$H \rightarrow \gamma \gamma$ result from ATLAS

Lydia Brenner

Introduction

ATLAS

I will try to compare some details to the latest CMS paper

Introduction

 $H \rightarrow \gamma \gamma$ summer result

ATLAS-CONF-2018-028,

79.8/fb of data, $\sqrt{s}=13 \text{ TeV}$

So what did ATLAS publish?

- Production-mode cross-sections: ggF, VBF, VH, top.
- Stage1 Simplified Template Cross-Sections (STXS) with strong merging. Fiducial cross-section measurement.
- Differential cross-sections: $pT(\gamma\gamma)$, $|y(\gamma\gamma)|$, pT(j1), N(b-jets).

Reduced statistical uncertainties and additional differential measurements compared to arXiv:1802.04146 using 36.1/fb of data.

The 36/fb paper has comparable differential distributions to the latest CMS paper

The purity of $\gamma\gamma$ events in the diphoton fiducial region

CMS uses a BDT for Photon ID, while ATLAS uses a cut-base method

Event generators used

Process	Generator	Showering	PDF set	$\sigma \text{ [pb]} \\ \sqrt{s} = 13 \text{ TeV}$	Order of σ calculation
ggF	Powheg NNLOPS	Pythia 8	PDF4LHC15	48.52	$N^{3}LO(QCD)+NLO(EW)$
VBF	Powheg-Box	Pythia 8	PDF4LHC15	3.78	approximate-NNLO(QCD)+NLO(EW)
WH	Powheg-Box	Pythia 8	PDF4LHC15	1.37	NNLO(QCD)+NLO(EW)
$q\bar{q}' \rightarrow ZH$	Powheg-Box	Pythia 8	PDF4LHC15	0.76	NNLO(QCD) + NLO(EW)
$gg {\rightarrow} ZH$	Powheg-Box	Pythia 8	PDF4LHC15	0.12	NNLO(QCD)+NLO(EW)
$t ar{t} H$	Powheg-Box	Pythia 8	PDF4LHC15	0.51	NNLO(QCD) + NLO(EW)
$b\overline{b}H$	Powheg-Box	Pythia 8	PDF4LHC15	0.49	NNLO(QCD) + NLO(EW)
tHq	MG5_AMC@NLO	Pythia 8	CT10	0.07	4FS(LO)
tHW	MG5_AMC@NLO	Herwig++	CT10	0.02	5 FS(NLO)
$\gamma\gamma$	Sherpa	Sherpa	CT10		
$V\gamma\gamma$	Sherpa	Sherpa	CT10		
$t ar{t} \gamma \gamma$	MG5_AMC@NLO	Pythia 8	PDF4LHC15		

STXS Regions **Reconstruction Categories**

STXS bins

- Stage-0 simplified template cross section regions are indicated with an adjacent square.
- stage-1 regions are denoted with a circle.

events,

Some stage-1 regions are omitted in cases where the data set lacks the sensitivity to resolve them

