

Search for Higgs beyond the Standard Model with the ATLAS Detector Nikolina Ilic

Radboud University

May 9, 2018

Outline

Introduction

• Beyond Standard Model Higgs theories

• Results for recently published channels

• Conclusion

Introduction

The Higgs boson was discovered in 2012

Need to extend SM to address issues like hierarchy problem, quantum gravity, baryon asymmetry, dark matter/energy, neutrino masses

Look for BSM physics by

- Looking for deviations from the SM in Higgs properties measurements
- Directly searching for beyond SM objects
 - Additional Higgs bosons decaying to SM particles
 - SM Higgs decays to BSM states (eg. invisible decays)

Introduction

SM Higgs doublet

Additional Field Additional Higgs Bosons

EWS: Additional EW Singlet Model SM 🕂 one scaler EW singlet

Neutral CP Even

EWS significantly constrained by Run 1 Higgs measurements

2HDM: two Higgs doublets Φ_1 and Φ_2

7 parameters: m_h , m_H , m_A , $m_{H^{\pm}}$, m_{12} , $tan\beta$, α Ratio of VEV of Φ_1 and Φ_2 h & H mixing angle

- Models motivated by bounds on FCNC
 - Type I : fermions couple to Φ_2
 - Type II : up type quarks couple to Φ_2 , down-type quarks & charged leptons couple to Φ_1 . Eg: MSSM
- Run 1 SM Higgs results give big constraints on 2HDM. Data prefers alignment limit: $\cos(\beta \alpha) = 0$

Minimal Supersymmetric SM (MSSM)

- Simplest extension of SM that includes SUSY
- Beyond tree level more than 2 parameters affect Higgs sector, benchmarks defined:
- $m_{h,mod}^{\pm}$: m_h is close to 125 GeV
- hMSSM : measured value of m_h can be used to predict other masses
- In Run 1 excluded many regions of parameter space

	$ZV \rightarrow IIaa /vvaa$		$H^{\pm\pm} \rightarrow ll$		~36 fb ⁻¹	¹ (up to 2017)	
	$WV \rightarrow Ivqq$ $X \rightarrow Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$		$H^{\pm} \rightarrow \tau \nu$ $H^{\pm} \rightarrow tb$		13.2-15	5.4 fb ⁻¹ (2015+2016)	
Neutral		Charged Higgs			3.2 fb ⁻¹	(2015)	
Heavy Higgs to			Light $H^{\pm} \rightarrow cs$		5-20.3f	b ⁻¹ (RUN 1)	
bosons	$VV \rightarrow 2j$		$VBF H^{\perp} \to WZ$		Legend		
	$A \rightarrow Z/VVN (w h \rightarrow bb)$				-		
	H→4γ		$H \rightarrow \gamma\gamma + MET$ $H \rightarrow hh + MFT$				
$H \rightarrow WH$		Higgs	$h7 \rightarrow INV$ (len)				
Neutral Higgs to	A/H/h → ττ	exotic with MET	$H \rightarrow Z (ll) + IVIE I$				
	$A/H/h \rightarrow tt$		VBF $h \rightarrow INV$				
fermions			MET $hV \rightarrow INV (had)$				
			$H \rightarrow \gamma + MET$ $H \rightarrow INV (1 iet)$				
	hh \rightarrow 4b		, (2)			h (125) $ ightarrow$ aa $ ightarrow$ 4 ℓ	
Neutral Higgs to di-Higgs	hh \rightarrow WW $\gamma\gamma$	Rare	$h(125) \rightarrow \phi/\rho \gamma$	Hig	ggs to	h(125) \rightarrow aa \rightarrow 2j2 γ	
	hh → bbγγ	decays/	h(Z) \rightarrow J/ψγ h \rightarrow τµ / τe / eµ	res.	h(125) → aa → 4b		
	hh → bbττ	LVF			H/h \rightarrow aa \rightarrow μμττ		

