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Outline

 Motivation/overview of coherent elastic
neutrino-nucleus scattering (CEVNS)

« The COHERENT collaboration

* Preliminary work

* |nitial results with COHERENT’s Csl[Na] detector
« COHERENT’s other detectors
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[1] A. de Gouvea, et. al, arXiv:1310.4340v1, 2013
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Coherent Elastic Neutrino-Nucleus
Scattering (CEVNS)

PRYEiCAL|REVIEW D T | I e R e
«  Suggested by D. Freedman in 19742 conerent ffects ofia mesk newtral currene
— Neutrinos elastically scatter off of nucleus, e R e L N L e
nUCIeonS reCOIl In phase (Received 15 October 1973; revised manuscript received 19 November 1973)
— Leads to large enhancement in scattering Q scattered (3]
cross section neutrino
»  Cross section proportional to number of s
neutrons in nucleus squared (N2 =y
«  Coherence requires low momentum Z \ nuclear
transfer, < 50 MeV boson '\ recoil
— lIdentical nucleus in initial and final states _ @
s /

secondary
recoils

scmtlllatlon
[2] D. Freedman, Phys. Rev. D, 15 (1974)
[3] D. Akimov, et. al,, Science (2018)
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Coherent Elastic Neutrino-Nucleus
Scattering (CEVNS)

» Cross section can be orders of . %Gs CEWNS by NNt [4]
magnitude greater than other o TICEWS e Pb v, NIN 1n
neutrino cross sections — v, '7IcC e Pb v, NIN 2n

« Cross section well predicted by et
standard model of electroweak
interactions

— Can test standard model, look for
non-standard interactions

* Process important for:
—  WIMP search backgrounds
— Supernova dynamics and detection
— Applications for reactor monitoring 10°
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[4] D. Akimov, et. al, arXiv:1509.08702 (2015)
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CEvNS as a Background for Dark Matter Searches

: 107 g (5]
* Neutrinos can produce L\ ——
similar nuclear recoils to 1044? e gg:z:jizzig::z: _§
WIMPs elastically sl i\ a1 ]

Ll LI

scattering off nuclei

« CEvVNS from atmospheric,
supernova, and solar
neutrinos can be a
background for WIMP el D
searches WIMP s GV

-
P
E

SI WIMP-nucleon cross section [cm?]
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[5] D.S. Akerib, et. al, arXiv:1802.06039 (2018)
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CEvVNS and Supernovae

Initial Phase of Collapse Akm Neutrino Trapping

A
R [km]
(t~0) L (=015, g~10%giem?) [6]
T~ v

 CEvNS affects supernova dynamics:

— ~99% gravitational binding energy released .
In neutrinos PR

— Most neutrinos low energy (s 40 MeV), o s
CEvNS largest cross section it o sk pormn

— At supernova densities, neutrino mean free AR
path can be reduced to ~km » .

e CEvVNS can also be used for detection of
supernova neutrinos on earth

\ M0 M

— Responds to all neutrino flavors, s
complementary to other detection methods et |

A ! Shock Stagnation and v Heating, RKkm]A Neutrino Cooling and Neutrino—
'
1
(

[6] H.-Th. Janka, et. al, arXiv:0612072 (2006)
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CEvNS and Reactor Monitoring

Reactors emit large fluxes of 1
neutrinos RIC@GHET ]’;ggvu s/
(~1073 v/cm?/sec at 20m) |

— Low energies (< ~8 MeV)

— Impossible to shield
Non-intrusive way to monitor
information about reactor such as
on/off status, fissile content

CEVNS can lead to smaller
footprints, capabilities to monitor
reactors from further distances

Many current efforts at reactors
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Why is it difficult to detect CEVNS?