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Process	Measurement region	Stage-1 region
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ggF + gg \rightarrow Z(\rightarrow qq)H$	0-jet 1-jet, $p_{\rm T}^{H} < 60 GeV$ 1-jet, $60 \le p_{\rm T}^{H} < 120 GeV$ 1-jet, $120 \le p_{\rm T}^{H} < 200 GeV$	0-jet 1-jet, $p_{\rm T}^{H} < 60 GeV$ 1-jet, $60 \le p_{\rm T}^{H} < 120 GeV$ 1-jet, $120 \le p_{\rm T}^{H} < 200 GeV$
$ \begin{split} & \geq 2 \text{ jet } (p_{\mathrm{T}}^{H} < 200 GeV \text{ or VBF-like}) \\ & \geq 2 \text{ jet } (p_{\mathrm{T}}^{H} < 200 GeV \text{ or VBF-like}) \\ & \geq 2 \text{ jet } , 60 \leq p_{\mathrm{T}}^{H} < 120 GeV \\ & \geq 2 \text{ jet } , 120 \leq p_{\mathrm{T}}^{H} < 200 GeV \\ & \forall \mathrm{BF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 GeV \\ & \forall \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 GeV \\ & \forall \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 GeV \\ & \forall \mathrm{VBF+VH \ hadronic}) \end{split} $		BSM-like* (≥ 1 -jet, $p_{\rm T}^H > 200 GeV$)	1-jet, $p_{\mathrm{T}}^{H} > 200 GeV$ \geq 2-jet, $p_{\mathrm{T}}^{H} > 200 GeV$
$\begin{array}{cccc} q\dot{q} \rightarrow Hqq' & p_{\mathrm{T}}^{j} < 200 GeV & p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} < 25 GeV \\ (\mathrm{VBF} + VH \mathrm{hadronic}) & p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 GeV \\ p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VH-like} & p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VH-like} \\ p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{Rest} \\ \end{array} \\ \end{array}$ $\begin{array}{c} \mathrm{BSM-like^{*}} \left(p_{\mathrm{T}}^{j} > 200 GeV \right) & p_{\mathrm{T}}^{j} > 200 GeV \\ VH (\mathrm{leptonic} \mathrm{decays}) & VH \mathrm{leptonic} & q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{2} < 150 GeV \\ q\bar{q} \rightarrow ZH, 150 GeV < p_{\mathrm{T}}^{2} < 250 GeV, 0\text{-jet} \\ q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} < 150 GeV \\ q\bar{q} \rightarrow WH, 150 GeV < p_{\mathrm{T}}^{W} < 250 GeV, 0\text{-jet} \\ q\bar{q} \rightarrow WH, 150 GeV < p_{\mathrm{T}}^{W} < 250 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^{2} > 150 GeV, 0\text{-jet} \\ gf \rightarrow UH pb_{\mathrm{T}} \\ UHW \\ tHqb \end{array}$		≥ 2 jet $\left(p_{\rm T}^{H} < 200GeV~{\rm or~VBF}\text{-like}\right)$	$ \begin{split} &\geq 2\text{-jet, } p_{\mathrm{T}}^{H} < 60 GeV \\ &\geq 2\text{-jet, } 60 \leq p_{\mathrm{T}}^{H} < 120 GeV \\ &\geq 2\text{-jet, } 120 \leq p_{\mathrm{T}}^{H} < 200 GeV \\ &\text{VBF-like, } p_{\mathrm{T}}^{Hjj} < 25 GeV \\ &\text{VBF-like, } p_{\mathrm{T}}^{Hjj} \geq 25 GeV \end{split} $
