
Imperial College London

A new Kamiokande in Korea

-Phill Litchfield

Outline

A short history of the Kamioka program

Neutrino oscillation physics & T2K

Hyper-K and the Korean detector

Proton decay

Late 70's: Grand Unified Theories are very popular

- Started with *SU*(5) & *SO*(10) [1974]
- Predict `Leptoquark` operators that conserve B-L, but not B

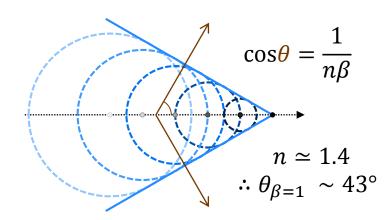
$$u+u o ar{ ext{d}}+ ext{e}^+$$
 gives rise to $m{p} o m{\pi^0}+m{e}^+$ "Proton decay"

Predicted lifetime of the proton $10^{30} \sim 10^{35}$ years.

$$18g H_2 O = 10N_A = 6 \times 10^{24} \text{ protons}$$

Therefore a few kilotonnes (gigagram) of material would be enough to start testing the theories...

Early 80's: Experiments designed and built to test these predictions


A kilotonne-scale detector

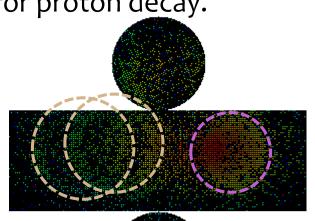
A few tonnes is still a lot of material to instrument. Practically you need:

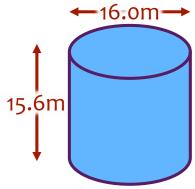
- Something cheap and easy to maintain.
- That your source is also the detector
- Surface instrumentation (L^2 instead of L^3)

Suitable technology: Water-Cherenkov

Water is cheap, and (if purified) can be very transparent.

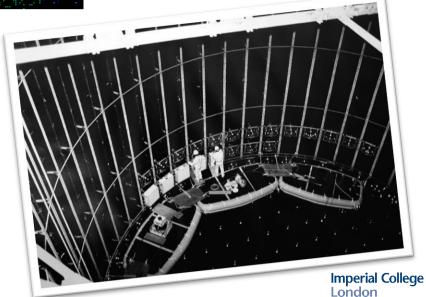
Conical radiation pattern intersects surface to make a **ring**


- Direction from centre of ring
- Energy from range (thickness of ring)
- Works nicely for low mass particles.


KamiokaNDE

1982 ~ 1983: The "Kamioka Nucleon Decay Experiment" was constructed in Mozumi mine near Kamioka town in central Japan to look for proton decay.

$$p \to \pi^0 + e^+$$


$$\hookrightarrow \gamma + \gamma$$

Cherenkov light collected by 1k specially-designed 20" PMTs.

- Large PMTs meant more of the tank surface was sensitive to photons.
- More photocoverage means better energy resolution.

Kamiokande-II

1985: The Kamiokande detector was upgraded to enable it to see solar neutrinos. Now also "Kamioka Neutrino Detection Experiment"

- Needed low threshold (few MeV).
- Outer detector (OD) added to veto entering particles.
- The water is highly purified and recycled to remove Radon (low-energy B/G.)

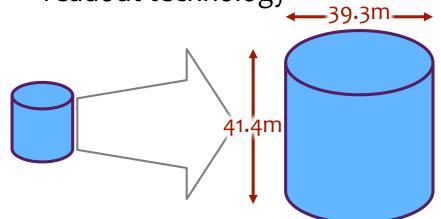
This work paid off spectacularly (& luckily):

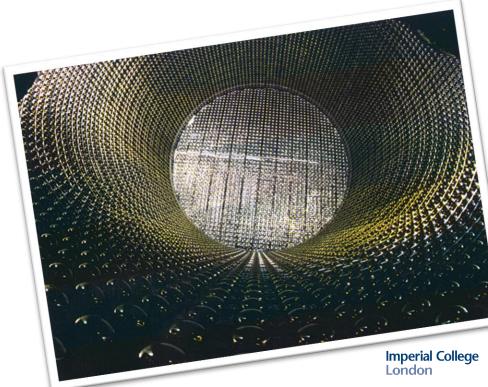
1987: Neutrinos are detected from SN1987A in the LMC.

- (First) Nobel Prize for Kamioka neutrino program in 2012.
- Supernova close enough so see with neutrinos are expected ~30 years...

<hint> <hint>

Super-Kamiokande


1990's: 'Oscillation' phenomenon suspected to be explanation of deficit seen in both solar neutrinos and atmospheric neutrinos.


 A larger experiment could investigate 'shape' predictions of oscillation mechanism with much better statistics.

 Improvements to purification meant water is usefully transparent for longer distances.

Build Super-Kamiokande!

 Also incorporate things learnt (e.g. better OD) and upgrade readout technology

K2K and T2K

By 2000, experiments with atmospheric neutrinos were showing some limitations:

- Neutrino flux estimates rely on detailed simulation of the hadronic cascades, over several orders of magnitude in energy.
- Small errors in reconstructing the neutrino direction result in **big changes** in guessing the origin point.

Neutrinos from accelerators are much better! Even if you don't understand the source fully:

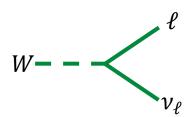
- You know where it is.
- You can measure it.

K2K was the first experiment to try this approach to measuring oscillations, **T2K** is its (currently running) successor.

The question is, where do we go next?

Outline

A short history of the Kamioka program


Neutrino oscillation physics & T2K

Hyper-K and the Korean detector

Oscillation mechanism

Neutrinos are 'born' in weak processes.

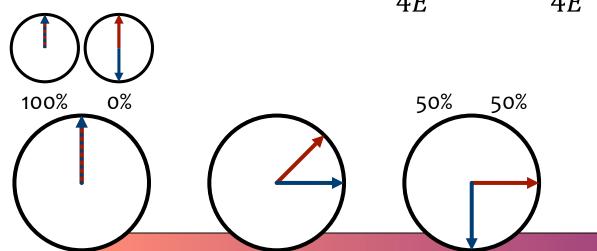
They are defined by the associated charge lepton.

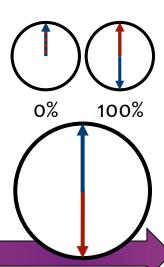
Also detected by weak interactions \rightarrow well defined flavour state.

So the oscillation probability is:
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta} | Time \ passes | \nu_{\alpha} \rangle|^2$$

The passage of (space-)time is through the usual operator: $e^{-i(\hat{E}t-\hat{p}\cdot x)}$ In vacuum the eigenstates of this operator are mass eigenstates m_i Therefore transform flavour into mass states and back:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \left\langle \nu_{\beta} \middle| U_{\beta i}^{\dagger} e^{-i(E_{i}t - p_{i} \cdot x)} U_{\alpha i}^{\dagger} \middle| \nu_{\alpha} \right\rangle \right|^{2}$$

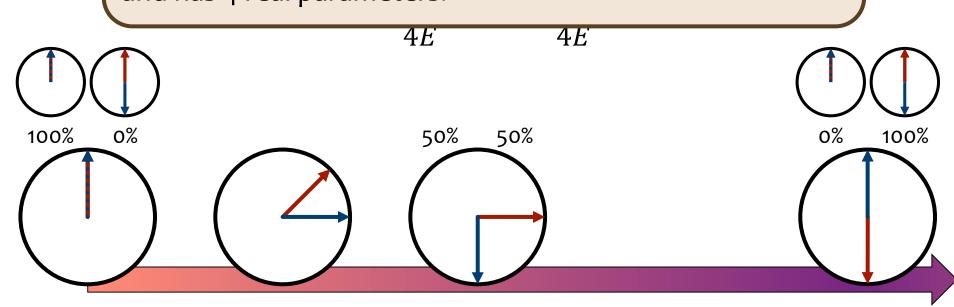

Oscillation mechanism


$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \left\langle \nu_{\beta} \middle| U_{\beta i}^{\dagger} e^{-i(E_{i}t - p_{i} \cdot x)} U_{\alpha i}^{\dagger} \middle| \nu_{\alpha} \right\rangle \right|^{2}$$

The phase evolution can be expanded in two parts:

- 1. Global phase advance that disappears in the modulus
- 2. Relative phase between the different v_i . For ultra-relativistic neutrinos this is:

$$\frac{\left(m_i^2-m_j^2\right)L}{4E}=\frac{\Delta m_{ij}^2L}{4E}$$



Oscillation mechanism

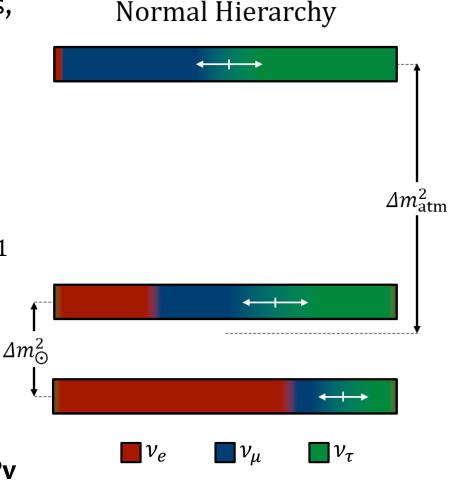
The place Oscillat

Oscillations occur based on 2 independent mass² splittings,

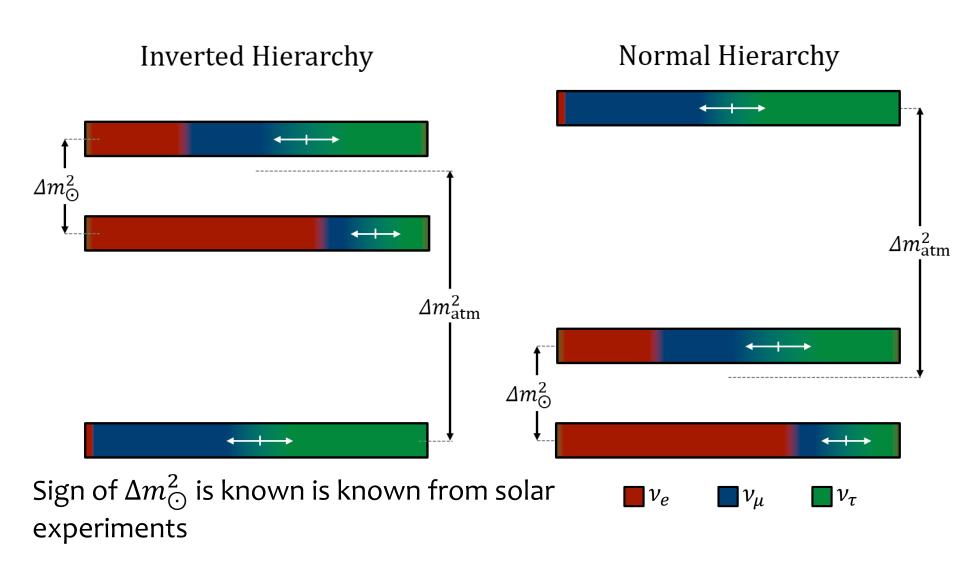
- 1. Gl provided the propagation distance satisfies $\Delta m_{ii}^2 L > 4E$.
- 2. Re ne For 3 generations, the most general mixing matrix is complex and has 4 real parameters.

Neutrino mixing

With 3 generations and non-zero mass, CKM- style mixing is natural:


$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \textbf{U}_{e1} & \textbf{U}_{e2} & \textbf{U}_{e3} \\ \textbf{U}_{\mu 1} & \textbf{U}_{\mu 2} & \textbf{U}_{\mu 3} \\ \textbf{U}_{\tau 1} & \textbf{U}_{\tau 2} & \textbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$0 \frac{\sqrt{1/6}}{\sqrt{1/3}} \frac{\sqrt{1/2}}{\sqrt{1/2}} \frac{\sqrt{2/3}}{\sqrt{1/3}}$$


More surprising: 8 elements are large

• U_{e3} is significant as the smallest element, and the last to be measured (or inferred).

Important to note: KM-mechanism CPv requires that all elements are non-zero

Note on hierarchies

Angle parameterisation

The mixing matrix is commonly parameterised as the product of two rotations and a unitary transformation.

Writing $s_{ij} = \sin \theta_{ij}$, and $c_{ij} = \cos \theta_{ij}$:

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

This choice is convenient as the original solar and atmospheric disappearance signals could be approximated as functions of θ_{12} and θ_{23} , respectively.

Essentially this was a careful (lucky?) choice of variables S.T. the third angle θ_{13} describes the magnitude of the smallest element:

$$U_{e3} = \sin \theta_{13} e^{-i\delta}$$

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

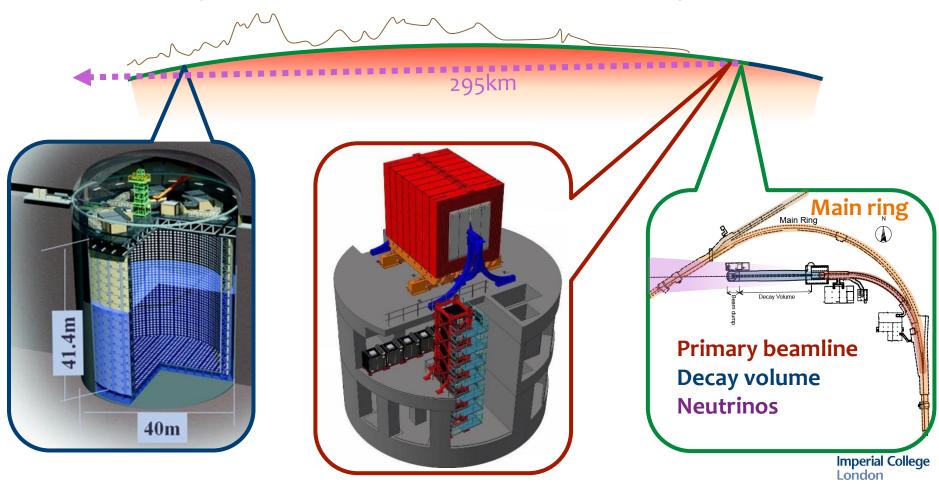
The v_e appearance probability can be written approximately as a sum of terms quadratic in the small parameters $\alpha = \Delta m_{21}^2/\Delta m_{31}^2 \approx \pm 1/32$, and $\sin 2\theta_{13}$:

$$\begin{split} P \big(\nu_{\mu} \rightarrow \nu_{e} \big) &\approx T_{\theta\theta} \sin^{2} 2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + T_{\alpha\alpha} \alpha^{2} \frac{\sin^{2}(A\Delta)}{A^{2}} \\ &+ T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \cos(\delta + \Delta) \end{split}$$

where

$$T_{\theta\theta} = \sin^2 \theta_{23}, T_{\alpha\alpha} = \cos^2 \theta_{23} \sin^2 2\theta_{12},$$

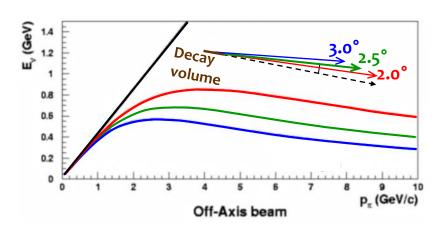
 $T_{\alpha\theta} = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}$

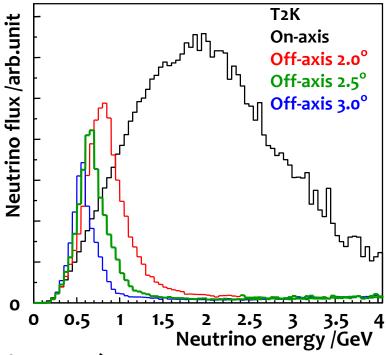

and
$$\Delta = \frac{\Delta m_{31}^2 L}{4E} \sim \frac{(2n-1)\pi}{2}$$
 at 1st osc. max.

and
$$\Delta = \frac{\Delta m_{31}^2 L}{4E} \sim \frac{(2n-1)\pi}{2}$$
 at 1st osc. max.
$$\begin{pmatrix} A \ (= 2\sqrt{2}G_F n_e E / \Delta m_{31}^2) \text{ is the matter density parameter.} \\ \text{Here, } |A| \simeq E/10\text{GeV} \end{pmatrix}$$

Tokai-to-Kamioka (T2K)

Uses the existing Super-K detector and J-PARC high-power proton facility on the east cost of Japan.

