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Neutrino oscillations
and

what we can learn from them
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Neutrino oscillations

νμ
μ

W
Source e

W
Detector

νe

Create neutrinos in one lepton flavor state,
observe in another (possibly different) state
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Neutrino oscillations

νμ
μ

W
Source e

W
Detector

νe

Create neutrinos in one lepton flavor state,
observe in another (possibly different) state

[
νe
νμ

ντ
]=[

U e1 U e2 U e 3

Uμ 1 Uμ2 U μ3

U τ1 U τ2 U τ3
][ν1

ν2
ν3

]
Flavor states are not energy 

(mass) eigenstates

nonzero transition probabilities 
since masses are different
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Neutrino oscillations

νμ
μ

W
Source e

W
Detector

νe

Create neutrinos in one lepton flavor state,
observe in another (possibly different) state

[
νe
νμ

ντ
]=[

U e1 U e2 U e 3

Uμ 1 Uμ2 U μ3

U τ1 U τ2 U τ3
][ν1

ν2
ν3

]
Flavor states are not energy 

(mass) eigenstates

nonzero transition probabilities 
since masses are different

Not predicted by the 
Standard Model!

Neutrino oscillations can potentially ask 
and answer BSM questions...
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Neutrino oscillations

νμ
μ

W
Source e

W
Detector

νe

Create neutrinos in one lepton flavor state,
observe in another (possibly different) state

Flavor states are not energy 
(mass) eigentstates

arXiv:1212.6374

[
νe
νμ

ντ
] [

ν1
ν2
ν3

]=

L/E (arb. units)

ν
μ

ν
τ

ν
e
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Neutrino oscillations: mixing parameters

[
νe
νμ

ντ
] [

ν1
ν2
ν3

]=

[
cos(θ12) sin (θ12) 0

−sin(θ12) cos(θ12) 0
0 0 1 ][

cos(θ13) 0 sin(θ13)e
−iδ

0 1 0
−sin(θ13)e

iδ 0 cos(θ13)
][

1 0 0
0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)
]U =

“Atmospheric” sector: 
best measured in experiments 

where ν
μ
 disappearance 

dominates: νs from cosmic ray 
muon decays; accelerators

“Solar” sector:
best measured in experiments 

where ν
e 
disappearance 

dominates over long distances: 
νs from solar nuclear fusion

“Reactor” sector:
θ

13
 best measured in experiments 

where ν
e 
disappearance dominates 

over short distances: νs from nuclear 
reactors (more on δ shortly)
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Neutrino oscillations: mixing parameters

[
νe
νμ

ντ
] [

ν1
ν2
ν3

]=

“Reactor” sector:
δ accessible

via ν
e
 appearance

in accelerator expts. 

[
cos(θ12) sin (θ12) 0

−sin(θ12) cos(θ12) 0
0 0 1 ][

cos(θ13) 0 sin(θ13)e
−iδ

0 1 0
−sin(θ13)e

iδ 0 cos(θ13)
][

1 0 0
0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)
]U =
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Neutrino oscillations: mixing parameters

[
νe
νμ

ντ
] [

ν1
ν2
ν3

]=

[
cos(θ12) sin (θ12) 0

−sin(θ12) cos(θ12) 0
0 0 1 ][

1 0 0
0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)
]U =

“Reactor” sector:
δ accessible

via ν
e
 appearance

in accelerator expts. 

Big question:
Is δ nonzero?

(If it is, neutrinos—and thus 
leptons—violate CP symmetry!

… leptogenesis??)