$\begin{array}{c c} \text{BSM-like}^{*} \ (p_{\mathrm{T}}^{j} > 200 \ GeV) & p_{\mathrm{T}}^{j} > 200 \ GeV \\ \hline VH \ (\text{leptonic decays}) & VH \ \text{leptonic} & q\bar{q} \rightarrow ZH, \ p_{\mathrm{T}}^{Z} < 150 \ GeV \\ q\bar{q} \rightarrow ZH, \ 150 \ GeV < p_{\mathrm{T}}^{Z} < 250 \ GeV, \ 0\text{-jet} \\ q\bar{q} \rightarrow ZH, \ 150 \ GeV < p_{\mathrm{T}}^{Z} < 250 \ GeV, \ 2 \ 100 \ q\bar{q} \rightarrow ZH, \ p_{\mathrm{T}}^{Z} > 250 \ GeV \\ q\bar{q} \rightarrow WH, \ p_{\mathrm{T}}^{W} < 150 \ GeV \\ q\bar{q} \rightarrow WH, \ p_{\mathrm{T}}^{W} < 150 \ GeV \\ q\bar{q} \rightarrow WH, \ 150 \ GeV < p_{\mathrm{T}}^{W} < 250 \ GeV, \ 0\text{-jet} \\ q\bar{q} \rightarrow WH, \ p_{\mathrm{T}}^{W} > 250 \ GeV \\ gg \rightarrow ZH, \ p_{\mathrm{T}}^{Z} > 150 \ GeV, \ 0\text{-jet} \\ gg \rightarrow ZH, \ p_{\mathrm{T}}^{Z} > 150 \ GeV, \ 2 \ 1\text{-jet} \\ \hline \begin{array}{c} \text{top-associated production} \\ \hline b\bar{b}H \end{array} \\ \hline \end{array}$	$qq' \rightarrow Hqq'$ (VBF + VH hadronic)	$p_{\rm T}^j < 200GeV$	$\begin{array}{l} p_{\rm T}^{j} < 200 GeV, {\rm VBF\text{-like}}, p_{\rm T}^{Hjj} < 25 GeV \\ p_{\rm T}^{j} < 200 GeV, {\rm VBF\text{-like}}, p_{\rm T}^{Hjj} \geq 25 GeV \\ p_{\rm T}^{j} < 200 GeV, VH\text{-like} \\ p_{\rm T}^{j} < 200 GeV, {\rm Rest} \end{array}$
$\begin{array}{lll} VH \mbox{ (leptonic decays) } & VH \mbox{ leptonic } & q\bar{q} \rightarrow ZH, p_{\rm T}^Z < 150 \ GeV \\ & q\bar{q} \rightarrow ZH, 150 \ GeV < p_{\rm T}^Z < 250 \ GeV, 0-{\rm jet} \\ & q\bar{q} \rightarrow ZH, p_{\rm T}^Z > 250 \ GeV \\ & q\bar{q} \rightarrow ZH, p_{\rm T}^Z > 250 \ GeV \\ & q\bar{q} \rightarrow WH, p_{\rm T}^W < 150 \ GeV \\ & q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 0-{\rm jet} \\ & q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 2 \\ & q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 0-{\rm jet} \\ & q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 2 \\ & q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 2 \\ & q\bar{q} \rightarrow WH, p_{\rm T}^W > 250 \ GeV \\ & gg \rightarrow ZH, p_{\rm T}^Z > 150 \ GeV, 0-{\rm jet} \\ & gg \rightarrow ZH, p_{\rm T}^Z > 150 \ GeV, 2 -{\rm jet} \\ \end{array}$		BSM-like* $(p_{\rm T}^j>200GeV)$	$p_{\rm T}^j > 200 GeV$
top-associated production Top $t\bar{t}H$ tHW tHqb $b\bar{b}H$ merged w/ ggF $b\bar{b}H$	VH (leptonic decays)	VH leptonic	$\begin{array}{l} q\bar{q} \rightarrow ZH, p_{\rm T}^Z < 150 \ GeV \\ q\bar{q} \rightarrow ZH, 150 \ GeV < p_{\rm T}^Z < 250 \ GeV, 0\mbox{-jet} \\ q\bar{q} \rightarrow ZH, 150 \ GeV < p_{\rm T}^Z < 250 \ GeV, 2\mbox{-jet} \\ q\bar{q} \rightarrow ZH, p_{\rm T}^Z > 250 \ GeV \\ q\bar{q} \rightarrow WH, p_{\rm T}^W < 150 \ GeV \\ q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 0\mbox{-jet} \\ q\bar{q} \rightarrow WH, 150 \ GeV < p_{\rm T}^W < 250 \ GeV, 2\mbox{-jet} \\ q\bar{q} \rightarrow WH, p_{\rm T}^W > 250 \ GeV \\ gg \rightarrow ZH, p_{\rm T}^Z < 150 \ GeV \\ gg \rightarrow ZH, p_{\rm T}^Z > 150 \ GeV, 0\mbox{-jet} \\ gg \rightarrow ZH, p_{\rm T}^Z > 150 \ GeV, 2\mbox{-jet} \\ gg \rightarrow ZH, p_{\rm T}^Z > 150 \ GeV, 2\mbox{-jet} \\ \end{array}$
$b\bar{b}H$ merged w/ ggF $b\bar{b}H$	top-associated production	Тор	$tar{t}H$ tHW tHqb
	$b\bar{b}H$	merged w/ ggF	$b\bar{b}H$

