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Outline

• Motivation/overview of coherent elastic 
neutrino-nucleus scattering (CE𝜈NS)

• The COHERENT collaboration
• Preliminary work
• Initial results with COHERENT’s CsI[Na] detector
• COHERENT’s other detectors
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Neutrino Sources

[1]	A.	de	Gouvea,	et.	al,	arXiv:1310.4340v1,	2013

[1]



Imperial	College	HEP	Seminar—30	May	2018 4

Coherent Elastic Neutrino-Nucleus 
Scattering (CE𝜈NS)

• Suggested by D. Freedman in 1974[2]

– Neutrinos elastically scatter off of nucleus, 
nucleons recoil in phase

– Leads to large enhancement in scattering 
cross section

• Cross section proportional to number of 
neutrons in nucleus squared (N2) 

• Coherence requires low momentum 
transfer,	≲ 50 MeV
– Identical nucleus in initial and final states

[2]	D.	Freedman,	Phys.	Rev.	D,	1 5	(1974)
[3]	D.	Akimov,	et.	al,,	Science	(2018)

[3]
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Coherent Elastic Neutrino-Nucleus 
Scattering (CE𝜈NS)

• Cross section can be orders of 
magnitude greater than other 
neutrino cross sections

• Cross section well predicted by 
standard model of electroweak 
interactions
– Can test standard model, look for 

non-standard interactions
• Process important for:

– WIMP search backgrounds
– Supernova dynamics and detection
– Applications for reactor monitoring

[4]

[4]	D.	Akimov,	et.	al, arXiv:1509.08702	(2015)
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CE𝜈NS as a Background for Dark Matter Searches

• Neutrinos can produce 
similar nuclear recoils to 
WIMPs elastically 
scattering off nuclei

• CE𝜈NS from atmospheric, 
supernova, and solar 
neutrinos can be a 
background for WIMP 
searches

[5]	D.S.	Akerib,	et.	al,	arXiv:1802.06039	(2018)

[5]
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CE𝜈NS and Supernovae

• CE𝜈NS affects supernova dynamics:
– ~99% gravitational binding energy released 

in neutrinos
– Most neutrinos low energy (≲ 40 MeV), 

CE𝜈NS largest cross section
– At supernova densities, neutrino mean free 

path can be reduced to ~km
• CE𝜈NS can also be used for detection of 

supernova neutrinos on earth
– Responds to all neutrino flavors, 

complementary to other detection methods

[6]	H.-Th.	Janka,	et.	al,	arXiv:0612072	(2006)

[6]
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CE𝜈NS and Reactor Monitoring

• Reactors emit large fluxes of 
neutrinos 
(~1013 ν'( /cm2/sec at 20m)
– Low energies (< ~8 MeV)
– Impossible to shield

• Non-intrusive way to monitor 
information about reactor such as 
on/off status, fissile content

• CEνNS can lead to smaller 
footprints, capabilities to monitor 
reactors from further distances

• Many current efforts at reactors



Imperial	College	HEP	Seminar—30	May	2018 9

Why is it difficult to detect CE𝜈NS?
• While cross section for CE𝜈NS is large, experimental 

signature (low energy nuclear recoil) difficult to observe
– At stopped-pion sources, higher energy neutrinos give higher 

energy nuclear recoils
• Detector response to nuclear recoils must be understood 

(nuclear recoils quenched compared to electron recoils)
– Measurements at Triangle Universities Nuclear Laboratory (TUNL)

• Need low backgrounds and thresholds
– Benefit from advances in dark matter detection technology

• Need a strong neutrino source
– Stopped-pion sources, reactors
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The COHERENT Collaboration
• ~80 members from 18 

institutions in 4 countries
• Combining individual 

experience and expertise
• Using neutrinos produced 

at the Spallation Neutron 
Source (SNS) at Oak 
Ridge National Laboratory 
(ORNL), Tennessee
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The COHERENT Collaboration
• Test N2 cross section scaling
• Using a variety of targets and 

detector technologies
– CsI[Na] scintillator
– Single-phase liquid Argon
– P-type point contact Ge
– Segmented NaI[Tl] scintillator

• Multiple targets allow 
cancellation of some 
systematic uncertainties
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COHERENT’s Detectors
Nucleus Detector Mass	(kg) Threshold	