[
cos(θ13) 0 sin(θ13)e

−iδ

0 1 0
−sin(θ13)e

iδ 0 cos(θ13)
]
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Neutrino oscillations: mixing parameters

[
νe
νμ

ντ
] [

ν1
ν2
ν3

]=

[
cos(θ12) sin (θ12) 0

−sin(θ12) cos(θ12) 0

0 0 1][
cos(θ13) 0 sin(θ13)e

−iδ

0 1 0
−sin(θ13)e

i δ 0 cos(θ13)
]U =

“Atmospheric” sector: 
best measured in 

experiments where 
ν

μ
 disappearance 

dominates: νs from cosmic 
ray muon decays; 

accelerators

Big question:
Is there a symmetry governing the ν

μ
/ν

τ
 

mixing into the 2nd and 3rd mass states?
(Is θ

23
 “maximal” = 45º?)º?)

ν
e

ν
μ

ν
τ

ν
3
= ?

[
1 0 0
0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)
]
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Neutrino oscillations: mass splittings

“Normal Hierarchy”
“Inverted Hierarchy”

?
⇔

ν
3

ν
2

ν
1

ν
2

ν
1

ν
3

Δ m21
2

Δm32
2

Δm21
2

Δ m32
2

Big question:
Which way around are the mass states ordered?

ν
e
 appearance from accelerator νs, also possibly reactor disappearance

(most electron-like 
state lightest)
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Measuring neutrino oscillation parameters

with

NOvA
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Long-baseline neutrino experiments

Imagine for a moment you're only oscillating between two flavors.  Then:

Pνα→νβ
≈sin2 2θ sin2(Δm2 L

4 E )
How far away from the source 

you build your detector

Energy spectrum of your 
neutrino beam

|Δm2 L
4 E |= π

2

sin2 2θ

A
rb

itr
ar

y 
un

its
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|Δm2 L
4 E |= π

2

sin2 2θ

Long-baseline neutrino experiments

ν
e

ν
μ

ν
τ

ν
3
=

this is nearly exactly what you get 
when you start with ν

μ
 of a few GeV 

at distances of a few hundred km 
from the source.

Paradigm for modern “long-baseline” expts.

Because ν
μ
/ν

τ 
is nearly 5º?)0/5º?)0 in all the mass states,
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Long-baseline neutrino experiments

is quite a bit harder because θ
13

 is small...

… but if you can measure it well (for ν and ν),
you gain access to both δ and the mass hierarchy.

(Hierarchy dependence enters through matter effects...)

note sign flip 
for 

antineutrinos

sin2 2θ
23

 in ν
μ
 disappearance...
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Long-baseline neutrino experiments

is quite a bit harder because θ
13

 is small...

CP conserved
δ = π/2

δ = 3π/2

CP conserved
δ = π/2

δ = 3π/2

… but if you can measure it well (for ν and ν),
you gain access to both δ and the mass hierarchy.

(Hierarchy dependence enters through matter effects...)
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Long-baseline neutrino experiments

is quite a bit harder because θ
13

 is small...

Normal Hierarchy
Vacuum

Inverted Hierarchy

Normal Hierarchy
Vacuum

Inverted Hierarchy

… but if you can measure it well (for ν and ν),
you gain access to both δ and the mass hierarchy.

(Hierarchy dependence enters through matter effects...)
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NuMI Off-axis 𝝂e Appearance 
Experiment

            NuMI = Neutrinos at the Main Injector

● Long-baseline (anti-)neutrino 
oscillation experiment

● Two functionally identical detectors, 
optimized for νe identification

Fermilab

Ash 
River

810 km

Bloomington

The NOvA experiment
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The NuMI beam

Focusing HornsTarget Decay Pipe

π-

π+p

ν
μ
/ν

μ

Magnetic “horns” focus mesons from 
proton beam-12C target interactions

Detectors are 14mrad off main beam axis:
● Results in narrow energy spectrum around 2 GeV
● Reduces “wrong-sign” (ν in ν beam and vice versa) 

component → 3% (5º?)%) contamination for ν (ν)

Focusing HornsTarget Decay Pipe

π-

π+p

ν
μ
/ν

μ

“Neutrino mode”

