The ALICE Time Projection Chamber and its upgrade

Alexander Deisting

$30^{\rm th}$ of January, 2019

Coming to terms with naturalness Individual recognition in particle physics Twin bids for a 100 km collider

- ► A short introduction to heavy ion-collisions
- ► The ALICE detector at LHC
- A TPC at LHC: The ALICE Time Projection Chamber
- Upgrade of the ALICE Time Projection Chamber
- Summary

- There are different phases of matter governed by the strong interaction at different temperature T and chemical potential µ
- Quark-Gluon Plasma (QGP) phase:
 - Quarks and gluons are no longer confined into hadrons
 - Only the bare quark masses remain
- Nucleus-nucleus collisions are tool to study different regions of the phase diagram

- \blacktriangleright Nuclei collide and after $\tau \sim 1\,{\rm fm/c}$ the QGP is formed
- (Light) quarks and gluons reach thermal equilibrium
- The QGP expands and cools down

- ▶ At $T \sim 155$ MeV quarks and gluons are again confined into hadrons → phase transition to a hadron gas
- Non stable hadrons decay and with further expansion (elastic) collisions seize

 \Rightarrow The remaining hadrons stream freely into the detector

Requirements on detectors for heavy ion collisions

- Able to record events with high particle multiplicities
- Capable of recording particles down to low momentum
- Good tracking capability and momentum resolution
- Ability to identify the tracked particles

ALICE Time Projection Chamber

ALICE – A Large Ion Collider Experiment

- Dedicated heavy ion experiment at the LHC
- Designed to cope with high particle multiplicities and to track and identify low momentum particles (~ 200 MeV/c)
- Employs a Time Projection Chamber (TPC) as main tracking and particle identification detector in the central barrel

- Dedicated heavy ion experiment at the LHC
- Designed to cope with high particle multiplicities and to track and identify low momentum particles (~ 200 MeV/c)
- Employs a Time Projection Chamber (TPC) as main tracking and particle identification detector in the central barrel

ALICE time projection chamber

- About 90 m³ gas volume filled with Ar-CO₂ (88-12) at atmospheric pressure
- Ne-CO₂-N₂ (90-10-5) and Ne-CO₂ (90-10) have been used as well
- ▶ Drift field of 400 V cm^{-1} (→ central cathode at 100 kV)
- Maximal electron drift time: \leq 100 µs
- Multi Wire Proportional Chambers (MWPCs) with gated read-out
- Operated successfully in LHC Run 1 and Run 2

- About 90 m³ gas volume filled with Ar-CO₂ (88-12) at atmospheric pressure
- Ne-CO₂-N₂ (90-10-5) and Ne-CO₂ (90-10) have been used as well
- ▶ Drift field of 400 V cm⁻¹ (\rightarrow central cathode at 100 kV)
- Maximal electron drift time: \leq 100 µs
- Multi Wire Proportional Chambers (MWPCs) with gated read-out
- Operated successfully in LHC Run 1 and Run 2

ALICE time projection chamber

- About 90 m³ gas volume filled with Ar-CO₂ (88-12) at atmospheric pressure
- Ne-CO₂-N₂ (90-10-5) and Ne-CO₂ (90-10) have been used as well
- ▶ Drift field of 400 V cm⁻¹ (\rightarrow central cathode at 100 kV)
- Maximal electron drift time: \leq 100 µs
- Multi Wire Proportional Chambers (MWPCs) with gated read-out
- Operated successfully in LHC Run 1 and Run 2

ALICE TPC multi wire proportional chambers

- ▶ 18 Inner and Outer ReadOut Chambers (IROCs/OROCs) per side
- Each has three wire planes: Anode wires, cathode wires and gating grid wires
- \blacktriangleright Pad sizes: 4 \times 7.5 mm², 6 \times 10 mm² and 6 \times 15 mm², in total 160 pad rows