	$ZV \rightarrow IIaa /vvaa$		$H^{\pm\pm} \rightarrow ll$	~36 fb ⁻	¹ (up to 2017)
	WV→ lvqq		$H^{\pm} \rightarrow \tau v$	13.2-1	5.4 fb ⁻¹ (2015+2016)
Neutral	$X \rightarrow Z\gamma$	Charged	Charged $H^{\pm} \rightarrow \text{tb}$	3.2 fb ⁻¹	(2015)
Heavy Higgs to	$ZZ \rightarrow 4I$	Higgs	Light $H^{\pm} \rightarrow cs$	5-20.31	fb ⁻¹ (RUN 1)
bosons	VV→ 2j A→ Z/Wh (w h→bb)		$VBFH^{\pm}\toWZ$	Legend	
	H→4γ H → WH		H → γγ+MET H → bb+MET hZ → INV (lep)	Will new	focus on er results
		Higgs	$H \rightarrow Z (ll) + MET$		
Neutral	A/H/h → ττ	exotic	VBE $h \rightarrow INV$	Upda	ates on these
fermions	A/H/h → tt	MET	$hV \rightarrow INV (had)$	+ ne	w channels
			$H \rightarrow \gamma + MET$ $H \rightarrow INV (1 \text{ jet})$	com	ing soon
	hh \rightarrow 4b		, (_ joo,		h (125) $ ightarrow$ aa $ ightarrow$ 4 ℓ
Neutral	$hh ightarrow WW \gamma \gamma$	Rare	$h(125) \rightarrow \phi/\rho v$	Higgs to	h(125) $ ightarrow$ aa $ ightarrow$ 2j2 γ
Higgs to	hh → bbγγ	decays/	$h(Z) \rightarrow J/\psi v$	res.	h(125) → aa → 4b
ui-niggs	hh → bbττ	LVF	h → τμ / τe / eμ		H/h $ ightarrow$ aa $ ightarrow$ μμττ

Neutral Heavy Higgs to bosons	$ZV \rightarrow IIqq /vvqq$ $WV \rightarrow Ivqq$ $X \rightarrow Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$ $A \rightarrow Z/Wh (w h \rightarrow bb)$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ VBF $H^{\pm} \rightarrow WZ$
	H→4γ H → WH		H → γγ+MET H → bb+MET hZ → INV (lep)
Neutral		Higgs	$H \rightarrow Z (ll)+MET$
Higgs to fermions	$A/H/h \rightarrow tt$ A/H/h \rightarrow tt	with MET	VBF h \rightarrow INV hV \rightarrow INV (had)
			$H \rightarrow \gamma + MET$ $H \rightarrow INV (1 jet)$
	hh \rightarrow 4b		
Neutral	hh \rightarrow WW $\gamma\gamma$	Rare	h(125) → φγ
Higgs to	hh → bbγγ	decays/	$h(Z) \rightarrow J/\psi\gamma$
ul-mggs	hh \rightarrow bbtt	LVF	h → тµ / те / еµ

Neutral	Heavy
Higgs to	bosons

SM

ZV → llqq /vvqq WV→ lvqq X->Zγ Why these channels?

- Is unitarisation of WW scattering at high energy ensured ONLY by SM Higgs?
- Prominent decay is to W/Z in many BSM models

Neutral	Heavy
Higgs to	bosons

ZV → llqq /vvqq WV→ lvqq X->Zγ Why these channels?

- Is unitarisation of WW scattering at high energy ensured ONLY by SM Higgs?
- Prominent decay is to W/Z in many BSM models

Neutral Heavy	ZV → llqq /vvqq
Higgs to bosons	WV→ lvqq
	X->7v

- Is unitarisation of WW scattering at high energy ensured ONLY by SM Higgs?
- Prominent decay is to W/Z in many BSM models
- Heavy Higgs in Narrow Width Approximation (NWA): Higgs width smaller than experimental resolution (tests EWS, 2HDM, singlet+doublet)
- Other BSM models tested: Spin 1 Z'/W', spin 2: Kaluza-Klein graviton (G_{kk^*})

- Resolved analysis at lower mass: 2 small radius jets (llqq) resolved
- Boosted analysis: when resonance mass higher than W/Z mass 2 jets merge into 1 big radius jet (llqq, vvqq, lvqq)
- Discriminating variable: invariant/transverse mass

