The COHERENT Collaboration: Initial Results and Present Status

Samuel Hedges 30 May 2018

Dukeuniversity

Outline

- Motivation/overview of coherent elastic neutrino-nucleus scattering (CEvNS)
- The COHERENT collaboration
- Preliminary work
- Initial results with COHERENT's CsI[Na] detector
- COHERENT's other detectors

Neutrino Sources

[1] A. de Gouvea, et. al, arXiv:1310.4340v1, 2013

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- Suggested by D. Freedman in 1974^[2]
 - Neutrinos elastically scatter off of nucleus, nucleons recoil in phase
 - Leads to large enhancement in scattering cross section
- Cross section proportional to number of neutrons in nucleus squared (N²)
- Coherence requires low momentum transfer, $\lesssim 50 \text{ MeV}$
 - Identical nucleus in initial and final states

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batawia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

[2] D. Freedman, Phys. Rev. D, **1** 5 (1974)[3] D. Akimov, et. al, Science (2018)

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- Cross section can be orders of magnitude greater than other neutrino cross sections
- Cross section well predicted by standard model of electroweak interactions
 - Can test standard model, look for non-standard interactions
- Process important for:
 - WIMP search backgrounds
 - Supernova dynamics and detection
 - Applications for reactor monitoring

[4] D. Akimov, et. al, arXiv:1509.08702 (2015)

$CE\nu NS$ as a Background for Dark Matter Searches

- Neutrinos can produce similar nuclear recoils to WIMPs elastically scattering off nuclei
- CEvNS from atmospheric, supernova, and solar neutrinos can be a background for WIMP searches

[5] D.S. Akerib, et. al, arXiv:1802.06039 (2018)

CEvNS and Supernovae

- CEvNS affects supernova dynamics:
 - ~99% gravitational binding energy released in neutrinos
 - Most neutrinos low energy (\lesssim 40 MeV), CE ν NS largest cross section
 - At supernova densities, neutrino mean free path can be reduced to ~km
- CEvNS can also be used for detection of supernova neutrinos on earth
 - Responds to all neutrino flavors, complementary to other detection methods

[6] H.-Th. Janka, et. al, arXiv:0612072 (2006)

Imperial College HEP Seminar—30 May 2018

CEvNS and Reactor Monitoring

- Reactors emit large fluxes of neutrinos (~10¹³ v_e/cm²/sec at 20m)
 - Low energies (< ~8 MeV)
 - Impossible to shield
- Non-intrusive way to monitor information about reactor such as on/off status, fissile content
- CEvNS can lead to smaller footprints, capabilities to monitor reactors from further distances
- Many current efforts at reactors

Why is it difficult to detect $CE\nu NS$?

- While cross section for $CE\nu NS$ is large, experimental signature (low energy nuclear recoil) difficult to observe
 - At stopped-pion sources, higher energy neutrinos give higher energy nuclear recoils
- Detector response to nuclear recoils must be understood (nuclear recoils quenched compared to electron recoils)
 - Measurements at Triangle Universities Nuclear Laboratory (TUNL)
- Need low backgrounds and thresholds
 - Benefit from advances in dark matter detection technology
- Need a strong neutrino source
 - Stopped-pion sources, reactors

The COHERENT Collaboration

- ~80 members from 18 institutions in 4 countries
- Combining individual experience and expertise
- Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), Tennessee

The COHERENT Collaboration

- Test N² cross section scaling
- Using a variety of targets and detector technologies
 - Csl[Na] scintillator
 - Single-phase liquid Argon
 - P-type point contact Ge
 - Segmented Nal[TI] scintillator
- Multiple targets allow cancellation of some systematic uncertainties

COHERENT's Detectors

Nucleus	Detector	Mass (kg)	Threshold	Start date	Recoil spectra: no quenching, efficiency or background
Csl	CsI[Na] scintillator	14.57	6.5	9/2015	10^{3} — Csl 14.57 kg, 19.3 m - Nal 2000.00 kg, 28.0 m $ 2^{3}$ Na 306.00 kg, 28.0 m - Ar 22.00 kg, 29.0 m - Ge 10.00 kg, 22.0 m 10^{-1} 0 10 20 30 40 50 60 70 80 90 100 Recoil energy (keVr)
Na	Nal[Tl] scintillator array	185/2000+	13	7/2016 for 185 kg 2018 for 2000 kg	
Ar	Single-phase liquid Argon	22	20	12/2016	
Ge	P-type point contact Ge	10	5	2018	

Why the SNS?