Kinematic regions in STXS stage-1

Two regions are indicated as BSM-like and are summed

Reconstruction categories

Each event is assigned to the first category whose requirements are satisfied, using the descending order given in the table

Horizontal lines based on the definitions of the stage-0 simplified template cross sections

Category label	Selection
ttH lep BDT1	$N_{\rm lep} \ge 1, \ N_{b-\rm jet} \ge 1, \ {\rm BDT}_{\rm ttHlep} > 0.987$
ttH lep BDT2	$N_{\rm lep} \ge 1, \ N_{b-\rm jet} \ge 1, \ 0.942 < {\rm BDT}_{\rm ttHlep} < 0.987$
ttH lep BDT3	$N_{\rm lep} \ge 1, \ N_{b- m jet} \ge 1, \ 0.705 < { m BDT}_{\rm ttHlep} < 0.942$
ttH had BDT1	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ \text{BDT}_{\text{ttHhad}} > 0.996$
ttH had BDT2	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.991 < {\rm BDT}_{\rm ttHhad} < 0.996$
ttH had BDT3	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.971 < {\rm BDT}_{\rm ttHhad} < 0.991$
ttH had BDT4	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.911 < {\rm BDT}_{\rm ttHhad} < 0.971$
VH dilep	$N_{ m lep} \geq 2, \ 70{ m GeV} \leq m_{\ell\ell} \leq 110{ m GeV}$
VH lep High	$N_{ m lep} = 1, \; m_{e\gamma} - 89 { m GeV} > 5 { m GeV}, \; p_{ m T}^{\ell + E_{ m T}^{ m miss}} > 150 { m GeV}$
VH lep Low	$N_{\rm lep} = 1, \ m_{e\gamma} - 89{\rm GeV} > 5{\rm GeV}, \ p_{\rm T}^{\ell + E_{\rm T}^{\rm miss}} < 150{\rm GeV}, \ E_{\rm T}^{\rm miss} \ {\rm significance} > 1$
VH MET High	$150\mathrm{GeV} < E_\mathrm{T}^\mathrm{miss} < 250\mathrm{GeV}, \ E_\mathrm{T}^\mathrm{miss} \ \mathrm{significance} > 9 \ \mathrm{or} \ E_\mathrm{T}^\mathrm{miss} > 250\mathrm{GeV}$
VH MET Low	$80 \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{GeV}, \ E_{\mathrm{T}}^{\mathrm{miss}} \ \mathrm{significance} > 8$
qqH BSM	$N_{ m jets} \geq 2, \ p_{ m T,j1} > 200 { m GeV}$
VH had BDT tight	$60 \mathrm{GeV} < m_{\mathrm{jj}} < 120 \mathrm{GeV}, \mathrm{BDT}_{\mathrm{VH}} > 0.78$
VH had BDT loose	$60 \mathrm{GeV} < m_{\mathrm{jj}} < 120 \mathrm{GeV}, \ 0.35 < \mathrm{BDT}_{\mathrm{VH}} < 0.78$
VBF high- p_{T}^{Hjj} BDT tight	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, \ \ \mathrm{BDT}_{\mathrm{VBF}}^{\mathrm{high}} > 0.47$
VBF high- $p_{\rm T}^{Hjj}$ BDT loose	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, \ -0.32 < \mathrm{BDT}_{\mathrm{VBF}}^{\mathrm{high}} < 0.47$
VBF low- $p_{\rm T}^{Hjj}$ BDT tight	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\mathrm{T}}^{Hjj} < 25 \mathrm{GeV}, \ \ \mathrm{BDT}_{\mathrm{VBF}}^{\mathrm{low}} > 0.87$
VBF low- $p_{\rm T}^{Hjj}$ BDT loose	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\rm T}^{Hjj} < 25 {\rm GeV}, \ 0.26 < {\rm BDT}_{\rm VBF}^{\rm low} < 0.87$
ggF 2J BSM	$N_{ m jets} \geq 2, ~~ p_{ m T}^{\gamma\gamma} \geq 200{ m GeV}$
ggF 2J High	$N_{ m jets} \geq 2, ~~ p_{ m T}^{\gamma\gamma} \in [120,200] ~{ m GeV}$
ggF 2J Med	$N_{ m jets} \geq 2, ~~ p_{ m T}^{\gamma\gamma} \in [60,120]~{ m GeV}$
ggF 2J Low	$N_{ m jets} \geq 2, ~~ p_{ m T}^{\gamma\gamma} \in [0,60] ~{ m GeV}$
ggF 1J BSM	$N_{ m jets}=1, ~~p_{ m T}^{\gamma\gamma}\geq 200{ m GeV}$
m ggF~1J~High	$N_{ m jets} = 1, p_{ m T}^{\gamma\gamma} \in [120,200] { m GeV}$
ggF 1J Med	$N_{ m jets} = 1, \ p_{ m T}^{\gamma\gamma} \in [60, 120] \ { m GeV}$
ggF 1J Low	$N_{ m jets}=1, p_{ m T}^{\gamma\gamma}\in[0,60]{ m GeV}$
ggF 0J Fwd	$N_{ m jets}=0,$ one photon with $ \eta >0.95$
ggF 0J Cen	$N_{ m jets} = 0$, two photons with $ \eta \le 0.95$

Fitted signal parametrisation

Best and Worst mass resolutions

Using slightly different diphoton mass ranges; ATLAS: 105-160 GeV CMS: 100-180 GeV

Signal composition

Jet p_T cut; ATLAS: 25/30GeV central/Forward CMS: 30GeV everywhere

b-tagging working point; **ATLAS: 70%**

- 380x light quark rejection **CMS**: 55%
- 1000x light quark rejection

Leptons; ATLAS: 15 GeV + loose isolation CMS: 20 GeV

Particle level object definition

Objects	Definition
Photons Jets – Central jets – <i>b</i> -jets	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37, p_{\mathrm{T}}^{\mathrm{iso},0.2}/p_{\mathrm{T}}^{\gamma} < 0.05$ anti- $k_t, R = 0.4, p_{\mathrm{T}} > 30 \mathrm{GeV}, y < 4.4$ y < 2.5 $ y < 2.5, \Delta R(\mathrm{jet}, b\text{-hadron}) < 0.4 \text{ for } b\text{-hadrons with } p_{\mathrm{T}} > 5 \mathrm{GeV}$
Leptons, $\ell = e$ or μ	electrons: $p_{\rm T} > 10 \text{GeV}$, $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$) muons: $p_{\rm T} > 10 \text{GeV}$, $ \eta < 2.7$
Fiducial region	Definition

Diphoton fiducial	$N_{\gamma} \ge 2, \ p_{\rm T}^{\gamma_1} > 0.35 \cdot m_{\gamma\gamma}, \ p_{\rm T}^{\gamma_2} > 0.25 \cdot m_{\gamma\gamma}$
$N_{b\text{-jets}}$ measurement	Diphoton fiducial, $N_{\text{jets}}^{\text{Cen}} \ge 1, N_{\text{leptons}} = 0$