ALICE TPC Multi wire proportional chambers

- An alternating potential is applied to switch the gating grid closed, *i.e.* U_{GG} = U₀ ± ΔU
- In the closed configuration the gating grid is neither transparent to charge carriers from the drift volume nor from the readout chamber
- The grid is kept closed for 200 µs to efficiently block the ions from the gas amplification
- Together with the maximum drift time of $\sim 100 \, \mu$ s, the closing time of the grids limits the readout rate to $\sim 3 \, \text{kHz}$

- Deep Underground Neutrino Experiment (DUNE) decided to have a High Pressure gaseous TPC as part of their near detector
- The particular cylindrical shape is driven by the fact that they intend to buy the ALICE TPC readout chambers
- Therefore some of you may see the old ALICE chambers again

Laser calibration system

- An ultra-violet laser is guided into the TPC, split and produces tracks at defined positions
- Stray-light hits the cathode and ejects photo electrons which drift the full drift distance

30.01.2019

Some performance figures

Material budget

▶ 4.1 % X_0 at the $\eta \sim$ 0 region

$\mathrm{d}\varepsilon/\mathrm{d}x$:

- ▶ 5.2% in pp collisions
- ▶ 6.5% in PbPb collisions

Transverse momentum:

- \sim 6 % for particles with $p \sim 10 \text{ GeV/c}$
- < 1 % for particles with $p \sim 1 \, {\rm GeV/c}$

Upgrade of the ALICE Time Projection Chamber

- LHC run 3: Increased rate of PbPb collisions of up to 50 kHz
- ► ALICE goal: Examining every event at this rate

- ► At 50 kHz there are on average 5 events piled up inside the drift volume
- ▶ The gated readout of the MWPCs is no longer feasible as is their un-gated operation
- New readout chambers are needed which allow for continuous read-out and preserve the current TPC's performance

- ► At 50 kHz there are on average 5 events piled up inside the drift volume
- ▶ The gated readout of the MWPCs is no longer feasible as is their un-gated operation
- New readout chambers are needed which allow for continuous read-out and preserve the current TPC's performance

Gas Electron Multiplier foils

- 50 µm polyimide foils with a 5 µm copper cladding on both sides
- Hexagonal hole pattern with a standard pitch of 140 µm

Requirements on the ALICE TPC GEM stacks:

- Provide an Ion Back Flow (IBF) of less than 1 % in order to keep the space charges in the TPC at a tolerable level
- ▶ Preserve the momentum and $d\varepsilon/dx$ resolution of the old chambers ($\frac{\sigma_{\varepsilon}}{\varepsilon_{55}} \leq 12\%$)
- Stable operation at LHC Run 3 conditions

•	•	•	•	•	•	•	•	•	•	•
Ó	• •		• •	• •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
• •	•		•	• •	•	•	•	•	•	•
100000000000000000000000000000000000000										
•	Ò	•	•	•	•	•	•	•	•	•

GEM cross section with simulation:

IBF & effective gain measurement

- Irradiate a detector with a source (all voltages in the GEM stack at zero)
- Measure the current on the cathode (*I*_{Primary}) and on the top side of GEM1
- \rightarrow Primary ionisation
- Apply desired voltage to the stack
- \blacktriangleright Current measurement on cathode (I_C) and anode (I_A)
- $\rightarrow~G_{\rm Eff}=\textit{I}_{\rm A}/\textit{I}_{\rm Primary},~{\rm IBF}=\textit{I}_{\rm C}/\textit{I}_{\rm Primary}$

If e.g. a $^{55}{\rm Fe}$ is used, the $\mathit{I}_{\rm Primary}$ can be compared to the expected primary ionisations

Energy resolution

- Set desired voltage settings
- Record a pulse-height spectrum from the signals on the anode plane

ALICE TPC upgrade (A. Deisting)

- Low gain in GEM1
- Trap ions from GEM foils with high gain in the transfer regions
- $\rightarrow\,$ Maximal misalignment between GEM foils
- $\rightarrow\,$ Specially tuned voltage settings