Neutral Heavy Higgs to bosons

ZV → llqq /vvqq WV→ lvqq X->Zγ

Theories: heavy Higgs in NWA, Z', W', G_{kk^*} $ZZ \rightarrow (ll/\nu\nu)(qq)$ where $l = e, \mu$ ggF and VBF studied *llqq* channel Events / 5 GeV Data ATLAS ggF H 1 TeV (2 pb) $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Z + jets $H \rightarrow ZZ \rightarrow \ell \ell q q$ Top Quarks 10⁴ SM Diboson *llaa* boosted Total Uncertainty 10³ 10² Data/Postfit 1.0 0.8 Postfit/Prefit 1.(0.8 175 200 75 100 125 150 50 m(J) [GeV] Excluded $H_{ggf} \sigma \times BR > 1.7 \text{ pb} - 1.4 \text{ fb}$ H_{VBF} $\sigma \times BR > 0.42$ pb – 1.1 fb

Neutral Heavy	
Higgs to bosons	

ZV → llqq /vvqq WV→ lvq **X->Zγ**

- Final state can be reconstructed with high efficiency and good invariant mass resolution,s, relatively small backgrounds
- Loop is sensitive to new physics, branching ratio is expected to be different from SM for many BSM theories (neutral/charged scaler Higgs, additional leptons coupling in loop)

Neutral Heavy Higgs to bosons

ZV → llqq /vvqq WV→ lvq **X->Zγ**

Theories: heavy Higgs in NWA, spin 2 resonance

- ggF, VBF VH studied
- 6 categories defined based VBF production, high/low momenta leptons
- VBF is most sensitive category and uses Boosted Decision Tree

Neutral Heavy Higgs to bosons	$ZV \rightarrow IIqq /vvqq$ $WV \rightarrow Ivqq$ $X->Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$ $A \rightarrow Z/Wh (wh \rightarrow bb)$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ $VBF H^{\pm} \rightarrow WZ$
	H→4γ H → WH		H → γγ+MET H → bb+MET hZ → INV (lep)
Neutral	A/H/h → ττ	Higgs exotic	$H \rightarrow Z (ll) + MET$
Higgs to fermions	A/H/h → tt	with MET	VBF h \rightarrow INV hV \rightarrow INV (had)
			H → γ+MET H→ INV (1 jet)
	hh \rightarrow 4b		
Neutral	hh → WWγγ	Rare decays/ LVF	h(125) → φγ
di-Higgs	hh → bbγγ hh → bbττ		h(Z) → J/ψγ h → τμ / τe / eμ

Neutral Higgs to fermions

$A/H/h \rightarrow \tau\tau$

Why this channel?

Neutral Higgs to fermions

ele ele

Excluded

$A/H/h \rightarrow \tau\tau$

 $BR(A \rightarrow bb)$ $BR(A \rightarrow \tau \tau)$ $BR(A \rightarrow tt)$ $BR(A \rightarrow \mu\mu)$ $m_{h,mod}^+$ $tan\beta = 10$ m_A [GeV] — Observed Expected ± 1σ ±2σ 1500 $m_A \, [{
m GeV}]$

Neutral Higgs to fermions

$A/H/h \rightarrow \tau\tau$

Neutral Heavy Higgs to bosons	$ZV \rightarrow IIqq /vvqq$ $WV \rightarrow Ivqq$ $X->Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$ $A \rightarrow Z/Wh (wh \rightarrow bb)$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ VBF $H^{\pm} \rightarrow WZ$
	H→4γ H → WH		H → γγ+MET H → bb+MET hZ → INV (lep)
N 1		Higgs	$H \rightarrow Z (ll)+MET$
Neutral Higgs to fermions	$A/H/h \rightarrow tt$ $A/H/h \rightarrow tt$	with MET	VBF h \rightarrow INV hV \rightarrow INV (had)
			$H \rightarrow \gamma + MET$ $H \rightarrow INV (1 jet)$
	hh \rightarrow 4b		
Neutral	hh \rightarrow WWγγ	Rare decays/ LVF	h(125) → φγ
di-Higgs	hh → bbγγ hh → bbττ		h(Z) → J/ψγ h → τμ / τe / eμ