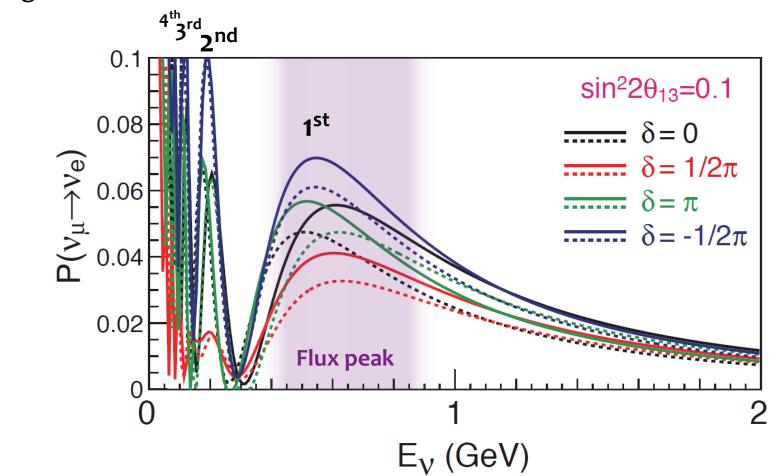

Near detector suite "ND280" characterises neutrino beam


The Off-axis 'trick'

T2K is the first experiment to have its detectors off-axis

Relativistic kinematics \rightarrow at a small angle to the beam axis, neutrino energy is insensitive to parent pion energy.

Gives slightly narrower flux peak, and drastically reduces high energy tail.


• Ideal for v_e appearance (much reduced NC BG)

Oscillation spectra

Imperial College

London

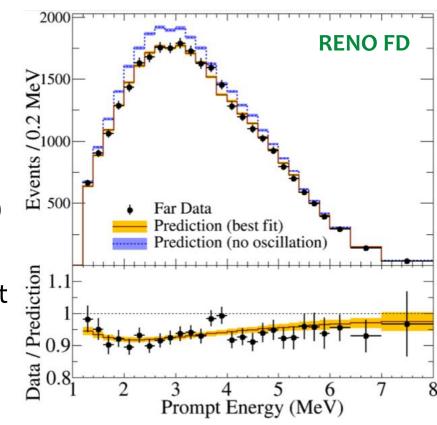
The oscillation probability is measured as a function of energy, and typically has peaks spaced at $\frac{1}{E}$, with a tail down to no oscillation at high energies.

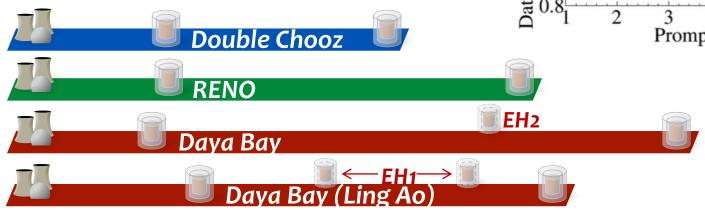
T2K original goal

For $\Delta \sim \frac{\pi}{2}$, we know the magnitude of the second term is small ($\sim 10^{-3}$) so any signal above that is evidence that $\sin^2 2\theta_{13} > 0$, regardless of the value of the other unknowns.

$$P(\nu_{\mu} \to \nu_{e}) \approx T_{\theta\theta} \sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + T_{\alpha\alpha}\alpha^{2} \frac{\sin^{2}(A\Delta)}{A^{2}} + T_{\alpha\theta}\alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \cos(\delta + \Delta)$$

It turned out that $P(\nu_{\mu} \rightarrow \nu_{e}) \sim 0.1$, slightly above previous limit.


- Easy to see, requiring <10% of T2K design sensitivity.
- Also means we can essentially ignore the second term.


Reactor experiments

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$P(\nu_e \rightarrow \nu_e) \approx 1 - \sin^2 2\theta_{13} \sin^2(\Delta)$$

2017: This is now the most precise input to the appearance prob. $P(v_{\mu} \rightarrow v_{e})$

Current analysis: T2K + reactors.

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = \frac{\Delta m_{31}^2 L}{4E}$$

$$A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$$

$$\begin{split} P\big(\nu_{\mu} \rightarrow \nu_{e}\big) &\approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} \\ + \alpha \sin 2\theta_{23}\sin 2\theta_{12}\sin 2\theta_{13}\cos\theta_{13} \frac{\sin([1-A]\Delta)\sin(A\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A}\cos(\delta + \Delta) \end{split}$$

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$lpha = rac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = rac{\Delta m_{31}^2 L}{4E}$$
 $A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$

$$\begin{split} P\big(\nu_{\mu} \rightarrow \nu_{e}\big) &\approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} \\ + \alpha \sin 2\theta_{23}\sin 2\theta_{12}\sin 2\theta_{13}\cos\theta_{13}\frac{\sin([1-A]\Delta)\sin(A\Delta)}{(1-A)}\frac{\sin(A\Delta)}{A}\cos(\delta + \Delta) \end{split}$$

Goal: To find out the remaining unknowns; δ , and sign(Δ) [i.e. whether or not $m_3^2 > m_1^2$]

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$lpha = rac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = rac{\Delta m_{31}^2 L}{4E}$$
 $A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + \alpha \sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos\theta_{13} \frac{\sin([1-A]\Delta)\sin(A\Delta)}{(1-A)}\cos(\delta + \Delta)$$

We already knew $\sin 2\theta_{12}$ and α from solar neutrino experiments

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = \frac{\Delta m_{31}^2 L}{4E}$$

$$A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + \sin^{2}\theta_{13}\sin^{2}\theta_{13}\cos\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)}\alpha\Delta\cos(\delta + \Delta)$$

We already knew $\sin 2\theta_{12}$ and α from solar neutrino experiments

Can also reduce the second 'sinc' function to just Δ

At about the same time, new reactor experiments (RENO, Double Chooz & Daya bay) independently measured $\sin^2 2\theta_{13}$ via disappearance:

$$lpha = rac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = rac{\Delta m_{31}^2 L}{4E}$$
 $A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + \frac{\sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos\theta_{13}}{(1-A)} \frac{\sin([1-A]\Delta)}{(1-A)} \alpha\Delta\cos(\delta + \Delta)$$

We already knew $\sin 2\theta_{12}$ and α from solar neutrino experiments

Can also reduce the second 'sinc' function to just Δ

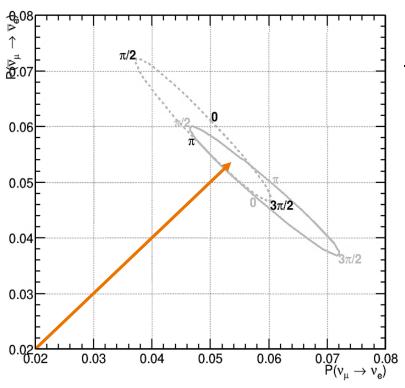
And $\sin^2 2\theta_{23}$ is measured by v_μ disappearance results

Unpacking the probability

Split the $cos(\delta + \Delta)$ term and we find that the second term is the equation of an ellipse.

$$lpha = rac{\Delta m_{21}^2}{\Delta m_{31}^2} \quad \Delta = rac{\Delta m_{31}^2 L}{4E}$$
 $A = 2\sqrt{2}G_F n_e E / \Delta m_{31}^2$

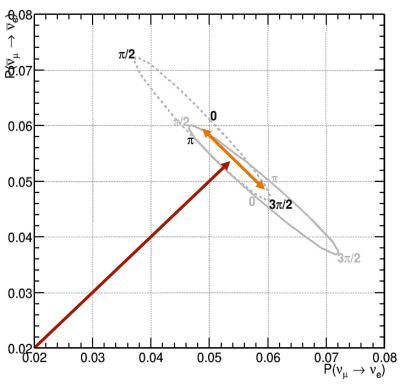
$$\begin{split} P \left(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \right) &\approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} \\ &+ \sin2\theta_{23} \sin2\theta_{12} \sin2\theta_{13} \cos\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \alpha \Delta \cos\Delta \cos\delta \\ &- \sin2\theta_{23} \sin2\theta_{12} \sin2\theta_{13} \cos\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \alpha \Delta \sin\Delta \sin\delta \end{split}$$


Unpacking the probability

Split the $cos(\delta + \Delta)$ term and we find that the second term is the equation of an ellipse.

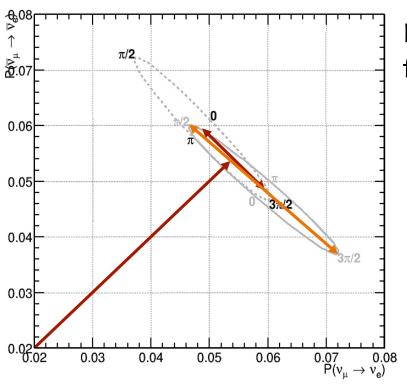
The relative amplitudes are calculated to show they are quite similar.

$$P(\nu_{\mu} \to \nu_{e}) \approx sk_{0} \approx 0.049 \eta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + \sin^{2}(2\pi) \frac{\sin^{2}([1-A]\Delta)}{[1-A]\Delta} \cos^{2}(2\pi) \frac{\sin([1-A]\Delta)}{(1-A)} \cos^{2}(2\pi) \frac{\sin^{2}([1-A]\Delta)}{(1-A)} \sin^{2}(2\pi) \frac{\sin^{2}([1-A]\Delta)}{(1-A)} \sin^{2}([1-A]\Delta)$$


Here
$$\Phi = \frac{2\Delta}{\pi} = \frac{\Delta m_{31}^2 L}{2\pi E}$$
 (= 2n - 1 at the nth maximum)

Drawn for a particular energy, as a function of δ and the mass hierarchy.