90° relative to the other foil

No rotation of the two foils

$\Delta U_{ m GEM1}$	$\Delta U_{ m GEM2}$	$\Delta U_{ m GEM3}$	$\Delta U_{ m GEM4}$	$E_{ m D}$	E_{T1}	E_{T2}	E_{T3}	$E_{ m Ind}$
270 V	230 V	288 V	359 V	$0.4 \frac{kV}{cm}$	$4\frac{kV}{cm}$	$4\frac{kV}{cm}$	$0.1 \frac{kV}{cm}$	$4\frac{kV}{cm}$

ALICE TPC GEM stacks:

- Quadruple GEM stacks
- Position 1 & 4: Standard GEMs
- Position 2 & 3: Large pitch (280 μm) GEMs
- \blacktriangleright Each GEM mask rotated by 90 $^\circ$
- Gain 2000
- ► Gas mixture: Ne-CO₂-N₂

Performance: Energy resolution vs IBF

- Quadruple GEM stacks (S-LP-LP-S)
- Done with small prototypes (10 cm × 10 cm GEMs)
- ► 225 V $\leq \Delta U_{\rm GEM1} \leq$ 315 V, keeping the gain at 2000
- $E_{T1} \& E_{Ind} = 4 \text{ kV cm}^{-1},$ $E_{T2} = 2 \text{ kV cm}^{-1},$ $E_{T3} = 0.1 \text{ kV cm}^{-1}$
- ⇒ Optimisation of energy resolution and IBF are competing effects

New readout electronics necessary to accommodate for:

- Different signal polarity
- Sample data continuously and ship if of detector
- Higher readout rate

SAMPA ASIC has been developed in a combined effort by the TPC and muon chamber groups

FECs
$$\xrightarrow{3.3 \text{ TB/s}}$$
 CRU $\xrightarrow{500 \text{ GB/s}}$ **Online farm** $\xrightarrow{10 \text{ GB/s}}$ **Tape**

- 32 channels, 10 bit
 5 MHz sampling
 frequency
- Positive or negative input charge
- Programmable conversion gains and peaking times
- Readout modes: triggered or continuous
- Optional digital signal processing

The ALICE O2 - Online-Offline - project

- Merge the data acquisition with the offline part: Calibration and reconstruction.
 In case of the TPC the following steps happen synchronously with the data taking:
 - Preliminary calibration, online cluster finding
 Tracking
- Decoupled from the data taking the full calibration will be applied and then the data permanently stored
- This will allow un-triggered readout of the experiment and the latter selection of interesting events

Towards the commissioning of the upgraded ALICE Time Projection Chamber

- Several institutes in the US and in Europe are participating
- There is a dedicated quality assurance for the different items, e.g
 - Leakage current tests for the GEM foils
 - Gas tightness tests for the chamber bodies
 - Connectivity tests for the pad-planes
- The assembled readout chambers undergo again dedicated tests

GEM foil mapping for the ALICE TPC upgrade

Scan of the inner hole diameter of a GEM foil and a gain scan of the very same foil.

Readout chamber acceptance tests

- Gas tightness test (Required leak rate: < 0.5 mL h⁻¹)
- GEM capacitance and conductance measurement
- Leakage current measurement at 250 V between the GEM electrodes (Required leakage current: < 1 nA)</p>
- Gain curve measurement and gain uniformity scan (Uniformity better than 20 % required)
- Ion backflow measurement (IBF < 1%, Uniformity < 20%)</p>
- Energy resolution test ($\frac{\sigma_{\varepsilon}}{\varepsilon_{55_{\mathrm{Fe}}}} \leq 12\%$)
- Stability measurement with full X-ray irradiation (10 nA cm⁻² current at the pad-plane)

Readout chamber acceptance tests

- Gas tightness test (Required leak rate: < 0.5 mL h⁻¹)
- GEM capacitance and conductance measurement
- Leakage current measurement at 250 V between the GEM electrodes (Required leakage current: < 1 nA)
- Gain curve measurement and gain uniformity scan (Uniformity better than 20 % required)
- Ion backflow measurement (IBF < 1%, Uniformity < 20%)</p>
- Energy resolution test $\left(\frac{\sigma_{\varepsilon}}{\varepsilon_{55_{\mathrm{Fe}}}} \leq 12\%\right)$
- Stability measurement with full X-ray irradiation (10 nA cm⁻² current at the pad-plane)