 $hh \rightarrow 4b$ $hh \rightarrow WW\gamma\gamma$

26

SM Di-Higgs production several orders of magnitude lower than single Higgs production AND destructive interference among diagrams makes it smaller

hh → 4b hh → WWγγ

SM Di-Higgs production several orders of magnitude lower than single Higgs production AND destructive interference among diagrams makes it smaller

Di-Higgs production enhanced in many BSM models

- Non resonant production: Higgs coupling to t, b, h modified wrt SM values
- Resonant production: Replacing virtual Higgs boson with an intermediate heavy resonance (2HDM, G_{kk*})

hh \rightarrow 4b hh \rightarrow WWyy

28

SM Di-Higgs production several orders of magnitude lower than single Higgs production AND destructive interference among diagrams makes it smaller

Di-Higgs production enhanced in many BSM models

- Non resonant production: Higgs coupling to t, b, h modified wrt SM values
- Resonant production: Replacing virtual Higgs boson with an intermediate heavy resonance (2HDM, G_{kk*})
- **hh → 4b:** highest branching ratio
- hh → WWγγ: clean signature and good di-photon invariant mass that gives good background rejection

BR	bb	WW
bb	33%	
WW	25%	4.6%
ττ	7.4%	2.5%
ZZ	3.1%	1.2%
γγ	0.26%	0.10%

 $hh \rightarrow 4b$ $hh \rightarrow WW\gamma\gamma$

$hh \rightarrow 4b$

- Theories : ggF non-resonant, G_{kK^*}
- Signal selected in 2D plane of jet mass

for 300-3000 GeV (SM : $11.3^{+0.9}_{-1.0}$)

hh → 4b hh → WWγγ

Neutral Heavy Higgs to bosons	$ZV \rightarrow IIqq /vvqq$ $WV \rightarrow Ivqq$ $X -> Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ VBF $H^{\pm} \rightarrow WZ$
	$A \rightarrow 2/WH (w h \rightarrow bb)$ $H \rightarrow 4\gamma$ $H \rightarrow WH$		H → γγ+MET H → bb+MET H→ Z _{dark} Z _{dark}
		Higgs exotic	$hZ \rightarrow INV (lep)$
Neutral	A/H/h → ττ	with MET	$H \rightarrow Z (ll) + MEI$
Higgs to fermions	A/H/h → tt		VBF h → INV hV→ INV (had)
			$H \rightarrow \gamma + MET$ $H \rightarrow INIV (1 i et)$
	hh \rightarrow 4b		
Neutral	hh \rightarrow WW $\gamma\gamma$	Rare	h(125) → φγ
Higgs to	hh \rightarrow bbyy	decays/ LVF	$h(Z) \rightarrow J/\psi\gamma$
ui-niggs	hh → bbττ		h → тµ / те / еµ

Why this channel?

- In SM events with 2 high momenta, same-charge electrons are rare
- $H^{\pm\pm}$ is cleanest signature for triplet models
- $H^{\pm\pm}$ produced via Drell-Yann process

$$\begin{array}{l} H^{\pm\pm} \rightarrow ll \\ H^{\pm} \rightarrow \tau \nu \\ H^{\pm} \rightarrow tb \end{array}$$

- In SM events with 2 high momenta, same-charge electrons are rare
- H^{±±} is cleanest signature for triplet models
- H^{±±} produced via Drell-Yann process

 $\ell^{\pm}\ell^{\pm}$ (e and μ)

Excluded

- Theory : left-right symmetric $(H_L^{\pm\pm}, H_R^{\pm\pm})$
- Discriminating variable is di-lepton invariant mass

 $m \text{ of } H_R^{\pm\pm}$ $(H_L^{\pm\pm})$, < 660-760 (770-870) GeV for BR = 100%

 $\begin{array}{l} H^{\pm\pm} \rightarrow ll \\ H^{\pm} \rightarrow \tau \nu \\ H^{\pm} \rightarrow tb \end{array}$

Why these channels?