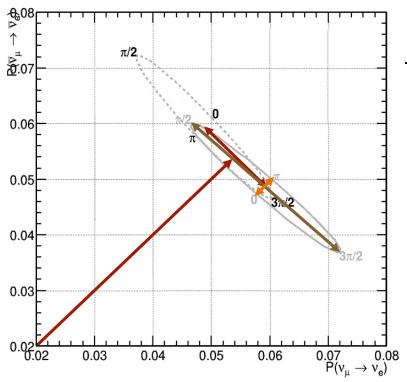
• The size of k_0 specified the centre of the ellipse (in vacuum).


$$\begin{split} &P\left(\bar{v}_{\mu}^{0} \rightarrow \bar{v}_{e}^{0}\right) \approx \frac{k_{0}}{\sin^{2}([1-A]\Delta)} \\ &+ k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta \\ &\mp k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta \end{split}$$

Drawn for a particular energy, as a function of δ and the mass hierarchy.

- The size of k_0 specified the centre of the ellipse (in vacuum).
- A nonzero value of A splits the ellipses.

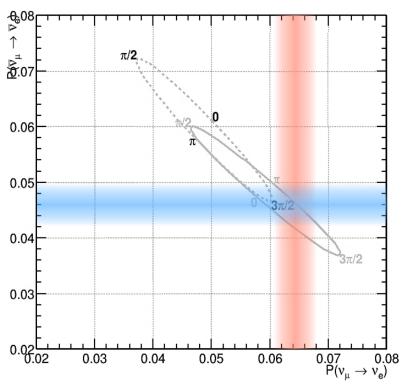
$$\begin{split} &P\left(\bar{v}_{\mu}^{0} \rightarrow \bar{v}_{e}^{0}\right) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} \\ &+ k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta \\ &\mp k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta \end{split}$$



Drawn for a particular energy, as a function of δ and the mass hierarchy.

- The size of k_0 specifies the centre of the ellipse (in vacuum).
- A nonzero value of A splits the ellipses.
- The $\sin\delta$ term causes CP violation.

$$P(\bar{v}_{\mu}^{0} \to \bar{v}_{e}^{0}) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta$$


$$\mp k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta$$

Drawn for a particular energy, as a function of δ and the mass hierarchy.

- The size of k_0 specifies the centre of the ellipse (in vacuum).
- A nonzero value of *A* splits the ellipses.
- The $\sin\delta$ term causes CP violation.

- $P(\bar{v}_{\mu}^{0} \to \bar{v}_{e}^{0}) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta$ $\mp k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta$
- The cosδ term causes a CP conserving effect (with opposite sign between NH and IH)

Measure **neutrino** and **anti-neutrino** appearance probabilities.

Other parameters need to be constrained to sufficient precision.

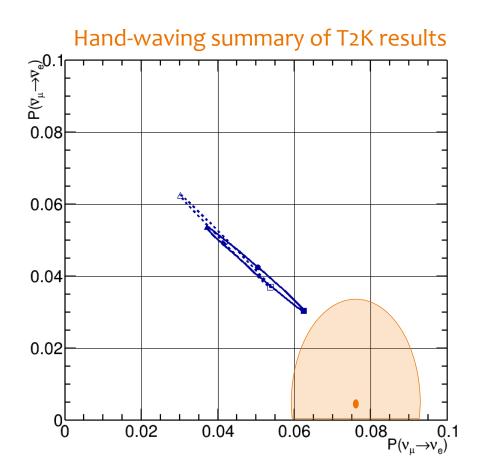
Then can establish value of δ and sign(Δm_{31}^2).

But may be ambiguous

- Degenerate solutions
- Or just because of finite resolution.

$$P(\bar{\nu}_{\mu}^{0} \to \bar{\nu}_{e}^{0}) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta$$

$$\mp k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta$$


What does current T2K data say?

There's a catch here.

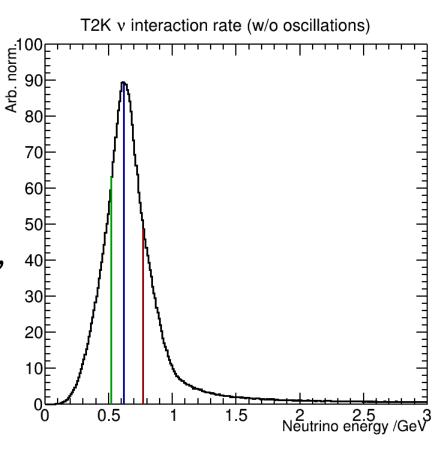
$$\begin{split} &P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} \\ &+ k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\!\Delta \cos\!\delta \\ &- k_{\mathrm{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\!\Delta \sin\!\delta \end{split}$$

The bi-probablitiy plots are drawn for a *single* neutrino energy, but a real beam has a *range of energies*.

However, if one naively converts from event rates to probabilities you get a rough idea of what T2K's (2016) measurement implies.

Taking the spectrum into account

The energy spectrum does matter though; can we find a way to show this?

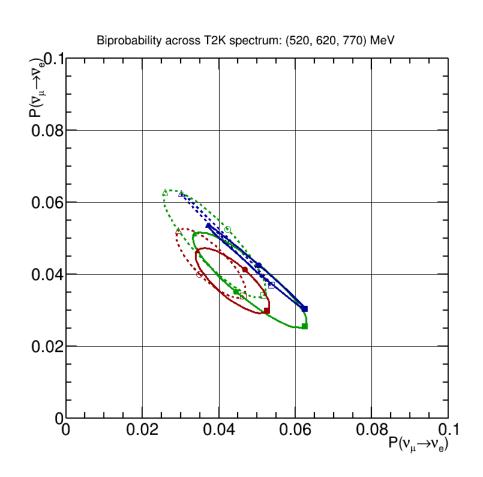

Choose 3 representative points

Take the peak of the neutrino
 (interaction) spectrum. This value
 is commonly used as a summary.

This divides the spectrum into 2 'tails'

- Scan to the left & find the median of the lower tail.
- Scan to the right and do the same

Now 50% of the spectrum will be between green and red

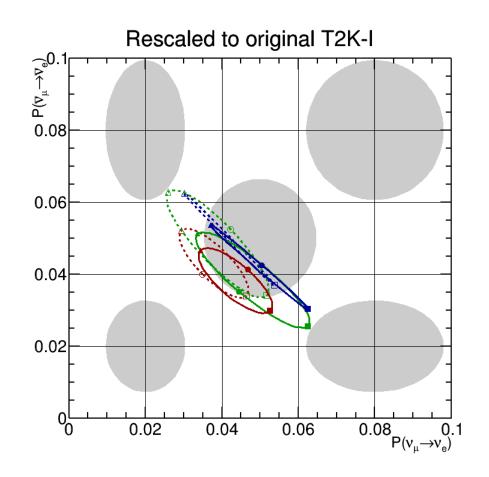


Taking the spectrum into account

The energy spectrum does matter though; can we find a way to show this?

Now calculate ellipses for each energy: 520, 620 and 770 MeV

Can see there is *some* justification for just integrating across the spectrum, even if it isn't perfect.



Estimating statistical sensitivity

Finally, estimate the sensitivity a single probability ellipse.

