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• Can we directly discover particles from explanations?
• Third Family Hypercharge Model
• General SM×U(1) model
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LHC Upgrades

High Luminosity (HL) LHC: go to 3000 fb−1 (3 ab−1).

High Energy (HE) LHC: Put FCC magnets (16 Tesla rather

than 8.33 Tesla) into LHC ring: roughly twice collision

energy: 27 TeV.
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RK(∗) Measurements
LHCb results from 7 and 8 TeV: q2 = m2

ll.
q2/GeV2 SM LHCb 3 fb−1 σ

RK [1, 6] 1.00± 0.01 0.745+0.090
−0.074 2.6

RK∗ [0.045, 1.1] 0.91± 0.03 0.66+0.11
−0.07 2.2

RK∗ [1.1, 6] 1.00± 0.01 0.69+0.11
−0.07 2.5
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Wilson Coefficients c̄lij
In SM, can form an EFT since mB �MW :

Ol
ij = (s̄γµPib)(l̄γµPjl) .

Leff ⊃
∑
l=e,µ,τ

∑
i=L,R

∑
j=L,R

clij
Λ2
l,ij

Ol
ij ,

=
∑
l=e,µ,τ

VtbV
∗
ts

α

4πv2

(
c̄lLLOl

LL + c̄lLROl
LR

+c̄lRLOl
RL + c̄lRROl

RR

)
⇒ c̄lij = (36 TeV/Λ)2clij.

clij ∼ ±O(1) all predicted by weak interactions in SM.
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Which Ones Work?

Options for a single BSM operator:

• c̄eij operators fine for RK(∗) but are disfavoured by global

fits including other observables.
• c̄µLR disfavoured: predicts enhancement in both RK and

RK∗

• c̄µRR, c̄µRL disfavoured: they pull RK and RK∗ in opposite

directions.
• c̄µLL = −1.33± 0.34 fits well globally1.

1D’Amico et al, 1704.05438.
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Statistics2

c̄µLL
√
χ2
SM − χ2

best

clean −1.33± 0.34 4.1

dirty −1.33± 0.32 4.6

all −1.33± 0.23 6.2

Cµ
9 = (c̄µLL + c̄µLR)/2

√
χ2
SM − χ2

best

clean −1.51± 0.46 3.9

dirty −1.15± 0.17 5.5

all −1.19± 0.15 6.7

Table 1: A fit to flavour anomalies for ‘clean’ (RK, RK∗,

Bs→ µµ) and ‘dirty’ (100 others) observables

2D’Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 1704.05438
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Simplified Models for cµLL
At tree-level, we have:

At loop-level, there are many more possibilities but the

particles are 4π lighter: they are much easier to detect.

Principle of Maximal Pessimism
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Bs− B̄s Mixing

Z ′
s

b̄

s̄

b

ḡsbL
<∼ MZ′

148 TeV
.
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RD(∗) = BR(B−→ D(∗)τν)/BR(B−→ D(∗)µν)
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RD(∗): BSM Explanation

. . . has to compete with

Leff = − 2

Λ2
(c̄Lγ

µbL) (τ̄LγµντL) +H.c.

Λ = 3.4 TeV

A factor 10 lower than required for RK(∗) ⇒ different

explanation?

PAMP⇒we ignore RD(∗).
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Z ′ µµ ATLAS 13 TeV 36 fb−1

ATLAS analysis: look for two track-based isolated µ,

pT > 30 GeV. One reconstructed primary vertex. Keep

only highest scalar sum pT pair3.

m2
µ1µ2

= (pµ1 + pµ2)
(
p1µ + p2µ

)
CMS also have released4 a similar 36 fb−1 analysis.

31707.02424
41803.06292
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High mµµ = 2.4 TeV Event
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ATLAS µµ limits

1607.03669
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Simplified Z ′ Models5

Näıve model: only include couplings to b̄s/bs̄ and µ+µ−

(less model dependent).

Lmin.
Z′ ⊃

(
gsbLZ

′
ρs̄γ

ρPLb+ h.c.
)

+ gµµL Z
′
ρµ̄γ

ρPLµ ,

which contributes to the Oµ
LL coefficient with

c̄µLL = − 4πv2

αEMVtbV ∗ts

gsbL g
µµ
L

M 2
Z′
,

⇒ gsbL g
µµ
L

(
36 TeV

MZ′

)2

= −1.33± 0.34 (clean).

