV	Br <10 ⁻⁸ -10 ⁻⁶ , Complementary to K-> $\pi\nu\nu$ Br< 10 ⁻⁸ -10 ⁻⁷	
4. pA -> Z´+ E _{miss}			
♦ leptophobic Z´	~ GeV DM	σ _{Z′} <10⁻ ⁷ -10⁻ ⁸ /p	

Main issues: e beam intensity and CERN siting for other beams

Another possible source of hidden particles:

Axions from the sun

CAST: Instrumented LHC magnet pointed to the sun to convert Axions into X rays

³He and ⁴He scans completed, start to bite into QCD models

Vacuum runs continued with "IAXO pathfinder" detection system

R&D on new detection techniques going on CAST CERN setup

New idea: IAXO

Next generation Axion Helioscope beyond CAST

Wish to profit from CERN magnet expertise (ATLAS-like large bore toroid)

IAXO TDR preparation

Collaboration formally founded in July 2017, funding being secured to prepare TDR. Prototypes of IAXO detector under preparation, Support from CERN for magnet design granted within PBC Baby-IAXO intermediate option may offer optimal sensitivity/cost ratio

Main IAXO issues: Collaboration strengthening and helioscope siting (DESY interest)

Dipole	Aperture [mm]	Field strength [T]	LSW experiment	Number of used dipoles
HERA (straightened)	50	5.3	ALPS II (DESY)	20
LHC	40	9.0	OSQAR (CERN)	2
"FCC"	100 (40)	13 (20)	"ALPS III"	

A combined project ("ALPS III") could benefit from CERN high field magnet developments

Ring design ongoing by CERN with srEDM and JEDI collaborations <u>Main issue</u>: control of systematic effects (e.g. B fields)

10⁻³⁸

New idea: Gamma Factory

Use LHC beam to convert laser photons into 0.1 - 400 MeV γ rays

Well controlled *v* beam from a μ storage ring.

Would allow precise $\sigma(v)$ measurements. Also a path towards a v factory or a μ collider.

PBC WORKING GROUP STRUCTURE

Organisation and follow-up of activities documented on http://pbc.web.cern.ch/

One main overview document supplemented by CDR/CDS at a level of details matched to the maturity of the projects To be submitted end 2018 as input to the next European Particle Physics strategy update

NB: no arbitration between projects to be done by PBC Guidelines will come later from the Strategy update

One of the main added values of PBC: a forum for exchanges between communities with similar motivations, under CERN "umbrella": SHiP/NA62, COMPASS/LHC-FT, COMPASS/MUE, NA60/NA61/LHC-FT, JEDI/srEDM, OSQAR/ALPS, etc...

ADDITIONAL SLIDES

Subgroups:

Deliverable:

Beam Dump Facility
EDM ring
Conventional beams
LHC Fixed Target
Technology

•

:

•

- : Technical feasibility of BDF as input to SHiP CDS
 - Fully developed feasibility study incl. preliminary costing
 - Study upgrades for NA62++, NA64++, COMPASS++, DIRAC++ beams
- : CDR putting together UA9, LHC Collimation, AFTER...
 - Evaluation of possible CERN contributions to non-acc. projects

Studies:

Complex performance:AWAKE:NuSTORM:Gamma Factory:

Performance plan in LIU era and exploration of new proton driver Exploratory study of possible applications of AWAKE concept

- Broad outline of possible implementation at CERN
- : Exploratory study incl. initial tests

PHYSICS SUB GROUPS DELIVERABLES

Deliverables for each proposed project:

- Evaluation of the physics case in the worldwide context
- Possible further optimization of the detector
- For new projects: investigation of the uniqueness of CERN siting

BSM subgroup : SHiP/NA64++/NA62++/IAXO/LSW/EDM ...

QCD subgroup : COMPASS++/µ-e/LHC-FT/DIRAC+/NA60++/NA61++ ...