- Number of events estimated for nominal exposure* (T2K: 0.75 MW × 5 years)
- 3 ellipses and we ignored extreme tails, so assume 25% of expected events contribute to each.
- Then estimate fractional error as a function of estimated signal and background at particular probabilities:

$$\frac{\sqrt{S+B}}{S}$$

Outline

A short history of the Kamioka program

Neutrino oscillation physics & T2K

Hyper-K and the Korean detector

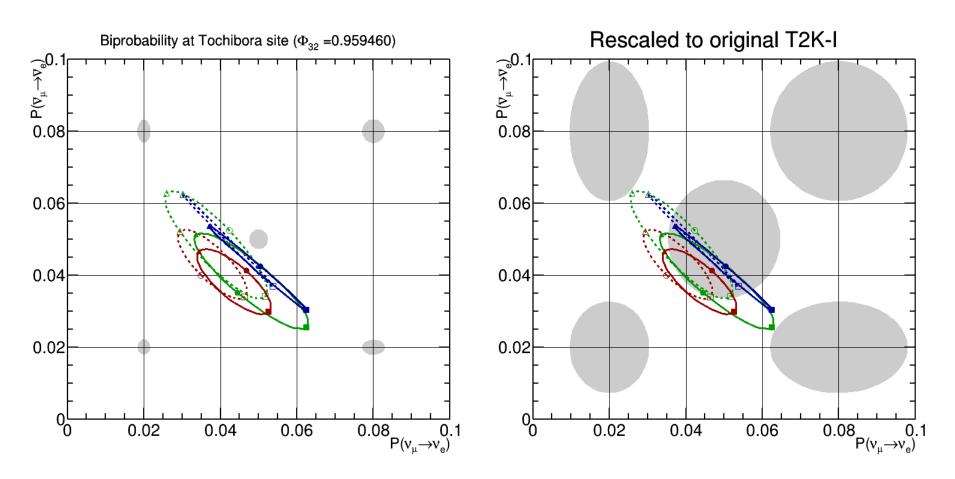
The future

In the next ~5y we expect (4×) more data from T2K, plus full results from NOvA. In addition we may have useful measurements from non-LBL experiments (e.g. IceCube).

In 10~20y: Next generation experiments - Hyper-K and Dune

T2K best fit is one of the 'easy points'. Consider 2 options:

- 1. T2K is correct, and other experiments agree
 - Fair chance that T2K + NO ν A + IceCube together favour NH at "> 3σ "
 - IceCube and NOvA both have higher sensitivity to mass hierarchy
 - Most important goal is to establish CPv, and then measure δ .
- 2. T2K best fit is not correct, &/or other experiments disagree
 - Testing measurements in other regimes is useful. Unlikely to be able to resolve disagreement without different data.


Hyper-Kamiokande

Hyper-K is the proposed next generation WC detector. The baseline design calls for 2 new tanks, both situated in a mine near the existing Kamioka Lab.

- Each tank is 5× larger than Super-K (8× after fiducial cuts)
- 40% photocoverage (same as Super-K)
- Single-photon detection eff of 24% (twice that of Super-K PMTs)
 Timing ~1ns (Super-K 2~3ns)

How does Hyper-K improve things?

Hyper-K (1 tank × 10y) compared to T2K nominal

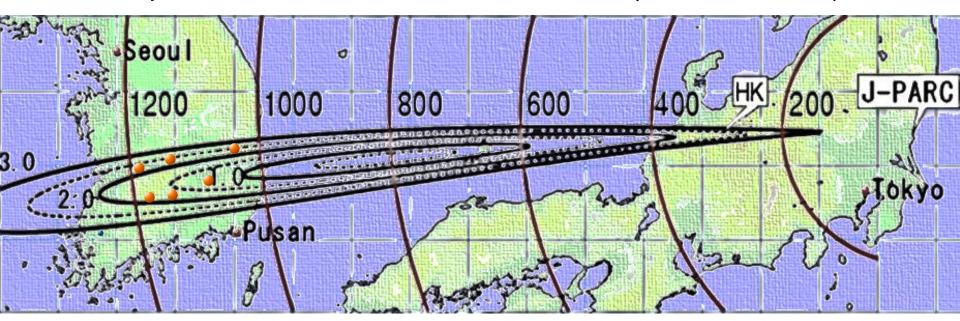
Stats ellipses get smaller, giving better sensitivity

The Korea proposal

The 2 tanks in the baseline design are staged, with the second tank coming into use 6 years after the first.

An alternative possibility is to put a second tank in Korea ("T2HKK")

- Work on the second tank could conceivably start much sooner
- This is possible because of the off-axis choice
 - The beam is below (and slightly to the south of) the Super-K at 295km
 - The centre surfaces at a distance of about 800km, in the Sea of Japan
 - The 2.5° cone around this point extends to about 1250km, past the west coast of South Korea.



The Korea proposal

The 2 tanks in the baseline design are staged, with the second tank coming into use 6 years after the first.

An alternative possibility is to put a second tank in Korea

- Work on the second tank could conceivably start much sooner
- This is possible because of the off-axis choice (c.f. NuMI, Dune)

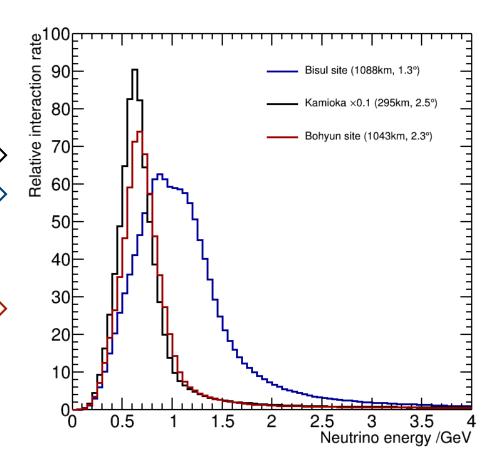
What changes for a Korean site?

Obviously, the baseline is longer.

Candidate sites In Korea are between 1000km and 1200km, i.e. 3~4× times as distant as Kamioka

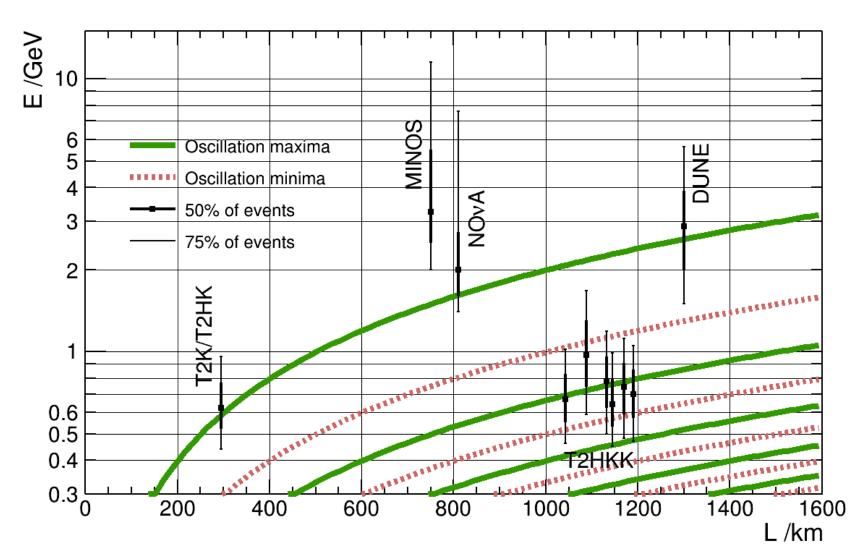
- Can observe the second oscillation maxima
- Flux drops as L^{-2} , therefore stat. uncertainties grow as L Effects
- The interesting oscillation terms grow as $\sim L$

There is more freedom to choose a different off-axis angle

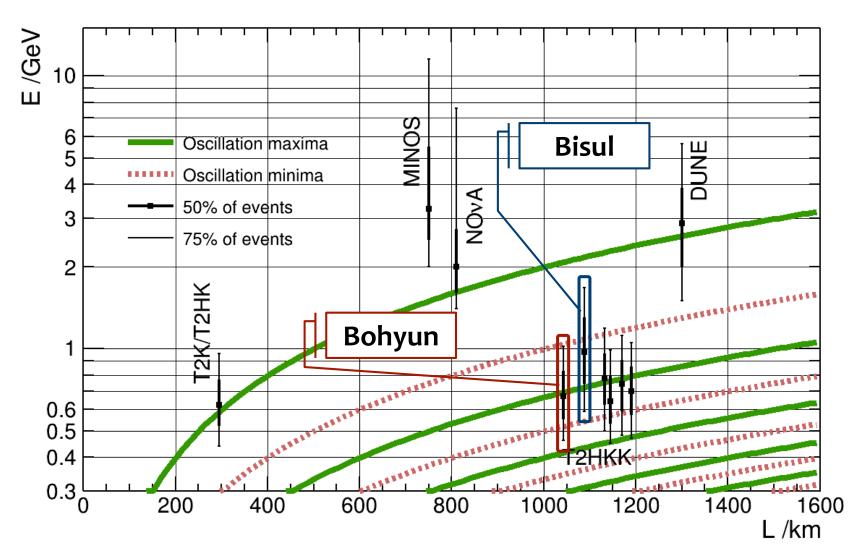

Means we can choose a beam energy to optimise measurement.