5BCA, Queiroz, Strumia, Sun arXiv:1511.07447
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Simplified Z ′ Models6

LZ′f =
(
Q′Liλ

(Q)
ij γ

ρQ′Lj + L′Liλ
(L)
ij γ

ρL′Lj

)
Z ′ρ,

After CKM mixing of V = V
u
†
L
VdL and PMNS U = V †νLVeL,

L =
(
uLV Λ(Q)V †γρuL + dLΛ(Q)γρdL+

nLUΛ(L)U †γρnL + eLΛ(L)γρeL

)
Z ′ρ,

where

Λ(Q) ≡ V †dLλ
(Q)VdL, Λ(L) ≡ V †eLλ

(L)VeL.
6BCA, Corbett, Dolan, You, arXiv:1810.02166
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Limiting Cases

Mixed Up Model: all quark mixing is in left-handed ups

Λ(Q) = gbs

 0 0 0

0 0 1

0 1 0

 , Λ(L) = gµµ

 0 0 0

0 1 0

0 0 0

 ,

Mixed Down Model: all quark mixing is in left-handed

downs

Λ(Q) = gttV
†·

 0 0 0

0 0 0

0 0 1

·V, Λ(L) = gµµ

 0 0 0

0 1 0

0 0 0

 ,
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⇒ gbs = V ∗tsVtbgtt = 0.04gtt: the quark couplings are

weaker than the leptonic ones
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Widths: pick gbs to fit anomalies at each point.
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During the 1990s

We wanted to be the Grand Architects, searching for

the string model to rule them all
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During the 2010s

We are happy with any beyond the Standard Model

roof
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Third Family Hypercharge
Model

Add complex SM singlet scalar θ and gauged U(1)F :

SU(3)× SU(2)L × U(1)Y × U(1)F
〈θ〉 ∼Several TeV

SU(3)× SU(2)L × U(1)Y
〈H〉 ∼246 GeV

SU(3)× U(1)em

• SM fermion content
• anomaly cancellation
• 0 F charges for first two generations
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Unique Solution

FQ′i = 0 FuR′i = 0 FdR′i = 0 FL′i = 0

FeR′i = 0 FH = −1/2 FQ′3 = 1/6 Fu′R3
= 2/3

Fd′R3
= −1/3 FL′3 = −1/2 Fe′R3

= −1 Fθ 6= 0

L = YtQ3
′
LHt

′
R + YbQ′3LH

cb′R + YτL3
′
LH

cτ ′R +H.c.,

• First two families massless at renormalisable level
• Their masses and fermion mixings generated by small

non-renormalisable operators

This explains the hierarchical heaviness of the third family

and small CKM angles
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Z −X mixing

Because FH = −1/2, Z −X mix:

M2
N =

v2

4

 g′2 −gg′ g′gF
−gg′ g2 −ggF
g′gF −ggF g2

F(1 + 4F 2
θ r

2)

 −Bµ

−W 3
µ

−Xµ

• v ≈ 246 GeV is SM Higgs VEV
• gF = U(1)F gauge coupling
• r ≡ vF/v � 1, where vF = 〈θ〉
• Fθ is F charge of θ field
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Z −X mixing angle

sinαz ≈
gF√
g2 + g′2

(
MZ

M ′
Z

)2

� 1.

This gives small non-flavour universal couplings to the Z

boson propotional to gF and:

Zµ = cosαz
(
− sin θwBµ + cos θwW

3
µ

)
+ sinαzXµ,
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LXψ = gF

(
1

6
uLΛ(uL)γρuL +

1

6
dLΛ(dL)γρdL−

1

2
nLΛ(nL)γρnL −

1

2
eLΛ(eL)γρeL+

2

3
uRΛ(uR)γρuR−

1

3
dRΛ(dR)γρdR − eRΛ(eR)γρeR

)
Z ′ρ,

Λ(I) ≡ V †I ξVI, ξ =

 0 0 0

0 0 0

0 0 1


Z ′ couplings, I ∈ {uL, dL, eL, νL, uR, dR, eR}
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Example Case

Take a simple limiting case:

VuL = 1 ⇒ VdL = V , the CKM matrix. VuR = VdR =

VeR = 1 for simplicity and the ease of passing bounds.