(keVnr)
Start	date

CsI CsI[Na]	
scintillator

14.57 6.5 9/2015

Na NaI[Tl]	
scintillator	

array

185/2000+ 13 7/2016 for	185	kg	
2018	for	2000	kg

Ar Single-phase
liquid	Argon

22 20 12/2016

Ge P-type point	
contact	Ge

10 5 2018
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Why the SNS?
• Higher energy neutrinos than at 

a reactor
– Larger cross sections
– Higher energy nuclear recoils

• SNS produces a pulsed proton 
beam
– ~1µs pulses, 60Hz
– Good understanding of steady 

state backgrounds
– Reject backgrounds outside 

beam windows
• High intensity source with short 

pulse lengths
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Neutrino Production at the SNS
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Preliminary work

• Site selection at the SNS
• Beam-related neutrons backgrounds
• Neutrino-induced backgrounds
• Quenching factor measurements
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Site Selection at the SNS
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Site Selection at the SNS
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• SciBath detector

• Neutron scatter camera

Beam-related neutrons
• Eljen LS cell in CsI shielding

• Multiplicity and Recoil 
Spectrometer (MARS)
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Neutrino-Induced Neutrons
• Neutrinos can interact in shielding materials 

to produce excited nuclei that can de-excite 
through neutron emission

• Background for CE𝜈NS 
– Neutrons will have timing structure of neutrinos

• Theoretical calculations showed lower cross 
section than CE𝜈NS, but had never been 
measured

• Same mechanism HALO experiment will 
use to detect supernova neutrinos

• Primarily concerned with this cross section 
in common shielding materials (lead, iron), 
but other materials are also interesting

νe + 208Pb	 → 208Bi ∗ +	e—

Bi + xγ + yn789:;

ν< + 208Pb	 → 208Pb ∗ +	ν<=

Pb + xγ + yn789:;
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Result: Neutrino-Induced Neutrons in Pb
• From Eljen LS cell in CsI

detector’s shielding, got initial 
measurement of NIN cross 
section on Pb
– Low exposure, done prior to 

deployment of CsI[Na] crystal
– Added HDPE between lead and 

detector to reduce neutron 
backgrounds

• Cross section lower than 
expected

• Dedicated detectors deployed to 
the SNS to study this process
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Quenching Factor Measurements
• Light output from nuclear recoils 

quenched compared to electron 
recoils of the same energy

• Previous measurements for CsI
existed
– Large uncertainties
– Quenching factor may be energy 

dependent, need low-energy recoil 
data points

• Measurement campaign for 
COHERENT’s targets (and other 
materials) at the Triangle 
Universities Nuclear Laboratory 
(TUNL)
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Result: CsI[Na] Quenching factor
• Two measurements using 

same crystal/PMT, same 
facility/neutron source

• Different backing detectors 
and configurations

• Adopted a flat quenching 
factor of 8.78% ± 1.66%

• Working to resolve 
discrepancy between 
measurements
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CsI[Na] Detector
• 14.57kg CsI[Na] scintillator
• Operates at room temperature
• Crystal casing designed with low 

background components
• Shielding consists of water, lead, 

low-background lead, HDPE
• Doped with Na to reduce 

afterglow compared to CsI[Tl]
• Deployed in summer 2015
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CsI[Na] Analysis
• Triggers on SNS timing signal (60 Hz)
• 70 µs waveforms split into two regions:

1. Anti-coincidence to understand steady-
state backgrounds

2. Coincidence for signal region
• Calibration done with 241Am and  133Ba 

sources
• Cuts on muon veto, afterglow pulses, 

high energy signals
• Independent analysis by U. Chicago 

and MEPhI
• 1.76 x 1023 protons-on-target (~1/3 g)
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CsI[Na] Result
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CsI[Na] Result
• 2D likelihood fit in energy, time shows a signal 6.7σ
• Consistent with Standard Model at 1σ level 
• 134 ± 22 events observed, 173 ± 48 predicted in SM
• Lots of physics being done with the initial results!



Imperial	College	HEP	Seminar—30	May	2018 27

Weak Mixing Angle
• Possible to measure the 

weak mixing angle at a low Q 
value (~40 MeV)

• Large uncertainties, but 
small detector, ~1 year of 
exposure

• Measuring CE𝜈NS in multiple 
targets will reduce 
uncertainties

[8]	The	Jefferson	Lab	Qweak Collaboration,	Nature	557 (2018)
[9]	D.K.	Papoulias and	T.S.	Kosmas,	Phys.	Rev.	D	97 (2018)	

[9]

[8]
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Neutron Distribution Functions
• Neutron RMS radius can be 

measured with neutrino-
nucleus scattering

RA = 5.5:D.DE8.F	fm
• Neutron skin depth 

(difference between neutron 
and proton RMS radii)