- Higher energy neutrinos than at a reactor
 - Larger cross sections
 - Higher energy nuclear recoils
- SNS produces a pulsed proton beam
 - ~1µs pulses, 60Hz

ike..

NIVERSITY

- Good understanding of steady state backgrounds
- Reject backgrounds outside beam windows
- High intensity source with short pulse lengths

Neutrino Production at the SNS

Preliminary work

- Site selection at the SNS
- Beam-related neutrons backgrounds
- Neutrino-induced backgrounds
- Quenching factor measurements

Site Selection at the SNS

Site Selection at the SNS

Beam-related neutrons

• SciBath detector BeamLine-14a prompt BeamLine-1

Neutron scatter camera

Dukeuniversity

• Eljen LS cell in CsI shielding

 Multiplicity and Recoil Spectrometer (MARS)

Neutrino-Induced Neutrons

- Neutrinos can interact in shielding materials to produce excited nuclei that can de-excite through neutron emission
- Background for CEvNS
 - Neutrons will have timing structure of neutrinos
- Theoretical calculations showed lower cross section than $\text{CE}\nu\text{NS},$ but had never been measured
- Same mechanism HALO experiment will use to detect supernova neutrinos
- Primarily concerned with this cross section in common shielding materials (lead, iron), but other materials are also interesting

 $\nu_{e} + {}^{208}\text{Pb} \rightarrow 208\text{Bi}^{*} + e^{-}$ \swarrow ${}^{208-y}\text{Bi} + x\gamma + yn$

Result: Neutrino-Induced Neutrons in Pb

- From Eljen LS cell in Csl detector's shielding, got initial measurement of NIN cross section on Pb
 - Low exposure, done prior to deployment of Csl[Na] crystal
 - Added HDPE between lead and detector to reduce neutron backgrounds
- Cross section lower than expected

Duke

 Dedicated detectors deployed to the SNS to study this process

Quenching Factor Measurements

- Light output from nuclear recoils quenched compared to electron recoils of the same energy
- Previous measurements for Csl existed
 - Large uncertainties
 - Quenching factor may be energy dependent, need low-energy recoil data points
- Measurement campaign for COHERENT's targets (and other materials) at the Triangle Universities Nuclear Laboratory (TUNL)

Result: CsI[Na] Quenching factor

- Two measurements using same crystal/PMT, same facility/neutron source
- Different backing detectors and configurations
- Adopted a flat quenching factor of 8.78% ± 1.66%
- Working to resolve discrepancy between measurements

Duke

Csl[Na] Detector

- 14.57kg Csl[Na] scintillator
- Operates at room temperature
- Crystal casing designed with low background components
- Shielding consists of water, lead, low-background lead, HDPE
- Doped with Na to reduce afterglow compared to CsI[TI]
- Deployed in summer 2015

DUKEUNIVERSITY

CsI[Na] Analysis

- Triggers on SNS timing signal (60 Hz)
- 70 µs waveforms split into two regions:
 - 1. Anti-coincidence to understand steadystate backgrounds
 - 2. Coincidence for signal region
- Calibration done with ²⁴¹Am and ¹³³Ba sources
- Cuts on muon veto, afterglow pulses, high energy signals
- Independent analysis by U. Chicago and MEPhI
- 1.76 x 10²³ protons-on-target (~1/3 g)

Csl[Na] Result

Csl[Na] Result

- 2D likelihood fit in energy, time shows a signal 6.7σ
- Consistent with Standard Model at 1σ level
- 134 ± 22 events observed, 173 ± 48 predicted in SM
- Lots of physics being done with the initial results!