- Charged Higgs bosons appears when doublet/triplet added
- For $m_{H^{\pm}} > (<) m_{top}$ the main production mode of charged Higgs is in association with t (b)
- Decay of H^{\pm} to $\tau v (tb)$ dominates below (above) top threshold
- Run 1: $H^{\pm} \rightarrow tb$ analysis excess of events above the backgroundonly hypothesis observed (2.4 σ across wide mass range)

 $\begin{array}{l} H^{\pm\pm} \rightarrow ll \\ H^{\pm} \rightarrow \tau \nu \\ H^{\pm} \rightarrow tb \end{array}$

τν (hadronic)

- Theory: hMSSM
- Discriminating variable is transverse mass

• $m_{H^{\pm}} < 540 \text{ GeV for } \tan \beta = 60$

 $\begin{array}{l} H^{\pm\pm} \rightarrow ll \\ H^{\pm} \rightarrow \tau\nu \\ H^{\pm} \rightarrow tb \end{array}$

τν (hadronic)

- Theory: hMSSM
- Discriminating variable is transverse mass

• $m_{H^{\pm}} < 540$ GeV for $\tan \beta = 60$

tb (e/μ from t decay)

- Theory: $m^{\pm}_{h,mod}$
- Events are categorised according to the multiplicity of jets and b-tagged jets
- Multivariate techniques separate signal from background

• aneta > 44 (60) for $m_{H^{\pm}}$ = 300 (366) GeV

Neutral Heavy Higgs to bosons	$ZV \rightarrow Ilqq /vvqq$ $WV \rightarrow Ivqq$ $X->Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$ $A \rightarrow Z/Wh (wh \rightarrow bb)$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ VBF $H^{\pm} \rightarrow WZ$
	H→4γ H → WH		$H \rightarrow \gamma\gamma + MET$ $H \rightarrow bb + MET$
		Higgs	$hZ \rightarrow INV (lep)$
Neutral	A/H/h $\rightarrow \tau\tau$	exotic	$H \rightarrow Z (ll) + MET$
Higgs to fermions	A/H/h \rightarrow tt	with MET	VBF h \rightarrow INV hV \rightarrow INV (had)
			$H \rightarrow \gamma + ME I$ $H \rightarrow INV (1 jet)$
	hh \rightarrow 4b		
Neutral	hh → WWγγ	Rare	h(125) → φγ
Higgs to di-Higgs	hh → bbγγ	decays/	$h(Z) \rightarrow J/\psi\gamma$
ul-mggs	hh → bbττ	LVF	h → тµ / те / еµ

 $H \rightarrow \gamma\gamma + MET$ $H \rightarrow bb + MET$

38

- Models with Higgs and missing transverse energy (E_T^{miss}) are motivated by searches for Dark Matter (χ)
- γγ final states can be measured well with relatively low backgrounds
- bb final states have high SM higgs Branching ratios

Heavy Higgs scaler $H \rightarrow \chi \chi h$, $(h \rightarrow \gamma \gamma)$, parametrized by effective field theory

2HDM with U(1)_A gives 5 Higgses, DM and Z': $(h \rightarrow \gamma \gamma / bb)(A^0 \rightarrow \chi \chi)$

- Signal selected in 5 categories defined by (E_T^{miss}) significance, $p_T^{\gamma\gamma}$, number of leptons.
- Significance of E_T^{miss} is less sensitive to pileup than E_T^{miss}

heavy Higgs: $\sigma \times BR > 15.4$ (4.3)fb for $m_H = 260$ (350) *GeV*

$H \rightarrow \gamma\gamma+MET$ $H \rightarrow bb+MET$

- Signal selected in 5 categories defined by (E_T^{miss}) significance, $p_T^{\gamma\gamma}$, number of leptons.
- Significance of E_T^{miss} is less sensitive to pileup than E_T^{miss}

For low DM mass limit better than in direct searches!

