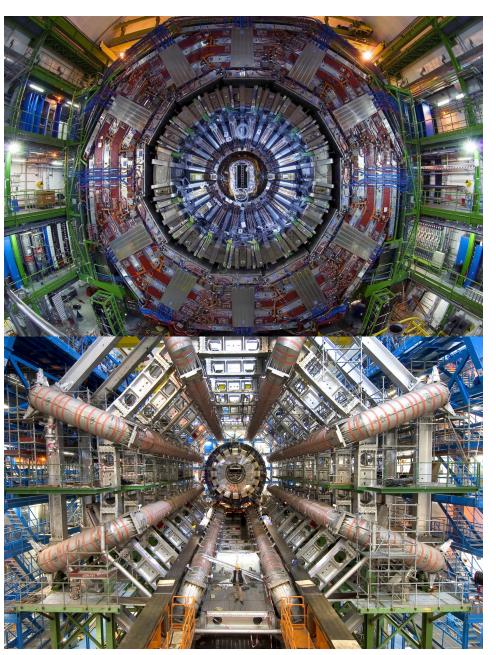
Probing the Higgs CP Nature in the $H \rightarrow \tau \tau$ Decay

Mohammad Hassan Hassanshahi

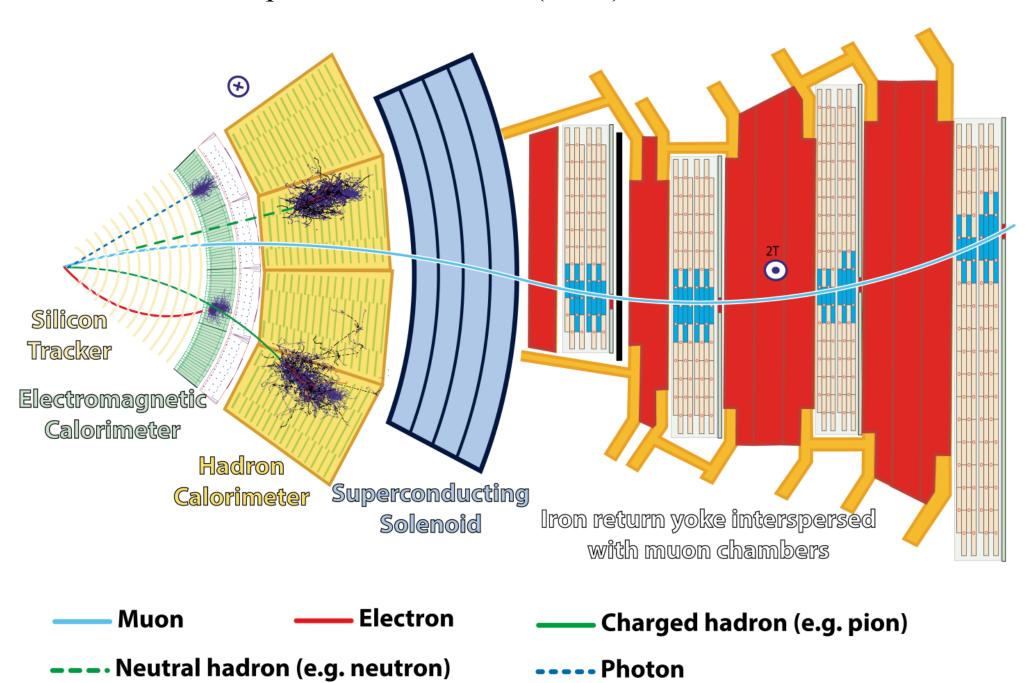
Supervisors: Dr. Dave Colling, Dr. Paul Dauncey

Imperial College London


26 Feb2019

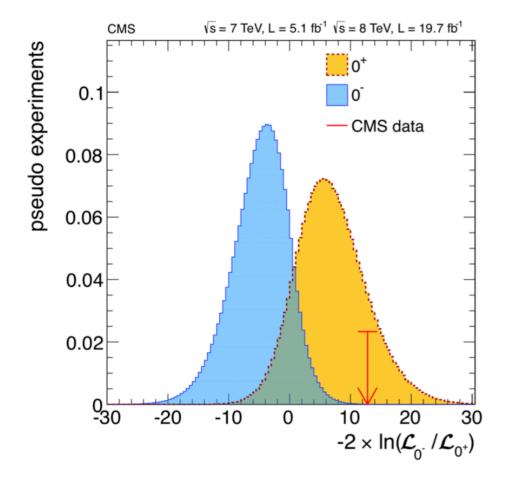
The Large Hadron Collider (LHC)

LHC Detectors


CMS

LHCb

ATLAS


ALICE

The Compact Muon Solenoid (CMS) cross sectional view

Motivation

- Measuring properties of the Higgs: CP nature
- Already measured in $H \rightarrow ZZ^* \rightarrow 4l$
- CMS & ATLAS data disfavored pseudoscalar component of the Higgs
- No surprise! If pseudoscalar component exists, subdominant in $H \rightarrow ZZ^*$