“Antineutrino
mode”
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● Near Detector: 300 ton, 1 km from source (FNAL)
● 100m underground, 20,000 channels

● Far Detector: 14 kton, 810 km from source (Ash River, MN)
● On the surface, 3m concrete+barite overburden; 344,000 channels

The NOvA detectors

Detectors differ
mainly in size

(otherwise functionally identical)
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● Good energy resolution for muons, 
electromagnetic & hadron showers:
● Mostly (65%) active detector
● Radiation length ~ 40 cm → 6 samples per 

radiation length

APD
32 Channels

1 Channel

x

y
z

xz-view

yz-view

(~20K
4cm × 6cm)

The NOvA detectors

Detectors differ
mainly in size

(otherwise functionally identical)
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Strategy

Main idea:
Compare

 
predicted spectrum at FD

to
observed spectrum at FD

to extract oscillation parameters

ν
μ
 disappearance example

Discuss in two steps:
building the spectrum,

then details of prediction
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Spectrum construction

(1) Event selection
(2) Reconstruction & observables
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Spectrum construction: identifying neutrino events

l-

p, π±, … 

N

νl

W

Selections share 
many ingredients; will 

discuss in parallel.

Illustrate using 
neutrino mode 

(antineutrinos shown 
where different)

Q: How do you identify a ν
μ
 or ν

e
?

A: Look for charged-current reactions 
(charged leptons differ & backgrounds 
have no primary charged lepton)
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Spectrum construction: identifying neutrino events

νe

νμ

Learned variations on the 
original image

[A. Aurisano and A. Radovic and D. Rocco et. al, JINST 11 P09001 (2016)]

• Use convolutional neural network (CNN) called Convolutional Visual Network, CVN:
– Treat events like images (but use calibrated energy deposits in cells rather than colors)
– The CNN learns features (smaller groupings of patterns)
– Successive layers in network refine and abstract previous layers' features
– Last layer in network is “conventional feed-forward NN” which maps onto desired output classes

• Trained on simulation (details later) and FD cosmic data

bknds

Input Image
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Spectrum construction: Identifying neutrino events

One more problem:
FD sits on the surface → ~15º?)0 KHz cosmics!

One 5º?)5º?)0 μs 
readout window. 
 ~All cosmics.
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Spectrum construction: Identifying neutrino events

νe

Pulsed beam + good timing resolution
and containment + CVN requirements help a lot,

but still need further cosmics rejection

νμ

cosmic
kNN

2D cut on 
(y, p

T
/|p|)
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Spectrum construction: Identifying neutrino events

ν
e
 cosmic cuts are harsh.

Recover events near edges
but high PID (so lots of signal)

w/ dedicated multivariate classifier

→ “Peripheral” sample

νe Vertex is near detector edge
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Spectrum construction: Identifying neutrino events

DATA

Preselection cuts

PID Cut

Cosmic Rejection cuts

Basic Quality cuts

selection!µ

Quantile 1

!
"#

$

Resolution bins
Quantile 2

Quantile 3

Quantile 4

νμ

νe

~30 cosmics

104 cosmics

106 cosmics

2.1 cosmics
1.0 cosmics

106 cosmics

106 cosmics

0.9 cosmics

104 cosmics

(c.f.: ~120 ν
μ
 CC signal, 2 beam bknd)**

(c.f.: ~41 ν
e
 CC signal, 9 beam bknd)**

** These predictions will be discussed in more detail later



Imperial / May 29, 2019J. Wolcott / Tufts University30

Spectrum construction: Reconstructing neutrino energy

Oscillation is a function of 
neutrino energy:

… but neutrino beam isn't 
completely 

monochromatic (despite 
being off-axis) ...