$H \rightarrow \gamma\gamma + MET$ $H \rightarrow bb+MET$

- Resolved and merged (with boosted b-tagging!)
- Separate 4 categories by E_T^{miss}

 $\sigma_{h+DM} x BR (H \rightarrow bb) > 1.7 - 19.1 \text{ fb} (depending on E_T^{miss} range)$

Neutral Heavy Higgs to bosons	ZV \rightarrow llqq /vvqqWV \rightarrow lvqqLeutralX->ZyLeavyWW \rightarrow lvlvLiggs toZZ \rightarrow 4lVV \rightarrow 2jA \rightarrow Z/Wh (w h \rightarrow bb)		$H^{\pm\pm} \rightarrow t V$ $H^{\pm} \rightarrow t b$ Light $H^{\pm} \rightarrow cs$ $VBF H^{\pm} \rightarrow WZ$	
	H→4γ H → WH		H → γγ+MET H → bb+MET hZ → INV (lep)	
· · ·		Higgs	$H \rightarrow Z (ll) + MET$	L
Neutral Higgs to fermions	A/H/h $\rightarrow \tau\tau$ A/H/h \rightarrow tt	exotic with MET	VBF h \rightarrow INV hV \rightarrow INV (had)	_
			H → γ+MET H→ INV (1 jet)	
Neutral	hh \rightarrow 4b			Higgs to
Higgs to di-Higgs	nn → wwγγ	Rare decays/ LVF	h(125) → φγ	light
	hh → bbγγ		$h(Z) \rightarrow J/\psi\gamma$	res.
	hh → bbττ		h \rightarrow τμ / τe / eμ	

	$H \rightarrow aa \rightarrow 4\ell$		
s to	h(125) \rightarrow aa \rightarrow 2j2 γ		
	h(125) → aa → 4b		
	H/h \rightarrow aa \rightarrow μμττ		

h(125) → φ/ργ

- Large multi-jet background makes it difficult to study H → qq decays: light quark couplings to Higgs are only loosely constrained by data
- Higgs decaying to ρ and ϕ can probe couplings of Higgs to light quarks!
- Many BSM theories predict deviations from SM couplings (Minimal Violation Framework, RS Gravitons model, composite Higgs model)

h(125) → φ/*ρ*γ

- Large multi-jet background makes it difficult to study H → qq decays: light quark couplings to Higgs are only loosely constrained by data
- Higgs decaying to ρ and ϕ can probe couplings of Higgs to light quarks!
- Many BSM theories predict deviations from SM couplings (Minimal Violation Framework, RS Gravitons model, composite Higgs model)
- $\phi \rightarrow K + K$ is used to reconstruct the ϕ meson, and the decay $\rho \rightarrow \pi + \pi$ is used to reconstruct the ρ meson

Neutral Heavy Higgs to bosons	$ZV \rightarrow IIqq /vvqq$ $WV \rightarrow Ivqq$ $X -> Z\gamma$ $WW \rightarrow IvIv$ $ZZ \rightarrow 4I$ $VV \rightarrow 2j$ $A \rightarrow Z/Wh (w h \rightarrow bb)$	Charged Higgs	$H^{\pm\pm} \rightarrow ll$ $H^{\pm} \rightarrow \tau v$ $H^{\pm} \rightarrow tb$ Light $H^{\pm} \rightarrow cs$ $VBF H^{\pm} \rightarrow WZ$	
	H→4γ H → WH	Ηίσσς	H → γγ+MET H → bb+MET hZ → INV (lep)	
Neutral Higgs to fermions	$A/H/h \rightarrow \tau\tau$ $A/H/h \rightarrow tt$	exotic with MET	H → Z (<i>ll</i>)+MET VBF h → INV hV→ INV (had)	
			$H \rightarrow \gamma + MET$ $H \rightarrow INV (1 jet)$	
Neutral Higgs to di-Higgs	hh → 4b hh → WWγγ hh → bbγγ hh → bbττ	Rare decays/ LVF	h(125) $\rightarrow \phi \gamma$ h(Z) $\rightarrow J/\psi \gamma$ h $\rightarrow \tau \mu / \tau e / e \mu$	

iggs to	h (125)→ aa → 4 ℓ
	h(125) → aa → 2j2γ
es.	h(125) → aa → 4b
	H/h $ ightarrow$ aa $ ightarrow$ μμττ

 $h(125) \rightarrow aa/Z_{dark}Z_{dark}$

Why this channel?