30.01.2019

Readout chamber test at LHC

- Four inner and outer readout chambers are installed in the ALICE cavern
- The chambers are located at very forward rapidity, $\sim 5 \text{ m}$ from the interaction point
- They are operated with the nominal gas-mixture and the future ALICE TPC high voltage supply schema
- The purpose of this test is to verify the electric stability of the chambers under beam conditions

Project status - late 2018

Mass production phase of readout chambers – GSI:

Chamber storage at CERN:

LHC Page1	Fill: 7495	E: 0 Z (GeV		29-0	1-19	18:05:19
	SHU	TDOWN:	NO BEA	١M			
			BIS status and	SMP flags		B1	B2
Comments (25-	Jan-2019 09:21:50)		Link Sta	tus of Beam P	ermits 🛛 👖	alse	faise
			Glo	oal Beam Perm	nit <mark>f</mark>	alse	false
	LS2			f	alse	faise	
			Beam Presence			alse	false
			Moveabl	e Devices Allo	wed in	aise	false
			3	table Beams		arse	Taise
AFS: 75_150ns_7	33PD_/33_/02_468_42t	opi_20inj	PM Status B1	ENABLED	PM Status B2	EN	ARLED

Summary

- ALICE at LHC employs a TPC as main tracking and PID detector
- The ALICE TPC has been successfully operated in LHC run 1 and 2
- The TPC will be upgraded in order to exploit the full PbPb interaction rate of 50 kHz during LHC run 3
- New readout chambers employing stacks of four GEMs have been developed, which:
 - Allow for continuous read-out
 - Preserve the performance of the current TPC
- The mass production of readout chambers done
- Commissioning of the upgraded TPC is approaching

Backup

Tests with prototype and final design chambers show:

- ☑ Less than 1% IBF in order to keep the space charges in the TPC manageable
- \checkmark Preserve the momentum and $\mathrm{d}\epsilon/\mathrm{d}x$ resolution of the old chambers
- - SPS beam-time: (6 ± 4) × 10⁻¹² discharges per incoming hadrons
 - Comparing to 5 × 10⁻¹¹ particles crossing a GEM stack (on average) during 1 month of lead-lead data taking at 50 kHz

Currently: mass production phase of readout chambers

ALICE TPC upgrade (A. Deisting)

30.01.2019

		RUN 1 (measured)	RUN 3 (requirement)	
Signal polarity		Pos	Neg	
Detector capacitance (range)	(pF)	12 - 33.5	12 - 33.5	
S:N ratio for MIPs (IROC)		14:1	20:1	
(OROC $6 \times 10 \mathrm{mm^2}$ pads)		20:1	30:1	
(OROC $6 \times 15 \text{ mm}^2 \text{ pads}$)		28:1	30:1	
MIP signal	(fC)	$1.5 - 3^{14}$	2.4 - 3.2	
System noise (at 18.5 pF, incl. ADC)		670 e	670 e	
PASA conversion gain (at 18 pF)	(mV/fC)	12.74	20 (30)	
PASA return to baseline	(ns)	< 550	< 500	
PASA average baseline value	(mV)	100	100	
PASA channel-to-channel baseline variation (σ)	(mV)	18	18	
PASA shaping order	(111)	4	4	
PASA peaking time	(ns)	160	160 (80)	updated
PASA crosstalk	(113)	$< 0.1 \%^{15}$	< 0.2%	
PASA integrated non-linearity		0.2%	< 1%	
ENC (PASA only at 12 pF)		385 e	385 e	
Erie (montolity, at 12 pr)		0000	5050	
ADC voltage range (differential)	(V)	2	2	SAMPA: 2.2 V
ADC linear range (differential)	(fC)	160	100 (67)	
ADC number of bits		10	10	
ADC sampling rate	(MHz)	10 (2.5, 5, 20)	10 (20)	TPC: 5 MHz
Power consumption (analog & digital)	(mW/ch)	35	< 35	