Weak Mixing Angle

- Possible to measure the weak mixing angle at a low Q value (~40 MeV)
- Large uncertainties, but small detector, ~1 year of exposure
- Measuring CEvNS in multiple targets will reduce uncertainties

[8] The Jefferson Lab Qweak Collaboration, Nature 557 (2018)[9] D.K. Papoulias and T.S. Kosmas, Phys. Rev. D 97 (2018)

Neutron Distribution Functions

- Neutron RMS radius can be measured with neutrinonucleus scattering $R_n = 5.5^{+0.9}_{-1.1}$ fm
- Neutron skin depth (difference between neutron and proton RMS radii)

 $\Delta R_{np} \simeq 0.7^{+0.9}_{-1.1} \text{ fm}$

• More exposure and reduced uncertainties can improve calculations

Non-Standard Interactions (NSI)

- Non-standard neutrinoquark interactions could affect neutrino mass ordering experiments, long-baseline neutrino oscillation experiments
- NSI can enhance or suppress CEvNS rate
- Measurement for different nuclei will further constraints

[7] D. Akimov, et. al, arXiv:1803.09183 (2018)

Neutrino Magnetic Moment

- Massive neutrinos may have EM properties (charge radius, magnetic moment)
- Signature would be an enhancement to the cross section, distorted spectrum
 - Proportional to 1/E_{recoil} at low energies
 - Z² coherence
- Low threshold, high resolution detectors will provide better constraints

[9] D.K. Papoulias and T.S. Kosmas, Phys. Rev. D 97 (2018)

COHERENT's Other Detectors

Liquid Argon

- Used CENNS-10
 detector (from FermiLab)
- 22 kg fiducial volume, coated with wavelengthshifting paint
- Data collection started in Dec. 2016, full shielding in summer 2017

Germanium

- Ge detectors offer low threshold, high resolution
- Testing existing Ge detectors for backgrounds
- Recent advances have led to detectors with very low noise, thresholds

Nal[Tl]

- Na is COHERENT's lightest nuclei
 - Smaller cross section, but higher energy nuclear recoils
- Collaboration has access to several tons of Nal[TI] detectors left over from Advanced Spectroscopic Portal program
 - Crystals not designed to have low backgrounds, but can compensate with sufficient mass
- Nuclear recoils have large dE/dX recoils limited to single crystal
 - Coincidence between neighboring detectors can be used to reduce backgrounds

Neutrino Cubes

- Palletized neutrino detectors with switchable targets (~700 kg Fe, 900 kg Pb)
- Large PSD capable liquid scintillators in targets
- Look for neutrons produced in CC and NC events from neutrinos with energy above the particle emission threshold
- Muon vetos, water shielding reduce backgrounds
- Pb neutrino cube deployed in fall 2015, Fe in winter 2017

¹²⁷I Charged Current

$$v_{\rm e} + {}^{127}\mathrm{I} \rightarrow {}^{127}\mathrm{Xe} + \mathrm{e}^{-1}$$

- Haxton proposed ¹²⁷I as solar, supernova neutrino detector in 1988
 - Measurement can test nuclear models, g_A quenching with neutrinos
 - Very few neutrino-nucleus interactions measured at these energies
- Previous measurement^[12] done at Los Alamos Meson Production Facility (LAMPF) using a radiochemical approach
 - Large uncertainties in cross section

 $\sigma = 2.84 \pm 0.91 \text{ (stat)} \pm 0.25 \text{ (sys)} \times 10^{-40} \text{ cm}^2$

- No information on energy dependence of cross section
- Required ¹²⁷Xe to be end state of reaction (particle emission threshold in ¹²⁷Xe ~7.2 MeV, average neutrino energy at SNS close to 30 MeV)

[12] J. R. Distel, et. al, Phys. Rev. C 2003

NalvE Detector

- NalvE (Nal v-Experiment) consists of twenty-four 7.7kg Nal[Tl] detectors at the SNS
- Dual purpose: make preliminary measurement of charged-current cross section on ¹²⁷I, test backgrounds for CEvNS deployment for Na
- Operating since summer 2016, upgraded in fall 2017 to reduce backgrounds

Dual-Gain Bases

- PMTs that came with Nal[TI] detectors show saturation effects at high gains
- To simultaneously measure both channels, need to measure events between 3 keV and 60 MeV
- Dual-gain base designed with separate outputs
- Design tested, refined in 2016
- First production run of 16 bases
 recently completed

Future Outlook

- Collaboration working to reduce systematics (flux, quenching factor) for CsI[Na] result, gather more statistics
- Beam recently resumed at SNS, operating at higher power
- Many detectors deployed, expecting results soon
- SNS is a unique neutrino source, interesting neutrino physics can be done with it

Acknowledgements