VdL =

 1 0 0

0 cos θsb − sin θsb
0 sin θsb cos θsb

 , VeL =

 1 0 0

0 Uµ2 Uµ3

0 Uτ2 Uτ3

 ,

VeR = 1⇒ VνL = VeLU
†, where U is the PMNS matrix.
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Important Z ′ Couplings

gF

1

6
dL

 0 0 0

0 sin2 θsb
1
2 sin 2θsb

0 1
2 sin 2θsb cos2 θsb

 /Z
′

 dL
sL
bL

+

−1

2
eL

 0 0 0

0 |Uτ2|2 U ∗τ2Uτ3

0 Uτ2U
∗
τ3 |Uτ3|2

 /Z
′

 eL
µL
τL




|Uτ2| ≈ 0.6, |Uτ3| ≈ 0.7. Put | sin θsb| = |Vts| = 0.04, so

gµµ� gbs, which helps us survive Bs −Bs constraint
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Example Case Predictions

Mode BR Mode BR Mode BR

tt̄ 0.42 bb̄ 0.12 νν̄ ′ 0.08

µ+µ− 0.08 µ±τ∓ 0.03 τ+τ− 0.30

ATLAS7 BR(Z → µτ) < 1.3 × 10−5 at 95%, results in

gF ≤MZ′/(0.8 TeV), less stringent than LEP LFU

g2
F

(
MZ

MZ′

)2

≤ 0.004⇒ gF ≤
MZ′

1.3 TeV
.

It’s worth LHCb, BELLE II chasing BR(B → K(∗)µ±τ∓).

7arXiv:1804.09568
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Quantum Field Theory
Anomalies

A ≡
∑
LH fi

Y 3
i −

∑
RH fi

Y 3
i
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Anomaly equations

4 linear ones, and
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Look for solutions in rational numbers. Also, re-scaling

invariance means that can re-scale to integers.

Solve case for 1 or 2 families of charges analytically,

using old Diophantine methods. For 3 families, wrote a

efficient computer program to search through (2Qmax+1)18

sets of charges for SM and SM+3νR, find all those that

solve the anomaly equations.
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eg: Qmax = 1. Charges within a species are listed in

increasing order.
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SM solutions
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An Anomaly-Free Atlas

The atlas is available for public use:

http://doi.org/10.5281/zenodo.1478085

We did various checks (are solutions that were found

in the literature before present, and are classes that have

been banned not present?)

BCA, Davighi, Melville, arXiv:1812.04602
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Conclusions

The answers to the questions
raised by RK(∗) may provide a
direct experimental probe into
the flavour problem.
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Other conclusions

• The answers to the questions raise by RK(∗) may provide

a direct experimental probe into the flavour problem.
• Focused on tree-level explanations of RK(∗) as they are

usually harder to discover: Z ′ and leptoquarks.
• News on R

(∗)
K expected in 2019. At the current central

value, Belle II can reach 5σ by mid 2021. LHCb’s RK∗

would be close to8 5σ by 2020.
• RK(∗) ⇒ HL-LHC, HE-LHC and FCC-hh

8Albrecht et al, 1709.10308
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Backup
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SM + 3 νR: number of solutions etc
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Constraints on Example Case
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Widen allowed white sliver with less strong assumptions?
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Known Solutions
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13 TeV ATLAS 3.2 fb−1 µµ
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LHCb Detector II9

9 Picture from CERN Courier April 2018
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LHCb Detector10

10Diaz talk 53rd EW Rencontres de Moriond 2018
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Neutrino Masses

At dimension 5:

LSS =
1

2M
(L′3

T
Hc)(L′3H

c),

but if we add RH neutrinos, then integrate them out

LSS = 1/2
∑
ij

(L′iH
c)(M−1)ij(L

′
jH

c),

where now (M−1)ij may well have a non-trivial structure.