While cross section for CEVNS is large, experimental
signature (low energy nuclear recoil) difficult to observe

— At stopped-pion sources, higher energy neutrinos give higher
energy nuclear recoils

Detector response to nuclear recoils must be understood
(nuclear recoils quenched compared to electron recoils)

— Measurements at Triangle Universities Nuclear Laboratory (TUNL)
Need low backgrounds and thresholds

— Benefit from advances in dark matter detection technology
Need a strong neutrino source

— Stopped-pion sources, reactors
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The COHERENT Collaboration
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The COHERENT Collaboration

« Test N? cross section scaling
« Using a variety of targets and
detector technologies
— Csl[Na] scintillator
— Single-phase liquid Argon
— P-type point contact Ge

Cross section (10 cm?)

— Segmented Nal[TI] scintillator “F
« Multiple targets allow -/
cancellation of some
systematic uncertainties Neutron number
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COHERENT’s Detectors
Detector Threshold Start date
(keVn r) Recoil spectra: no quenching, efficiency or background

:— —— Csl 14.57 kg, 19.3m
CslI[Na] 14.57 9/2015 § -+ Nal 2000.00 kg, 28.0 m
scintillator - — ®Na 306.00 kg, 28.0m
5 N — Ar22.00 kg, 29.0m
Na Nal[Tl] 185/2000+ 13 7/2016 for 185 kg  210° — Ge 10.00 kg, 22.0m
scintillator 2018 for2000kg &
array s 7
(0]
Z 10k
(] -
Q  r
Ar Single-phase 22 20 12/2016 2
. . w [
liquid Argon o 1L
- 1 - ll|||||I||||l|l||l|l||||||||| Illlllllllllllllll
Ge P-type point 10 5 2018 107090 20 30 40 50 60 70 80 90 100
contact Ge Recoil energy (keVr)
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Why the SNS?

* Higher energy neutrinos than at
a reactor
— Larger cross sections
— Higher energy nuclear recoils
* SNS produces a pulsed proton
beam
— ~1yus pulses, 60Hz

— Good understanding of steady
state backgrounds

— Reject backgrounds outside
beam windows
* High intensity source with short
pulse lengths
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Neutrino Production at the SNS
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Preliminary work

Site selection at the SNS
Beam-related neutrons backgrounds
Neutrino-induced backgrounds
Quenching factor measurements
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Site Selection at the SNS

Imperial College HEP Seminar—30 May 2018



Site LSelection at the SNS
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Beam-related neutrons
. SCiBath detector . EljgnlIITSH'ceIVIVvirv\pslﬂshielding
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Neutrino-Induced Neutrons

Neutrinos can interact in shielding materials 208 e

to produce excited nuclei that can de-excite Vet ©"Pb — 208Bi +e

through neutron emission o

Background for CEVNS 2057YBj 4+ xy + yn
— Neutrons will have timing structure of neutrinos

Theoretical calculations showed lower cross
section than CEvNS, but had never been

measured - , ’
Same mechanism HALO experiment will vy +“%°Pb — 208Pb  + vy
use to detect supernova neutrinos e

Primarily concerned with this cross section
in common shielding materials (lead, iron),
but other materials are also interesting

2987Yph + xy + yn
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DukeUNIVERSITY

Result: Neutrino-Induced Neutrons in Pb

From Eljen LS cell in Csl
detector’s shielding, got initial
measurement of NIN cross
section on Pb

— Low exposure, done prior to
deployment of Csl[Na] crystal

— Added HDPE between lead and
detector to reduce neutron
backgrounds

Cross section lower than
expected

Dedicated detectors deployed to
the SNS to study this process

3

8 8 8 & 3 3

counts / bin / 171.66 days / 3.35 GWhr
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« Light output from nuclear recoils
quenched compared to electron
recoils of the same energy

 Previous measurements for Csl

existed
— Large uncertainties
— Quenching factor may be energy e i
dependent, need low-energy recoil scoaosrasrors f] - Baoko i
data points ' 4
 Measurement campaign for |- '
COHERENT’s targets (and other - a -
materials) at the Triangle o3 e \ ~ ’
Universities Nuclear Laboratory TR Qe
(TUNL) I 1
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Result: Csl[Na] Quenching factor