… so we need to 
reconstruct 

neutrino energy 
from reaction 

byproducts event 
by event

ν
μ
 disappearance

ν
e
 appearance
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Spectrum construction: Reconstructing neutrino energy

Strategy: divide and conquer

ν

Nucleus

lepton

Hadrons

E
ν
 = f(E

lep 
, E

had
)

Evaluate the
lepton (muon or electron)

and
hadronic system

energies separately
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Spectrum construction: Reconstructing neutrino energy

Strategy: divide and conquer

ν

Nucleus

lepton

Hadrons

fE
ν =

E
lep

E
had

νμ
σ ~ 3%

σ ~ 30%
E

ν
 resolution: ~9%
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Spectrum construction: Reconstructing neutrino energy

Strategy: divide and conquer

ν

Nucleus

lepton

Hadrons

fE
ν =

E
EM

E
had

νe

E
ν
 resolution: ~11%
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Spectrum construction: νμ hadronic energy fraction binning

The power of the ν
μ
 disappearance 

analysis is from shape discrimination:

~6% resolution ~12% resolution
vs

Better resolution → less smearing in “dip”
→ better shape discrimination

different 
values of θ

23

different 
values of θ

23
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Spectrum construction: νμ hadronic energy fraction binning

Dividing into four equal quartiles of
hadronic energy fraction = E

had
/E

ν

roughly separates best from worst resolved populations

Quartile 1

Quartile 4

E
lep

σ ~ 30%

E
had

σ ~ 3%

Resolution for E
μ
 is 

much better than E
had
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Spectrum construction: νμ hadronic energy fraction binning

... antineutrinos typically have lower E
had

/E
ν

than neutrinos, so the boundaries are different

Quartile 1

Quartile 4

E
lep

σ ~ 30%

E
had

σ ~ 3%

Though the component 
resolutions don't change much ...
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Spectrum construction: νμ hadronic energy fraction binning

● Best shape 
discrimination in 
best resolution 
quartile (quartile 1)

● Most backgrounds 
also in worst 
resolution quartile 
(quartile 4) – both 
beam bknds and 
cosmics



Imperial / May 29, 2019J. Wolcott / Tufts University38

Spectrum construction: νe binning

More ν
e
-like

● Try to separate best-
understood signal (high 
PID) from backgrounds

● Mild spectrum 
difference between 
appeared (signal) ν

e
 vs. 

intrinsic beam ν
e
 bknd  

(signal ~lower E
ν
)
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Spectra

We vary the 
oscillation 

parameters in these 
4+4+3+3=17 
predictions 

simultaneously to 
find the best fit with 

the FD data.

Before looking at the 
data, though,

let's examine the 
predictions in a bit 

more detail...

ν
μ
 disappearance ν

e
 appearance
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Predictions:
Simulation & constraints
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Predictions: simulation chain

Neutrino reactions 
on detector materials

l-

p, π±, … 

N

νl

W

NuMI
PPFX

+

Neutrino flux

Custom 
readout 
software

+

Detector 
response to 

charged 
particles and 

light 
propagation

GENIE 
2.12.2

(with systematic uncertainties from each step)
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Predictions: simulation chain

Neutrino reactions 
on detector materials

l-

p, π±, … 

N

νl

W

NuMI
PPFX

+

Neutrino flux

Custom 
readout 
software

+

Detector 
response to 

charged 
particles and 

light 
propagation

GENIE 
2.12.2

(with systematic uncertainties from each step)
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Predictions: flux

• Package to Predict the FluX (PPFX) from MINERvA

– Extensive survey of thin target hadron production data (esp. NA49, MIPP)

• ~10% normalization change from pure FLUKA prediction (“flugg”)

• Significantly reduced systematic uncertainties

FLUKA NA49 + 
model spread 
PPFX
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Predictions: simulation chain