If (M−1)ij are of same order, large PMNS mixing results.
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Froggatt Neilsen Mechanism11

A means of generating the non-renormalisable Yukawa

terms, e.g. Fθ = 1/6:

YcQ′L
(F=0)
2 H (F=−1/2)c′R

(F=0) ∼ O
[(〈θ〉

M

)3

Q′L2Hc
′
R

]

〈θ∗〉 〈θ∗〉 〈θ∗〉〈H0(F=−1/2)〉

Q
′(+1/6)
L Q

′(+2/6)
L Q

′(+3/6)
L

Q
′(0)
L2

c
′(0)
R2M M M

eg
(
〈θ〉
M

)
∼ 0.2

⇒ Yc/Yt ∼ 1/100

11C Froggatt and H Neilsen, NPB147 (1979) 277
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B0→ K∗0(→ K+π−)µ+µ−
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P ′5

P ′5 = S5/
√
FL(1− FL), leading form factor uncertainties

cancel. Tension already in 1 fb−1 and confirmed in 3 fb−1

LHCb-CONF-2015-002
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Hadronic Uncertainties
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LQ Models

Scalar12 S3 = (3̄, 3, 1/3) of SU(2)×SU(2)L×U(1)Y :

L = . . .+ y3QLS3 + yqQQS
†
3 + h.c.

Vector V1 = (3̄, 1, 2/3) or V3 = (3, 3, 2/3)

L = . . .+ y′3V
µ

3 Q̄γµL+ y1V
µ

1 Q̄γµL+ y′1V
µ

1 d̄γµl + h.c.

⇒ c̄µLL = κ
4πv2

αEMVtbV ∗ts

|yi|2
M 2

.

κ = 1,−1,−1 and y = y3, y1, y
′
3 for S3, V1, V3.

12Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D’Amico et al
1704.05438.
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CMS 8 TeV 20fb−1 2nd gen
CMS-PAS-EXO-12-042: M > 1.07 TeV.
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Other Constraints On LQs
Note that the extrapolation is very rough for pair

production. Fix M = 2MLQ, assuming they are produced

close to threshold: ∆ = 0.1.

Bs − B̄s mixing is at one-loop:

Lb̄sb̄s = k
|ybµy∗sµ|2

32π2M 2
LQ

(
b̄γµPLs

)
(s̄γµPLb) + h.c.

y = y3, y1, y
′
3 and k = 5, 4, 20 for S3, V1, V3.

Data ⇒ cbbLL < 1/(210TeV)2. Recently, some13 used a

Fermilab MILC lattice determination of fB which makes

the SM differ from experiment at the 2σ level.
13Lenz et al, 1712.06572
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8 TeV CMS 20fb−1 2nd gen
LQ

Up to 14 TeV LQs with 100 TeV 10 ab−1 FCC-hh. MLQ < 41 TeV.
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LQ Mass Limits

S3 41 TeV

V1 41 TeV

V3 18 TeV

From Bs − B̄s mixing and fitting b−anomalies.

Pair production has a reach up to 12 TeV.

The pair production cross-section is insensitive to the

representation of SU(2) in this case.
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HL-LHC/HE-LHC LQs
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Bs→ µ+µ−

Lattice QCD provides important input to

BR(Bs→ µµ)SM = (3.65± 0.23)× 10−9,

BR(Bs→ µµ)exp) = (3.0± 0.6)× 10−9.

BR(Bs→ µµ)

BR(Bs→ µµ)SM
=

∣∣∣∣ (c̄µLL + c̄µRR − c̄µLR − c̄µRL)tot

(c̄µLL + c̄µRR − c̄µLR − c̄µRL)SM

∣∣∣∣2 .
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Other Flavour Models

Realising14 the vector LQ solution based on PS =

[SU(4) × SU(2)L × SU(2)R]3. SM-like Higgs lies in

third generation PS group, explaining large Yukawas

(others come from VEV hierarchies). Get U(2)Q × U(2)L
approximate global flavour symmetry.

14Di Luzio Greljo, Nardecchia arXiv:1708.08450, Bordone, Cornella, Fuentes-
Martin, Isidori, arXiv:1712.01368
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Single Production of LQ

Depends upon LQ coupling as well as LQ mass

Current bound by CMS from 8 TeV 20 fb−1: MLQ > 660

GeV for sµ coupling of 1. We include b as well from

NNPDF2.3LO (αs(MZ) = 0.119), re-summing large logs

from initial state b. Integrate σ̂ with LHAPDF.
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σs for S3 with ysµ = ybµ = y.
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Single LQ Production σ

σ̂(qg → φl) =
y2αS
96ŝ

(
1 + 6r − 7r2 + 4r(r + 1) ln r

)
,

where15 r = M 2
LQ/ŝ and we set ysµ = ybµ = y.

15Hewett and Pakvasa, PRD 57 (1988) 3165.
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