 Two measurements using
same crystal/PMT, same 2
facility/neutron source

» Different backing detectors
and configurations

« Adopted a flat quenching
factor of 8.78% + 1.66%
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. 4 COHERENT (Duke)
« Working to resolve o 4 COHERENT (Ghicago ,
. Park et al., Nucl. Instrum. Meth. A 491 (2002)
d|Screpancy between 0 4 Guo et al., Nucl. Instrum. Mith. A 818 (2016
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Csl[Na] Detector

* 14.57kg Csl[Na] scintillator
» QOperates at room temperature

» Crystal casing designed with low
background components

« Shielding consists of water, lead,
low-background lead, HDPE

 Doped with Na to reduce
afterglow compared to Csl[Tl]

* Deployed in summer 2015

Imperial College HEP Seminar—30 May 2018



Csl[Na] Analysis

« Triggers on SNS timing signal (60 Hz)

« 70 ps waveforms split into two regions:

1.  Anti-coincidence to understand steady- 2017/04/14 - 02:20:54.07 EDT
state backgrounds

2.  Coincidence for signal region

e (Calibration done with 2’Am and '33Ba
sources

« Cuts on muon veto, afterglow pulses,

80

70

Signal (mV)

high energy signals “F - "
* Independent analysis by U. Chicago ; cPr [ cro
and MEPhl 20, 10 20 30 20 50 60 70

Time in waveform (us)

1.76 x 1023 protons-on-target (~1/3 g)
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Csl[Na] Result
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Csl[Na] Result

« 2D likelihood fit in energy, time shows a signal 6.70
 (Consistent with Standard Model at 1o level
134 + 22 events observed, 173 + 48 predicted in SM

» Lots of physics being done with the initial results!

CEWNS T,

CEVNS counts
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Weak Mixing Angle

0.243

(8]

E158

. 0.241 1 (ee)
 Possible to measure the T{
weak mixing angle at a low Q E oz AN
value (~40 MeV) ]

« Large uncertainties, but
small detector, ~1 year of | X

10~ 102 100 102 104

exposure 2t

e Measuring CEVNS in multiple || e
targets will reduce “
uncertainties e

NuTeV
(v-nucleus)

0.2351 ('33Cs)

(2
sin? Oy,

0.233 1

COHERENT: ) [9]
14.57 kg Csl

.............

[8] The Jefferson Lab Qweak Collaboration, Nature 557 (2018)
[9] D.K. Papoulias and T.S. Kosmas, Phys. Rev. D 97 (2018) sin2 0.
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Neutron Distribution Functions

 Neutron RMS radius can be

measured with neutrino- c» - - Hom
nucleus scattering s
— +0.9 ~E
R, = 5.5777 fm

* Neutron skin depth
(difference between neutron

sz
5

and proton RMS radii)

ARy, = 0.777 fm

* More exposure and reduced
uncertainties can improve
calculations

[10] M. Cadeddu, et. al, PRL 120 (2018)
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Non-Standard Interactions (NSI)

* Non-standard neutrino-
quark interactions could
affect neutrino mass
ordering experiments,
long-baseline neutrino
oscillation experiments o

« NSI can enhance or
suppress CEVNS rate _

« Measurement for different N
nuclei will further o
constraints

[7] D. Akimov, et. al, arXiv:1803.09183 (2018)

7]

0.5

I | === CHARM
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Neutrino Magnetic Moment

* Massive neutrinos may have EM

prOpertieS (Charge radiUS, 15 i #aq= u,_,' — T 9]
magnetic moment) [ i
« Signature would be an " conerene. 7
enhancement to the cross T wastgos 7 ]
section, distorted spectrum :>]< [
— Proportional to 1/E; at low
energles

— Z2? coherence
* Low threshold, high resolution

detectors will provide better
constraints

[9] D.K. Papoulias and T.S. Kosmas, Phys. Rev. D 97 (2018)
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COHERENT’s Other Detectors