Diphoton invariant mass spectrum

Data

40

- Signal + background Total background

---- Continuum background

ATLAS Preliminary √s = 13 TeV. 79.8 fb⁻¹

m_u = 125.09 GeV

In(1+S/B) weighted sum, S = VH

VH

Diphoton invariant mass spectrum

Background model from Sherpa with spurious signal tests CMS includes background model directly in Likelihood model

	ATLA $\sqrt{s} = 1$	IS Prelimir	hary H^{-1}	Total	Stat.	Sys	t	SM		
	Н→үү	y, y _H < 2.5	;			Total (Stat.	Syst.)		
	ggF				0.97	+ 0.15 - 0.14 (± 0.11	+ 0.10 - 0.08)		Proc
	VBF		- - ∎	•	┨ 1.40	+ 0.43 - 0.37 (+ 0.32 - 0.31	+ 0.29 - 0.21)		$(y_H $
	VH	H			1.08	+ 0.59 - 0.54 (+ 0.53 - 0.49	+ 0.26 - 0.23)		ggF
	Тор	H			1.12	+ 0.43 - 0.37 (+ 0.37 - 0.33	+ 0.22 - 0.16)		VBF
										VH
L		0.5	1	1.5	2	(σ x	2.5 B) / (c	τ x B)	」 3	Top
						10 1	-, (0	΄ Ξ' _{SN}	Λ	

Process	Result		Uncerta	SM prediction			
$(y_H < 2.5)$	[fb]	Total	$\left(\begin{array}{c} \text{Stat.} \end{array} \right)$	Exp.	Theo. $\Big)$	[fb]	
ggF	98	$^{+15}_{-14}$	(±11	$^{+9}_{-8}$	$\begin{pmatrix} +4 \\ -3 \end{pmatrix}$	$102 \ ^{+5}_{-7}$	
VBF	11.2	$^{+3.4}_{-3.0}$	$\begin{pmatrix} +2.6 \\ -2.4 \end{pmatrix}$	$^{+1.3}_{-1.2}$	(+1.9)	8.0 ± 0.2	
VH	4.9	$^{+2.7}_{-2.5}$	$\begin{pmatrix} +2.4 \\ -2.2 \end{pmatrix}$	$^{+1.0}_{-0.9}$	(+0.6) (-0.5)	4.5 ± 0.2	
Тор	1.5	$^{+0.6}_{-0.5}$	$\left(\begin{array}{c} +0.5\\ -0.4\end{array}\right)$	± 0.2	$^{+0.2}_{-0.1}$	1.3 ± 0.1	

Production mode correlations

Small correlations between the different production modes

STXS cross-sections

Measurement region	Regult [fb]		Uncerta	SM prediction		
$(y_H < 2.5)$	Result [10]	Total	Stat.	Exp.	Theo. $\Big)$	[fb]
ggF, 0 jet	58	$^{+15}_{-14}$	$\left(\begin{array}{c}\pm 11\end{array}\right)$	$^{+10}_{-8}$	$\begin{pmatrix} +2 \\ -1 \end{pmatrix}$	63 ± 5
ggF, 1 jet, $p_{\rm T}^H < 60~GeV$	18	$^{+10}_{-9}$	(± 8)	$^{+6}_{-5}$	$\begin{pmatrix} +1 \\ -1 \end{pmatrix}$	15 ± 2
ggF, 1 jet, $60 \leq p_{\mathrm{T}}^{H} < 120~GeV$	9	± 5	(± 4)	$^{+3}_{-2}$	$\begin{pmatrix} +1 \\ -0 \end{pmatrix}$	10 ± 2
ggF, 1 jet, $120 \le p_{\mathrm{T}}^{H} < 200 \ GeV$	2.6	$^{+1.5}_{-1.3}$	(± 1.2)	$^{+0.8}_{-0.6}$	(+0.3)	1.7 ± 0.3
$ggF, \geq 2 jet$	7	± 6	(± 5)	$^{+3}_{-2}$	± 2	11 ± 2
$qq \rightarrow Hqq, \ p_{\rm T}^j < 200 \ GeV$	15	$^{+5}_{-4}$	(± 4)	± 2	± 2)	10 ± 0.5
$ggF + qq \rightarrow Hqq$, BSM-like	1.4	± 0.9	$(\pm 0.8$	± 0.4	± 0.2)	1.8 ± 0.4
VH, leptonic	2.0	$^{+1.1}_{-1.0}$	(+1.0) -0.9	± 0.4	± 0.1)	1.4 ± 0.1
Тор	1.5	$^{+0.6}_{-0.5}$	$\left(\pm 0.5 \right)$	± 0.2	± 0.2	1.3 ± 0.1

STXS correlations

Mostly small correlations

Breakdown of the uncertainties

Experimental

and background

modelling

Experimental

correction factor

Systematic uncertainties including PER, Photon ID and spurious uncertainties on signal signal CMS does not include additional background model uncertainties beyond terms in Likelihood uncertainties on the