Site choice can follow 2 principles:

- 1. Minimise off-axis angle for higher energy, increasing matter effect
- Stay at similar off-axis angle to Super-K (and ND280 detectors) to cancel systematic uncertainties "ratio measurement"


Potential sites

			_
Site	Distance	Angle	-
	/km		_
Kamioka	295	2.52°	
Mt. Bisul	1089	1.31°	\Rightarrow
Mt. Hwangmae	1142	1.93°	
Mt. Sambong	1170	2.06°	
Mt. Bohyun	1043	2.29°	\Rightarrow
Mt. Minjuji	1145	2.38°	
Mt. Unjang	1190	2.21°	



- 1. Minimise off-axis angle for higher energy, increasing matter effect
- 2. Stay at similar off-axis angle to Super-K (and ND280 detectors) to cancel systematic uncertainties "ratio measurement"

Observing the second maximum

Observing the second maximum

CP term enhancement

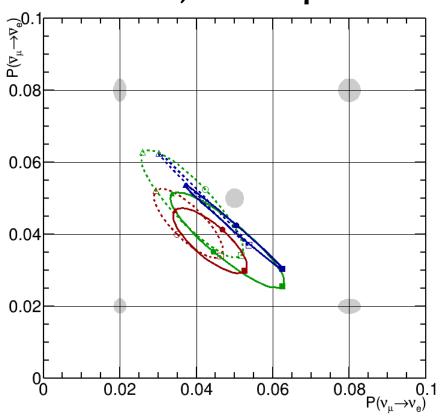
Remember the appearance probability:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx k_{0} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \cos\Delta \cos\delta - k_{\text{CP}} \Phi \frac{\sin([1-A]\Delta)}{(1-A)} \sin\Delta \sin\delta$$

Where $k_0 \simeq 0.049$ and $k_{\rm CP} \simeq 0.014$

The factor
$$\Phi = \frac{2\Delta}{\pi}$$
 is:

1 at the first maximum


3 at the second maximum

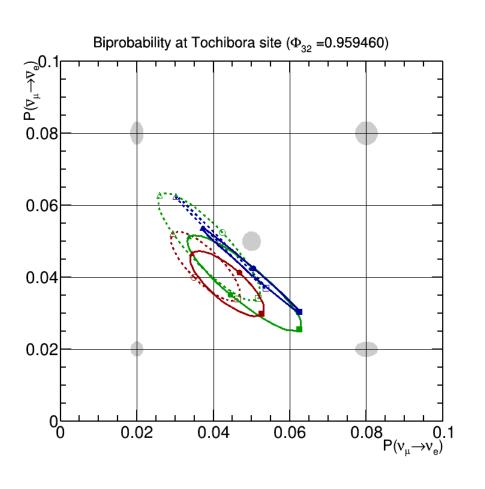
The CP violating (& CP conserving) term is enhanced!

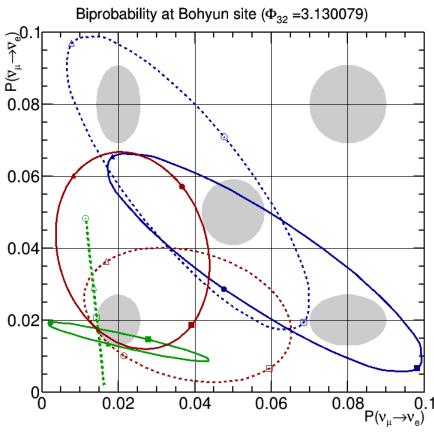
For $\Phi \ll 32$ (i.e. as long as solar terms are small) this enhancement cancels out the statistical loss...

Pictorially

Kamioka, for comparison

The CP violating (& CP conserving) term is enhanced!

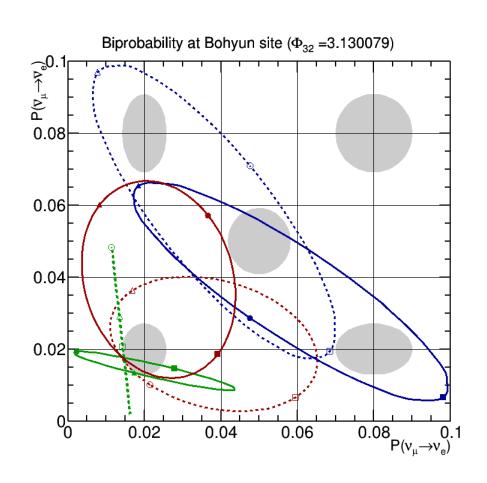

For $\Phi \ll 32$ (i.e. as long as solar terms are small) this enhancement cancels out the statistical loss...


Time to see what it looks like in practice. Remember, the CP parameters control the size of the ellipses.

[Also note: these are made with with full numerical calculation.]

Pictorially

Kamioka compared to Bohyun (2.29° off-axis site)

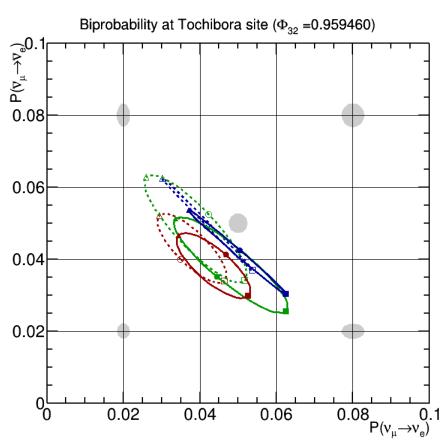


Nuisance parameters

'The CP term enhancement cancels out the statistical loss...'
... can see this wasn't the whole story!

The interesting part is in the nuisance parameters. There are two helpful features:

Because the stat error grows while preserving sensitivity, any systematic that is a fixed size is a factor 3 less important.


Nuisance parameters

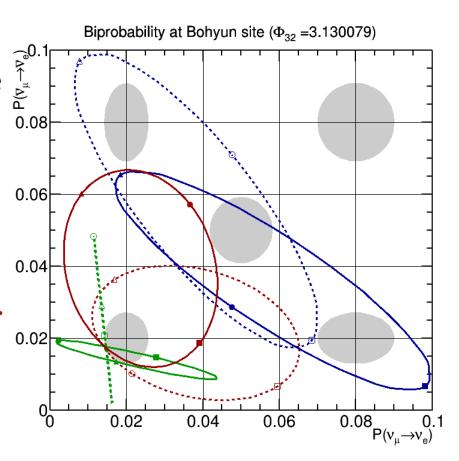
The second helpful feature is a little less obvious.

To affect a measurement, a nuisance parameter must mimic the oscillation signal.

Example: Suppose the excess in current T2K results is an unknown systematic, rather than a fluctuation.

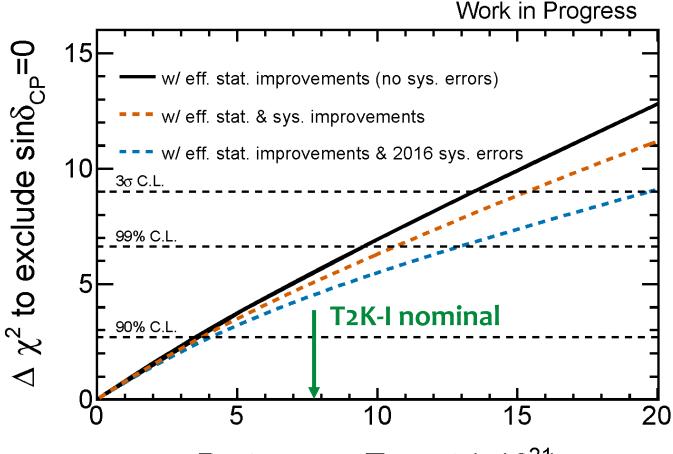
It is quite easy for it to mimic a signal, because at Kamioka more ν_e favours 'NH, $\delta=-\pi/2$ ' for all energies.

Nuisance parameters


The second helpful feature is a little less obvious.

To affect a measurement, a nuisance parameter must mimic the oscillation signal.

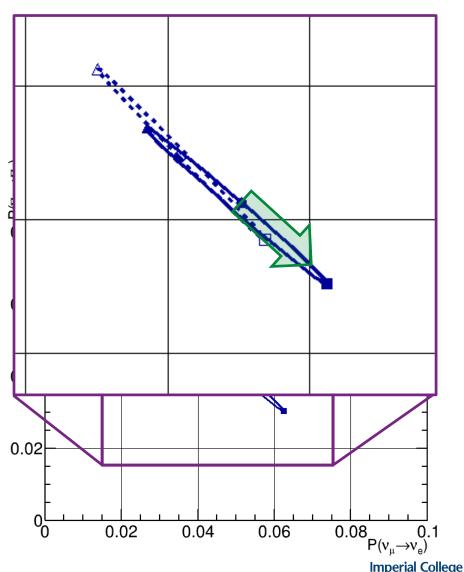
Example: Suppose the excess in current T2K results is an unknown systematic, rather than a fluctuation.