- Look for 2HDM $H \rightarrow$ aa process
- Hidden or dark sector appears in many extensions to SM to provide DM candidate or explain astrophysical observation of positron excesses
- Dark sector can be induced by adding U(1)_d gauge symmetry that predicts Z_d

 $h(125) \rightarrow aa/Z_{dark}Z_{dark}$

- Look for 2HDM $H \rightarrow$ aa process
- Hidden or dark sector appears in many extensions to SM to provide DM candidate or explain astrophysical observation of positron excesses
- Dark sector can be induced by adding U(1)_d gauge symmetry that predicts Z_d
- Look in 4l final states that have low background.
 Optimize for different mass regions

Conclusions

 Many ATLAS searches for beyond Standard Model physics were explored

• No discoveries yet of BSM Higgs sector

Significant excesses not found, but many stringent limits set in several models

References

- ATLAS Collaboration, Search for new phenomena in ttbar final states with additional heavy-flavour jets in 13.2/fb of pp collisions at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-104</u>
- ATLAS Collaboration, Search for charged Higgs bosons in the H+ → tb decay channel in pp collisions at √s = 13 TeV using the ATLAS detector, ATLAS-CONF-2016-089
- ATLAS Collaboration, Search for charged Higgs bosons in the τ+jets final state with 14.7 fb-1 of pp collision data recorded at vs = 13 TeV with the ATLAS experiment, <u>ATLAS-CONF-2016-088</u>
- ATLAS Collaboration, A search for new phenomena in events with missing transverse momentum and a Higgs boson decaying to two photons in a 13.3 fb-1 pp collision dataset at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-087</u>
- ATLAS Collaboration, Search for the Minimal Supersymmetric Standard Model Higgs bosons H/A in the ττ final state in up to 13.3 fb-1 of pp collision data at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-085</u>
- ATLAS Collaboration, Searches for heavy ZZ and ZW resonances in the Ilqq and vvqq final states in pp collisions at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-082</u>
- ATLAS Collaboration, Study of the Higgs boson properties and search for high-mass scalar resonances in the H → ZZ → 4l decay channel at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-079</u>
- ATLAS Collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at √s = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-074</u>
- ATLAS Collaboration, Search for Higgs boson pair production in the final state of γγWW*(→lvjj) using 13.3 fb-1 of pp collision data recorded at √s = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-071</u>
- ATLAS Collaboration, Search for diboson resonance production in the lvqq final state using pp collisions at $v_s = 13$ TeV with the ATLAS detector at the LHC, <u>ATLAS-CONF-2016-062</u>
- ATLAS Collaboration, Search for scalar diphoton resonances with 15.4 fb-1 of data collected at Vs = 13 TeV in 2015 and 2016 with the ATLAS detector, <u>ATLAS-CONF-2016-059</u>
- ATLAS Collaboration, Search for new phenomena in the Z(→ II) + ETmiss final state at vs = 13 TeV with the ATLAS detector, ATLAS-CONF-2016-056
- ATLAS Collaboration, Search for doubly-charged Higgs bosons in same-charge electron pair final states using proton-proton collisions at $v_s = 13$ TeV with the ATLAS detector, <u>ATLAS-CONF-2016-051</u>
- ATLAS Collaboration, Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at $v_s = 13$ TeV with the ATLAS detector, <u>ATLAS-CONF-2016-049</u>
- ATLAS Collaboration, Search for new resonances decaying to a Z boson and a photon in 13.3 fb-1 of pp collisions at vs = 13 TeV with the ATLAS detector, <u>ATLAS-CONF-2016-044</u>
- ATLAS Collaboration, Constraints on New Phenomena via Higgs Boson Couplings and Invisible Decays with the ATLAS Detector, arXiv:1307.1347

BACKUP

Figure 2: Cartoon of SR 1P2L and SR 1P3L and relative control and validation regions.

H → γγ+MET H→ Z (ll)+MET

γγ+ΜΕΤ

- Signal selected 2 or 4 categories defined by (E_T^{miss}) significance and $p_T^{\gamma\gamma}$
- Significance of E_T^{miss} singificance is less sensitive to pileup than E_T^{miss}

Z (ll) + MET, where l= e, μ

• Theories: heavy Higgs in NWA, Z+ mediator $(\rightarrow \chi \chi)$, ZH production with H $\rightarrow \chi \chi$, G_{kk^*}

Excluded

heavy Higgs: $\sigma \times BR <$ 67 (37) for m_H = 600 (1000) GeV 67 (37)