Statistical component Theoretical uncertainties dominates in differential regionsExperimental uncertainties on the correction factor

Source Uncertainty (%) Fit (stat.) 10 Fit (syst.) 8.3Photon energy scale & resolution 4.0Background modeling (spurious signal) 7.3Correction factor 5.24.6Photon isolation efficiency Pileup 1.9Photon ID efficiency 1.3Trigger efficiency 0.7Dalitz Decays 0.4+0.3Theoretical modeling -0.4Diphoton vertex selection 0.1Photon energy scale & resolution 0.1Luminosity 2.0Total 14

Intermezzo: Unfolding Idea

Modelling detector response versus unfolding

You want to know the underlying physics, not only if it matches with predictions

Intermezzo: Unfolding mathematically Model detector response

The forward model can be described by a smoothing matrix

- Limited detector resolution throws information away
- In reverse mode (unfolding) matrix has to recreate sharp points
- Regularisation used to enforce a degree of smoothness on the reconstructed distribution

Comparison with Maximum Likelihood Estimate

MLE is unbiased, but has large variance

Unfolding deliberately adds a small bias to produce a solution with a much smaller variance

Note: Normally a pseudo inverse of the matrix is used based on a maximum Likelihood fit

Intermezzo: Choosing Unfolding Method

For each bin

- Biases (b_i) should be small compared to statistical uncertainties

 $\Sigma_i^{Nbin}\sigma_{stat,i}^2$

 $|Cov_{i,i}(stat)|$

- Unfolding should not greatly alter the statistical uncertainty

For each distribution there are different figures of merit

- Total statistical uncertainty —
- Sum of biases $(b_i) \sum_{i}^{Nbin} b_i$
- Absolute sum of biases $(b_i) \sum_{i}^{Nbin} |b_i|$
- Total stat. error, including correlations
- Bias divided by total stat error
- Ratio of total stat error of the method w.r.t. bin-by-bin-

Shape via $\chi^2 = (\vec{\mu}_{SM} - \vec{\mu}_{bias}) Cov_{stat+b}^{-1} (\vec{\mu}_{SM} - \vec{\mu}_{bias})^T$

 $\Sigma_i^{Nbin} |b_i|$

 $\sqrt{Cov_{i,i}(stat)}$

 $Cov_{i,i}^{stat}$ (method)

 $Cov_{i,i}^{stat}(bbb)$

Unfolding

Bin-by-bin method $\sigma = \frac{N_{sig}}{c\mathcal{L}_{int}}$, c is the correction factor

- Derived from simulations
- Inclusive diphoton fiducial region: $c = 0.73 \pm 0.04$
- Differential cross-sections: $c \sim 0.7 0.8$ (except a couple of bins)
- Largest impact: photon identification efficiencies

Reasons for choosing bin-by-bin

- Introduces minimal bias
- Performance acceptable given statistical limits of this measurement

CMS: Unfolding matrices directly in the Likelihood with no regularisation (wide enough bins)

2.2 2.4

 $|\boldsymbol{y}_{\gamma\gamma}|$

Higgs with Heavy flavour

Measurement of the number of b-jets

- Higgs with heavy flavour poorly constrained theoretically for ttH and hh
- Veto on electrons and muons to reduce ttH contribution
- H+HF best probed for N_{b-jet}=1
- Associated HF production: QCD splitting

Conclusions

Statistical improvement from 36/fb to 80/fb: $16\% \rightarrow 10\%$

- Will improve further with full Run 2 dataset

Excellent agreement with the SM in all regions

- Will try to reduce systematics further for full Run 2 dataset

Bin-by-bin unfolding

- Will need to update unfolding method for full Run 2 dataset

Start made on Higgs with heavy flavour

- Will created fiducial region for full Run 2 dataset using continuous b-tagging method