But for (e.g. Bohyun) interpretation is different at different energies.

The systematic does not mimic (the same) **oscillations**

Are systematic errors important?

In a word: yes.

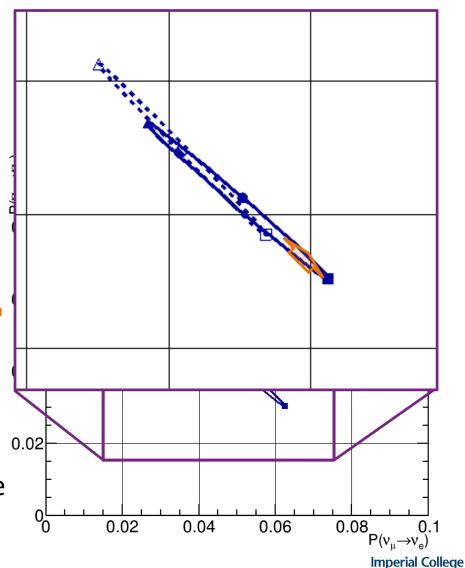

Protons-on-Target (x10²¹)

Plot from T2K-II (T2K run extension) LOI.

Hyper-K proposal equivalent to much higher POT

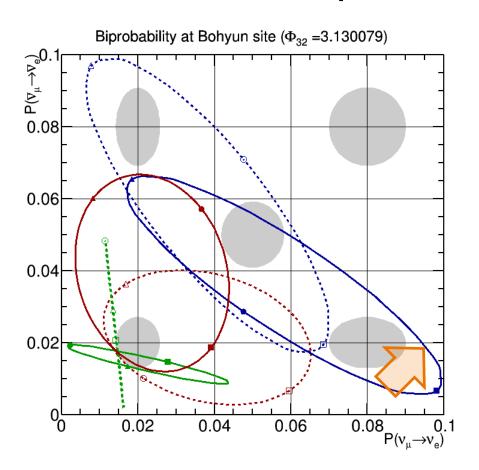
One more thing: measuring δ

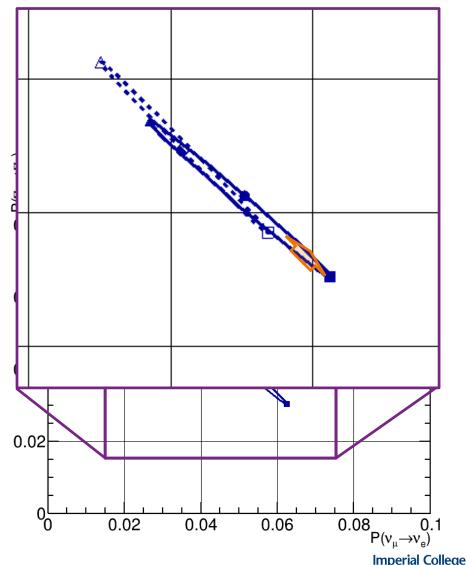
For discovery of CP non-conservation the important statistical issue is "How likely is my measurement to be a fluctuation from a CP conserving point"


One more thing: measuring δ

For discovery of CP non-conservation the important statistical issue is "How likely is my measurement to be a fluctuation from a CP conserving point"

But to measure δ the statistical question is different:


"How likely is is my measurement to be a fluctuation from any other point"


For textbook linear problems, the distinction is not important. But here it is.

One more thing: measuring δ

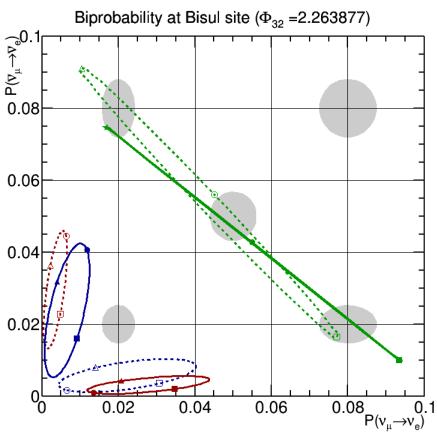
For actually making a measurement the more open ellipses associated with the Korean sites helps too.

Bisul: Matter effect enhancement

Now consider just the leading (k_0) term:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx k_0 \frac{\sin^2([1-A]\Delta)}{[1-A]^2}$$

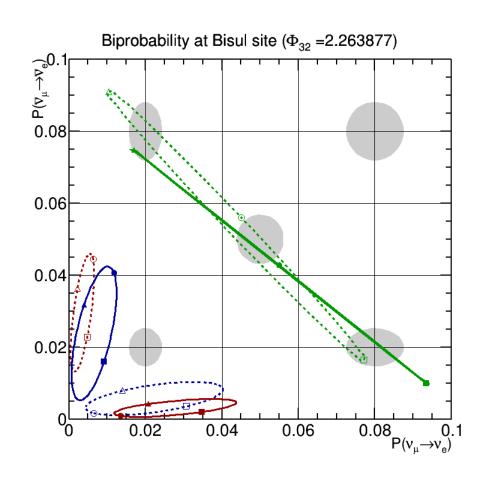
where $|A| \simeq E / 10 \text{GeV}$


The **amplitude** of the oscillation will scale by $[1 - A]^{-2}$ for all maxima.

But the position of the oscillation maximum is shifted by $A\Delta$, which is 3 times larger at 2nd maxima.

	Deceline	Notos	Effect size	
Energy	Baseline	Notes	Amplitude	Position
o.6 GeV	300 km	Like T2K	113%	6%
o.6 GeV	900km	2 nd max	113%	18%
1.8 GeV	900km	Like Bisul, NOvA	149%	18%

Bisul compared to Kamioka


Bisul compared to Kamioka

At medium (970MeV) and high (1300MeV) energies, the two hierarchies can be completely distinguished.

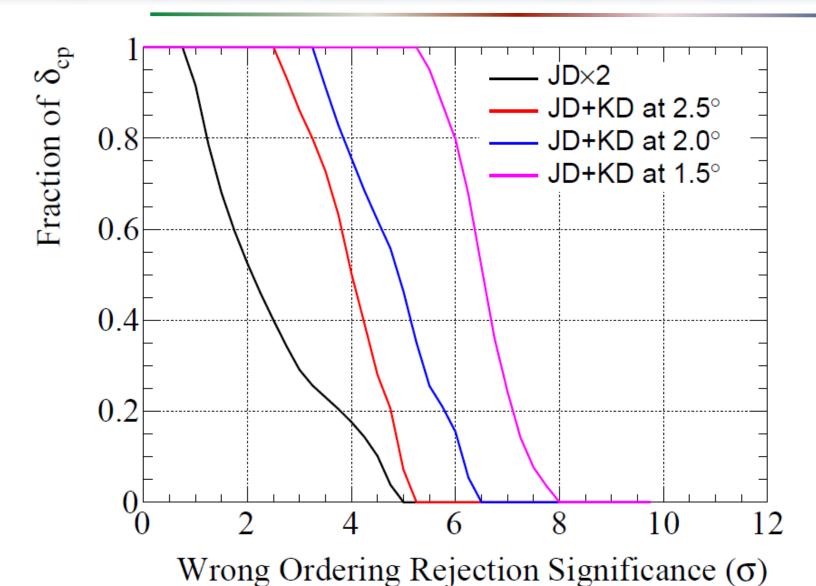
There is actually better separation than at NOvA (event though it has higher energy)

 CP term does not mimic matter effect for Bisul configuration

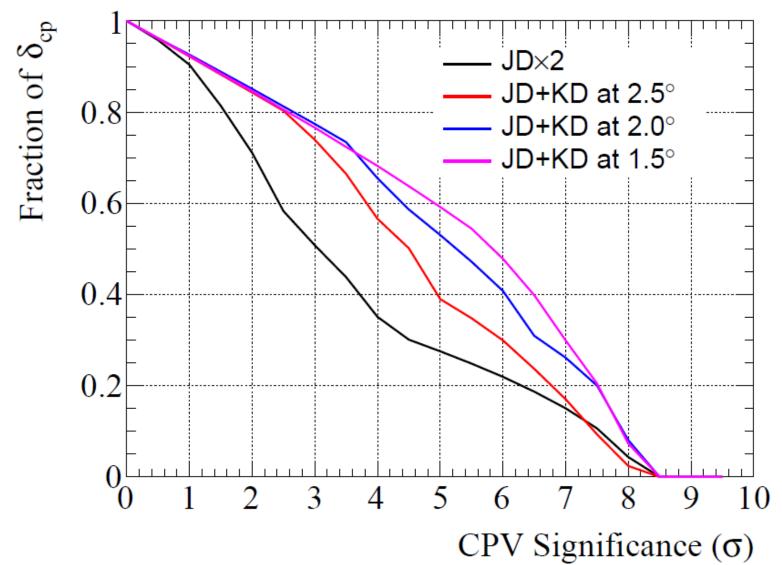
Also around **970MeV**, NH enhances $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$, opposite effect to normal (1st maxima) configurations.