Motivation

- But comparable level contribution in H o f ar f
- Yukawa Lagrangian for τ and Higgs interaction:

$$L_Y = -g_\tau(\cos\phi_\tau\bar{\tau}\tau + \sin\phi_\tau\bar{\tau}i\gamma_5\tau)h$$

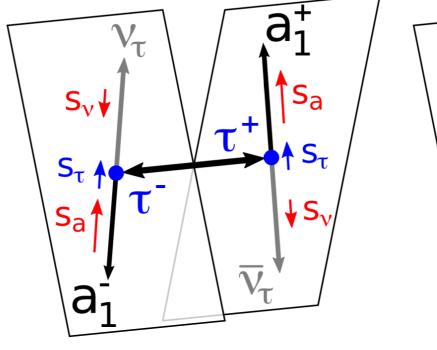
- $\phi_{\tau} = 0$ => pure scalar
- $\phi_{\tau} = \pi/2 \implies$ pure pseudoscalar
- $0 < \phi_{\tau} < \pi/2$ => mixing state
- ullet Final goal: measuring $\phi_{ au}$

Measurement method

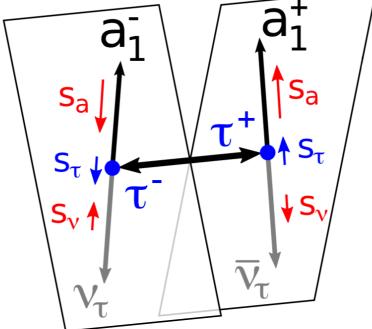
Higgs: J=0

So for
$$|\tau^+\tau^-\rangle$$
:
if $S=1 \Rightarrow L=1$
if $S=0 \Rightarrow L=0$

$$CP |\tau^+\tau^-\rangle = (-1)^{L+S} \cdot (-1)^{L+1} |\tau^+\tau^-\rangle = (-1)^{2L+S+1} |\tau^+\tau^-\rangle = (-1)^{S+1} |\tau^+\tau^-\rangle$$

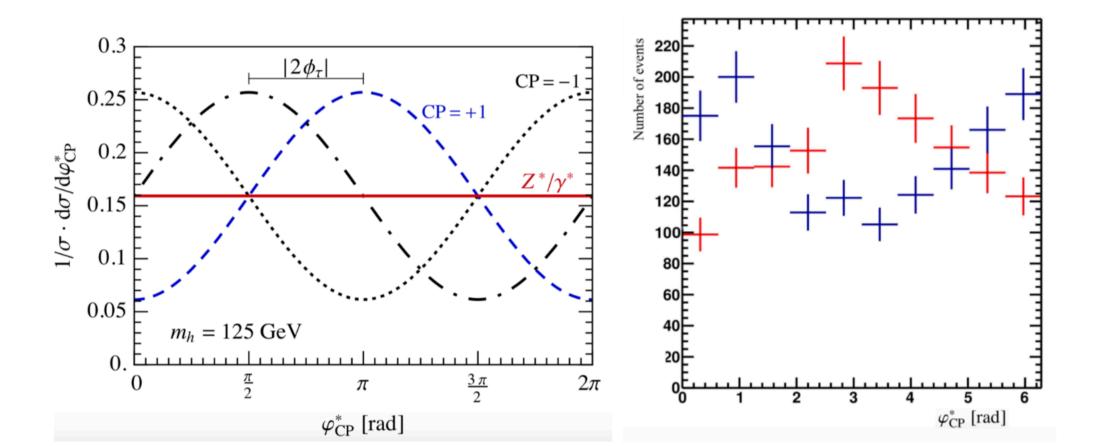

$$S = 0 \implies CP = -1 \implies Pseudoscalar$$

$$S = 1 \implies CP = 1 \implies Scalar$$


Problem reduced to: measuring the spin

Measurement method

- Measuring $|\tau^+\tau^-\rangle$ spin
- Parity violated in weak interaction (neutrino handedness pinned down)
- So the angle between decay planes is sensitive to CP


(a) Decay planes for S = 1 (scalar).

(b) Decay planes for S = 0 (pseudoscalar).

Results and Future work

- The angle between the planes discriminates different CP states
- Monte Carlo on the recent CMS data shows the discrimination power
- Further improvement on sensitivity needed to decrease statistics error

Conclusion

• $H \to \tau^+\tau^-$ decay can unravel the CP nature of the Higgs

• The angle between the decay planes of the taus is sensitive to the Higgs CP

• We will soon analyze the recent CMS data to measure the CP of the Higgs in $H \to \tau^+ \tau^-$ for the first time!

Thank you!

Backup

Tau decay modes

Decay mode	Meson resonance	B [%]
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$		17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- ightarrow ext{h}^- u_ au$		11.5
$ au^- ightarrow \mathrm{h}^- \pi^0 u_ au$	$\rho(770)$	26.0
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_ au$	a ₁ (1260)	9.5
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- u_ au$	a ₁ (1260)	9.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- \pi^0 u_ au$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

1 prong ~47% 3 prongs ~15%