Signal efficiencies

Category	Nu		Efficiency [%]							
	- 11	ggF	VBF	WH	$q\bar{q}' { ightarrow} ZH$	$gg{ ightarrow} ZH$	$t\bar{t}H$	$b\bar{b}H$	tHq	tHW
ggF 0J Cen	700	8.5	1.2	1.5	2.0	0.8	nil	10.2	nil	0.1
ggF 0J Fwd	1200	14.9	2.3	3.2	4.0	1.3	nil	16.8	0.1	0.1
ggF 1J Low	620	7.1	5.5	4.9	4.6	1.2	0.1	7.5	0.5	0.2
ggF 1J Med	330	3.4	6.1	4.1	4.1	2.6	0.1	1.9	0.7	0.3
ggF 1J High	69	0.7	1.9	1.1	1.1	2.3	0.1	0.2	0.3	0.1
ggF 1J BSM	18	0.2	0.6	0.4	0.3	0.5	nil	0.1	0.1	0.1
ggF 2J Low	180	1.8	2.6	3.5	4.0	1.9	1.9	2.3	4.2	1.9
ggF 2J Med	150	1.5	3.0	3.2	3.3	4.3	1.9	1.0	4.9	2.1
ggF 2J High	64	0.6	1.3	1.3	1.3	3.8	0.8	0.2	2.0	1.2
ggF 2J BSM	16	0.1	0.3	0.3	0.3	1.5	0.3	nil	0.5	0.6
VBF low- $p_{\rm T}^{Hjj}$ BDT loose	41	0.2	4.2	0.1	0.1	0.1	nil	0.1	0.4	nil
VBF low- $p_{\rm T}^{Hjj}$ BDT tight	29	nil	4.0	nil	nil	0.1	nil	nil	0.3	nil
VBF high- $p_{\rm T}^{Hjj}$ BDT loose	38	0.3	1.4	0.4	0.4	1.0	0.2	0.3	1.8	0.4
VBF high- $p_{\rm T}^{Hjj}$ BDT tight	46	0.3	3.4	0.3	0.3	1.3	0.3	0.2	4.3	0.4
VH had BDT loose	34	0.3	0.3	2.3	2.5	3.6	0.4	0.2	0.7	0.7
VH had BDT tight	26	0.2	0.1	2.8	2.8	5.2	0.3	0.1	0.3	0.7
qqH BSM	42	0.3	1.8	1.3	1.3	2.7	1.4	0.3	2.8	3.2
VH MET Low	1.4	nil	nil	0.2	0.5	1.0	nil	nil	nil	nil
VH MET High	2.7	nil	nil	0.3	1.1	2.3	0.1	nil	0.1	0.4
VH lep Low	12	nil	nil	4.0	0.7	0.7	1.1	0.1	2.3	2.0
VH lep High	3.1	nil	nil	1.1	0.1	0.2	0.5	nil	0.3	1.3
VH dilep	1.8	nil	nil	nil	1.2	1.5	nil	nil	nil	nil
ttH had BDT4	6.6	nil	nil	0.2	0.4	0.9	3.7	0.1	3.5	3.2
ttH had BDT3	7.2	nil	nil	0.1	0.2	0.7	5.8	0.1	2.5	4.7
ttH had BDT2	4.5	nil	nil	nil	0.1	0.3	4.3	nil	1.0	3.7
ttH had BDT1	5.2	nil	nil	nil	nil	0.2	5.3	nil	0.7	5.5
ttH lep BDT3	1.2	nil	nil	nil	nil	nil	1.0	nil	1.5	1.1
ttH lep BDT2	2.8	nil	nil	nil	nil	nil	2.8	nil	1.2	2.5
ttH lep BDT1	5.3	nil	nil	nil	nil	nil	5.6	nil	0.6	5.3
Total efficiency [%]		40.4	39.9	36.6	36.7	42.0	38.0	41.8	37.7	41.8