—— Beam Delivered 5
Neutron Scatter Camera (BG Neutrons)
LS in Csl Shield (NINs)

e Cs| (CEVNS) 4
—— SciBath (BG Neutrons)

—— Pb Nube (NINs) 3
== NalVE (CC)

CENNS-10 (CEVNS)
—— Fe Nube (NINs)
MARS (BG Neutrons)

Protons on Target [1023]

Sep'13 Jan'14 May'14 Sep '14 Jan'l5 May '15 Sep '15 Jan'l6 May '16 Sep '16 Jan'17 May '17 Sep '17
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Liquid Argon

« Used CENNS-10
detector (from FermilLab)

« 22 kg fiducial volume,
coated with wavelength-
shifting paint

« Data collection started in
Dec. 2016, full shielding
In summer 2017

cryocooler
system

vacuum
jacket

detector
chamber

PMTs

water
shield

Pb-Cu
Shield
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Germanium

* Ge detectors offer low
threshold, high resolution

+ Testing existing Ge
detectors for
backgrounds

« Recent advances have
ed to detectors with very
oW nhoise, thresholds
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Nal[TI]

 Nais COHERENT’s lightest nuclei

— Smaller cross section, but higher energy
nuclear recoils
« (Collaboration has access to several
tons of Nal[Tl] detectors left over from
Advanced Spectroscopic Portal
program
— Crystals not designed to have low
backgrounds, but can compensate with

sufficient mass
* Nuclear recoils have large dE/dX—
recoils limited to single crystal
— Coincidence between neighboring

detectors can be used to reduce
backgrounds

——:E_ﬂ'—ﬁ \
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Neutrino Cubes

«  Palletized neutrino detectors with switchable targets (~700 o
kg Fe, 900 kg Pb) o .
« Large PSD capable liquid scintillators in targets 5 -

*  Look for neutrons produced in CC and NC events from
neutrinos with energy above the particle emission threshold

. Muon vetos, water shielding reduce backgrounds
. Pb neutrino cube deployed in fall 2015, Fe in winter 2017
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1271 Charged Current

Ve + 1271 &5 127%e + e~

« Haxton proposed 27| as solar, supernova neutrino detector in 1988

— Measurement can test nuclear models, g, quenching with neutrinos

— Very few neutrino-nucleus interactions measured at these energies
« Previous measurement!’?l done at Los Alamos Meson Production

FaC|I|ty (LAMPF) using a radiochemical approach
Large uncertainties in cross section
o = 2.84 +0.91 (stat) + 0.25 (sys) X 1040 cm?
— No information on energy dependence of cross section

— Required 27Xe to be end state of reaction (particle emission threshold in 27Xe
~7.2 MeV, average neutrino energy at SNS close to 30 MeV)

[12] J. R. Distel, et. al, Phys. Rev. C 2003
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NalvE Detector

« NalvE (Nal v-Experiment)
consists of twenty-four 7.7kg
Nal[Tl] detectors at the SNS

e Dual purpose: make
preliminary measurement of
charged-current cross section
on 27], test backgrounds for
CEvVNS deployment for Na

« Operating since summer
2016, upgraded in fall 2017 to
reduce backgrounds

Imperial College HEP Seminar—30 May 2018



Dual-Gain Bases

 PMTs that came with Nal[Tl]
detectors show saturation effects
at high gains

* To simultaneously measure both

channels, need to measure events
between 3 keV and 60 MeV

e Dual-gain base designed with
separate outputs

« Design tested, refined in 2016

» First production run of 16 bases
recently completed
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Future Outlook

Collaboration working to reduce systematics (flux,
quenching factor) for Csl[Na] result, gather more statistics

Beam recently resumed at SNS, operating at higher power
Many detectors deployed, expecting results soon

SNS is a unique neutrino source, interesting neutrino
physics can be done with it
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