Sensitivities

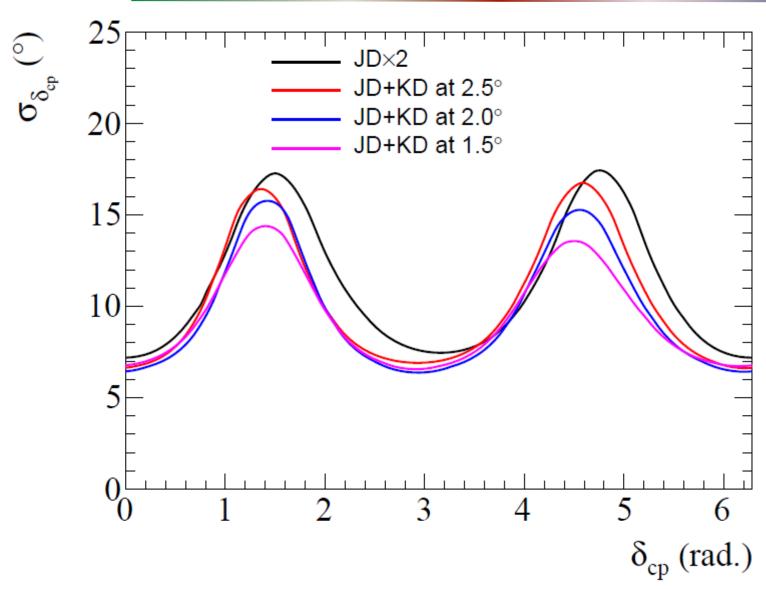
Korean detector WG are now working on full sensitivities using code derived from T2K analyses.


Current generation includes event selections, contamination and finite resolution, but does not include systematics or other oscillation parameters as nuisance parameters.

As a result, can get a feel for sensitivity, but not yet able to investigate the degeneracy-breaking effects highlighted.


Also uses old fluxes for generic sites: 1100km at (1.5°, 2.0°, 2.5°) off-axis, together with a detector at Kamioka (295km, 2.5°).

2 detectors at Kamioka (both full 10y) shown for comparison.


Sensitivity to Mass Hierarchy

Sensitivity to CPv

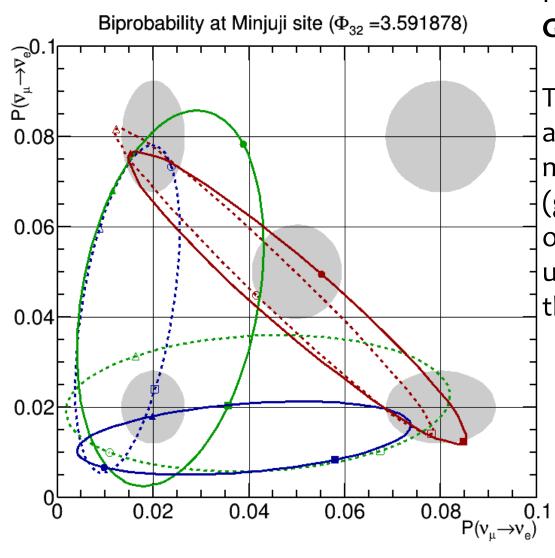
Measuring δ

Summary

White paper on arXiv: 1611.6118

For **proton decay** searches and **natural (solar, atmospheric, supernova, relic) neutrinos** there is no compelling reason for 2 Hyper-K tanks to be near each other.

• In fact, because the Hyper-K site is quite shallow (~650m), a deeper site in Korea (expected ~800m) is actually preferable.

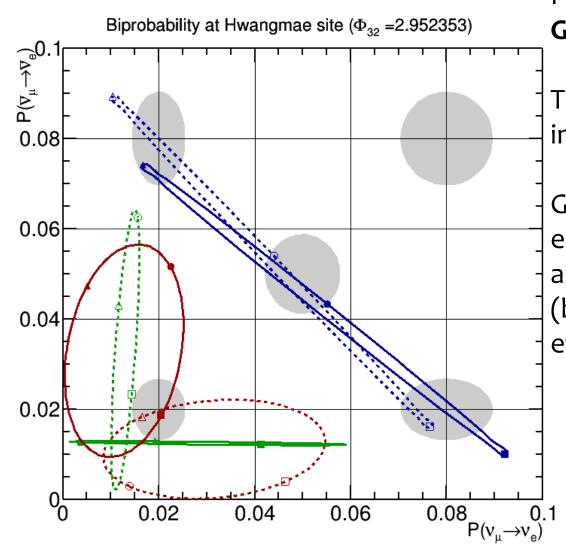

For long baseline physics there is a unique opportunity to reuse an existing beamline for a 2nd-maximum measurement.

- The increased effect size largely compensates for lower statistics
- Faster oscillations nearer the 2nd maximum mean the same spectrum covers a larger interval of the oscillation pattern
- Sensitivity to most parameters improves overall, and importance of systematics is reduced
- Provides a very interesting test of the model in a new regime

Imperial College London

Extra slides

Minjuji

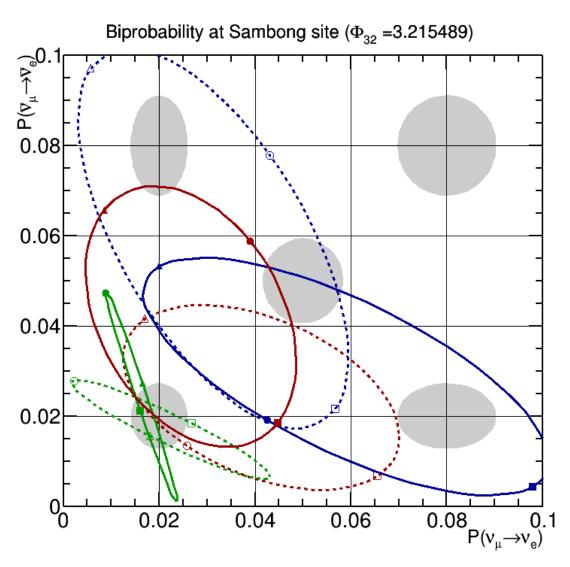


For energies /MeV:

G 530 B 640 R 800

The combination of larger offaxis angle and long baseline means that the low energy tail (green) is sampling the 3rd (!) oscillation peak, while the upper tail (red) is vary close to the 2nd oscillation peak.

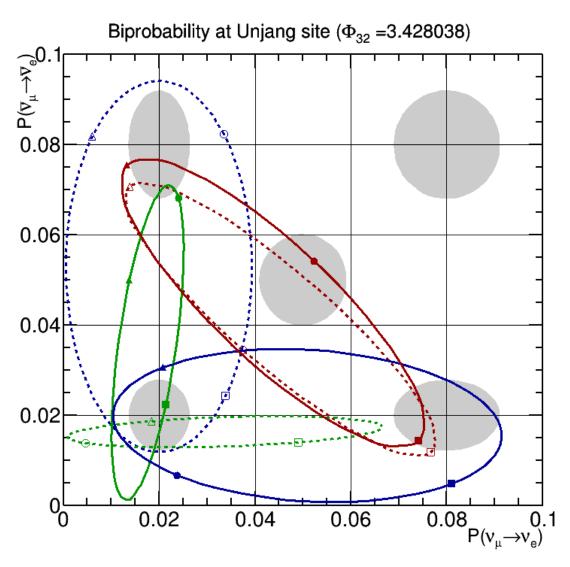
Hwangmae


For energies /MeV:

G 620 B 780 R 960

This is quite similar to Bohyun in terms of L/E regime probed

Green NH is interesting: At this energy antineutrino rate is almost independent of delta (but other energies still see effect)


Sambong

For energies /MeV:

G 590 B 740 R 920

Unjang

For energies /MeV:

G 570 B 700 R 860

This is similar to Mt Minjuji, but with longer baseline and higher energy.