Higgs composition

Catagory	N		Composition [%]								
Category	1 VH	ggF	VBF	WH	$q\bar{q}' {\rightarrow} ZH$	$gg {\rightarrow} ZH$	$t\bar{t}H$	$b\bar{b}H$	tHq	tHW	
ggF 0J Cen	700	97.3	0.5	0.5	0.3	nil	nil	1.4	nil	nil	
ggF 0J Fwd	1200	97.2	0.6	0.5	0.4	nil	nil	1.3	nil	nil	
ggF 1J Low	620	93.4	2.7	1.7	0.9	nil	nil	1.2	nil	nil	
ggF 1J Med	330	88.8	6.0	2.8	1.6	0.2	nil	0.6	nil	nil	
ggF 1J High	69	83.4	9.2	3.9	2.2	0.8	0.1	0.3	0.1	nil	
ggF 1J BSM	18	81.3	10.3	4.9	2.3	0.7	0.1	0.3	0.1	nil	
ggF 2J Low	180	85.4	4.4	4.4	2.9	0.2	1.1	1.3	0.3	nil	
ggF 2J Med	150	83.4	6.0	4.7	2.8	0.6	1.3	0.7	0.4	nil	
ggF 2J High	64	82.5	6.3	4.8	2.8	1.4	1.3	0.4	0.4	0.1	
ggF 2J BSM	16	82.3	5.1	5.1	2.8	2.1	1.8	0.2	0.4	0.1	
VBF low- $p_{\rm T}^{Hjj}$ BDT loose	41	51.8	46.5	0.6	0.4	0.1	0.1	0.4	0.2	nil	
VBF low- $p_{\rm T}^{\hat{H}jj}$ BDT tight	29	23.4	75.8	0.2	0.1	0.1	nil	0.1	0.3	nil	
VBF high- $p_{\rm T}^{H_{jj}}$ BDT loose	38	81.5	11.7	2.4	1.5	0.7	0.7	0.8	0.7	nil	
VBF high- $p_{\rm T}^{\hat{H}jj}$ BDT tight	46	65.1	28.6	1.7	1.0	0.8	0.7	0.5	1.6	nil	
VH had BDT loose	34	69.2	2.5	14.8	9.2	2.3	1.3	0.4	0.3	0.1	
VH had BDT tight	26	53.8	1.7	24.3	13.9	4.5	1.3	0.2	0.2	0.1	
qqH BSM	42	65.9	14.8	7.5	4.3	1.6	3.9	0.8	1.0	0.2	
VH MET Low	1.4	16.4	0.5	23.1	44.3	15.0	0.5	nil	0.2	nil	
VH MET High	2.7	1.3	nil	25.0	49.5	18.2	5.2	nil	0.4	0.4	
VH lep Low	12	9.7	0.5	69.6	6.6	1.2	8.9	0.7	2.3	0.4	
VH lep High	3.1	0.1	0.1	76.8	3.7	1.4	15.6	nil	1.2	1.2	
VH dilep	1.8	nil	nil	nil	80.8	17.8	1.4	nil	nil	nil	
ttH had BDT4	6.6	22.3	1.5	5.1	6.0	2.8	53.5	1.5	6.1	1.2	
ttH had BDT3	7.2	10.9	0.6	2.5	3.2	1.9	74.7	0.7	3.8	1.6	
ttH had BDT2	4.5	5.2	0.3	1.2	1.7	1.1	85.7	0.4	2.4	2.0	
ttH had BDT1	5.2	2.2	0.1	0.7	1.0	0.6	91.2	0.2	1.4	2.6	
ttH lep BDT3	1.2	0.8	nil	5.4	1.9	0.7	75.7	0.1	13.1	2.2	
ttH lep BDT2	2.8	nil	nil	1.8	0.5	0.2	90.3	nil	4.9	2.2	
tt H lep BDT1	5.3	0.1	nil	0.5	0.2	0.1	95.4	nil	1.3	2.5	

Effective signal mass resolution

Category	$\sigma_{68} \; [{\rm GeV}]$	$\sigma_{90} \; [\text{GeV}]$	S_{90}	B_{90}	f_{90}	Z_{90}
ggF 0J Cen	1.7	3.0	630	13000	0.1	5.6
ggF OJ Fwd	2.1	3.8	1100	46000	0.0	5.2
ggF 1J Low	1.9	3.6	560	19000	0.0	4.0
$ggF \ 1J \ Med$	1.8	3.4	300	6900	0.0	3.6
ggF 1J High	1.7	3.1	62	640	0.1	2.4
$ggF \ 1J \ BSM$	1.4	2.7	16	80	0.2	1.8
ggF 2J Low	2.0	3.6	160	7700	0.0	1.9
$ggF \ 2J \ Med$	1.9	3.4	140	4100	0.0	2.1
ggF 2J High	1.7	3.1	57	690	0.1	2.2
ggF 2J BSM	1.5	2.8	14	61	0.2	1.7
VBF low- $p_{\rm T}^{Hjj}$ BDT l	loose 1.9	3.5	37	280	0.1	2.2
VBF low- $p_{\rm T}^{Hjj}$ BDT t	tight 1.7	3.1	26	35	0.4	4.0
VBF high- p_{T}^{Hjj} BDT	loose 1.8	3.5	34	690	0.1	1.3
VBF high- $p_{T}^{\tilde{H}jj}$ BDT	tight 1.7	3.2	41	320	0.1	2.3
VH had BDT loose	1.8	3.2	31	470	0.1	1.4
VH had BDT tight	1.6	2.9	23	110	0.2	2.1
qqH BSM	1.5	2.8	38	610	0.1	1.5
VH MET Low	1.9	3.6	1.3	9.8	0.1	0.4
VH MET High	1.6	3.0	2.4	6.5	0.3	0.9
VH lep Low	1.9	3.4	11	95	0.1	1.1
VH lep High	1.5	3.0	2.8	5.3	0.3	1.1
VH dilep	1.7	3.2	1.6	2.6	0.4	0.9
ttH had BDT4	1.7	3.2	6.1	55	0.1	0.8
ttH had BDT3	1.7	3.2	6.7	33	0.2	1.1
ttH had BDT2	1.6	3.1	4.1	8.2	0.3	1.4
ttH had BDT1	1.4	2.7	4.8	1.4	0.8	3.0
$ttH \ lep \ BDT3$	1.9	3.5	1.1	4.7	0.2	0.5
ttH lep $BDT2$	1.8	3.3	2.5	4.9	0.3	1.1
$ttH \ lep \ BDT1$	1.6	3.0	4.8	2.2	0.7	2.6