ΔRAJ ≃ 0.7:D.DE8.F	fm
• More exposure and reduced 

uncertainties can improve 
calculations

[10]	M.	Cadeddu,	et.	al,	PRL	120	(2018)

[10]
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Non-Standard Interactions (NSI)
• Non-standard neutrino-

quark interactions could 
affect neutrino mass 
ordering experiments, 
long-baseline neutrino 
oscillation experiments

• NSI can enhance or 
suppress CE𝜈NS rate

• Measurement for different 
nuclei will further 
constraints

[7]	D.	Akimov,	et.	al, arXiv:1803.09183 (2018)

[7]



Imperial	College	HEP	Seminar—30	May	2018 30

Neutrino Magnetic Moment
• Massive neutrinos may have EM 

properties (charge radius, 
magnetic moment)

• Signature would be an 
enhancement to the cross 
section, distorted spectrum
– Proportional to 1/Erecoil at low 

energies
– Z2 coherence

• Low threshold, high resolution 
detectors will provide better 
constraints

[9]	D.K.	Papoulias and	T.S.	Kosmas,	Phys.	Rev.	D	97 (2018)	

[9]
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COHERENT’s Other Detectors
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Liquid Argon
• Used CENNS-10 

detector (from FermiLab)
• 22 kg fiducial volume, 

coated with wavelength-
shifting paint

• Data collection started in 
Dec. 2016, full shielding 
in summer 2017
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Germanium
• Ge detectors offer low 

threshold, high resolution
• Testing existing Ge 

detectors for 
backgrounds

• Recent advances have 
led to detectors with very 
low noise, thresholds
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NaI[Tl]
• Na is COHERENT’s lightest nuclei

– Smaller cross section, but higher energy 
nuclear recoils

• Collaboration has access to several 
tons of NaI[Tl] detectors left over from 
Advanced Spectroscopic Portal 
program
– Crystals not designed to have low 

backgrounds, but can compensate with 
sufficient mass

• Nuclear recoils have large dE/dX—
recoils limited to single crystal
– Coincidence between neighboring 

detectors can be used to reduce 
backgrounds
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Neutrino Cubes
• Palletized neutrino detectors with switchable targets (~700 

kg Fe, 900 kg Pb)
• Large PSD capable liquid scintillators in targets
• Look for neutrons produced in CC and NC events from 

neutrinos with energy above the particle emission threshold
• Muon vetos, water shielding reduce backgrounds
• Pb neutrino cube deployed in fall 2015, Fe in winter 2017
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127I Charged Current
ν' +	 I	 → 	 XeD7O + e:D7O

• Haxton proposed 127I as solar, supernova neutrino detector in 1988
– Measurement can test nuclear models, gA quenching with neutrinos
– Very few neutrino-nucleus interactions measured at these energies

• Previous measurement[12] done at Los Alamos Meson Production 
Facility (LAMPF) using a radiochemical approach
– Large uncertainties in cross section

σ = 2.84	 ± 0.91	 stat ± 0.25	 sys 	×	10-40 cm2

– No information on energy dependence of cross section
– Required 127Xe to be end state of reaction (particle emission threshold in 127Xe 

~7.2 MeV, average neutrino energy at SNS close to 30 MeV)

[12]	J.	R.	Distel,	et.	al,	Phys.	Rev.	C	2003
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NaI𝜈E Detector
• NaI𝜈E (NaI 𝜈-Experiment) 

consists of twenty-four 7.7kg 
NaI[Tl] detectors at the SNS

• Dual purpose: make 
preliminary measurement of 
charged-current cross section 
on 127I, test backgrounds for 
CE𝜈NS deployment for Na

• Operating since summer 
2016, upgraded in fall 2017 to 
reduce backgrounds
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Dual-Gain Bases
• PMTs that came with NaI[Tl] 

detectors show saturation effects 
at high gains

• To simultaneously measure both 
channels, need to measure events 
between 3 keV and 60 MeV

• Dual-gain base designed with 
separate outputs

• Design tested, refined in 2016
• First production run of 16 bases 

recently completed
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Future Outlook
• Collaboration working to reduce systematics (flux, 

quenching factor) for CsI[Na] result, gather more statistics
• Beam recently resumed at SNS, operating at higher power
• Many detectors deployed, expecting results soon
• SNS is a unique neutrino source, interesting neutrino 

physics can be done with it
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