Neutrino reactions 
on detector materials

l-

p, π±, … 

N

νl

W

NuMI
PPFX

+

Neutrino flux

Custom 
readout 
software

+

Detector 
response to 

charged 
particles and 

light 
propagation

GENIE 
2.12.2

(with systematic uncertainties from each step)
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Predictions: neutrino scattering model

l-

p, π±, … 

N

νl

W

N

N

N

N

N

NP

P

P

P

P

P

P

l-

p, π±, … 

νl

W

vs

Nuclear effects not in GENIE 2.12.2
are important

● Elastic-like (no pions produced):
● Multi-nucleon knockout (short range):

tuned empirical model
● Nuclear charge screening (long range): 

theory-based corrections†

● Pion production:
● Empirical correction inspired by observed 

suppression in data

† “Model uncertainties for Valencia RPA effect for MINERvA”, 
Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
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Predictions: neutrino scattering model

Fully empirical prescription for 2p2h
derived from fitting data excess in ND

(w/ tunes from alternate base MC as uncertainties)

ν
μ ν

μ

N

N
N

N

NP

P

P

P
P

P

P

ν

N

P

“2p2h”
Knock out two nucleons with an 

elastic-like interaction.

Models are a work in progress...
resort to fits based on empirical 

“model*” in meantime

* “Meson Exchange Current (MEC) Models in Neutrino Interaction 
Generators”, Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014 

[N. Jachowicz]
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Predictions: neutrino scattering model

Apply Q2-based 
Valencia RPA 

weight from QE 
to resonant 

production as a 
stand-in for 
whatever 

nuclear effect 
we see at low Q2

(w/ unmodified 
version as 
uncertainty 
variation)

ν
μ

ν
μ

ν
μ

ν
μ

N

N

N

N

NP

P

P

P

P

P

P

ν

Δ

P

π

Pion production

Apparent suppression at low 
momentum transfer relative 

to model...

No theory to guide here.
“Adapt” elastic long-range 
correlation model (“RPA”)

?

?
?

?

?

[PRD 91, 012005º?)][PRD 83, 05º?)2007]
[PRD 94, 05º?)2005º?)]

MiniBooNE
MINOS MINERvA
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Predictions: simulation chain

Neutrino reactions 
on detector materials

l-

p, π±, … 

N

νl

W

NuMI
PPFX

+

Neutrino flux

Custom 
readout 
software

+

Detector 
response to 

charged 
particles and 

light 
propagation

GENIE 
2.12.2

(with systematic uncertainties from each step)
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Predictions: simulation chain

Search for ν QE-like events
(μ + no other tracks)

with compact displaced energy deposits

Design uncertainty to bound 
data‑simulation difference in 

observed energy

Neutron response is 
important in ν mode:

l+

n, π±, … 
N

νl

W

neutrons dominate in 
antineutrino reactions
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Predictions: simulation chain

Neutron response is 
important in ν mode:

l+

n, π±, … 
N

νl

W

neutrons dominate in 
antineutrino reactions

Fortunately, syst has a ~1% 
effect shift in mean energy, 
negligible change to resolution

(+ negligible change to selection 
efficiency)



Imperial / May 29, 2019J. Wolcott / Tufts University51

Predictions: simulation chain

Neutrino reactions 
on detector materials

l-

p, π±, … 

N

νl

W

NuMI
PPFX

+

Neutrino flux

Custom 
readout 
software

+

Detector 
response to 

charged 
particles and 

light 
propagation

GENIE 
2.12.2

(with systematic uncertainties from each step)



Imperial / May 29, 2019J. Wolcott / Tufts University52

Predictions: light model

• Absorbed and re-emitted Cherenkov 
light affects low-energy protons in 
hadronic showers.

• 2017 light model systs ~order of 
magnitude smaller than previous

– Previously accounted for Ckv with 
second order terms in our 
scintillator model

– Those terms were unusual, so we 
took conservative systematics

• Expected energy resolution for νμ CC 
events increased from 7% to 9% when 
adding Ckv to model
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Constraining the prediction: ND extrapolation

Quartile 1
best resolution

Quartile 2

Quartile 3 Quartile 4
worst resolution

Though prediction 
agrees with ND data 
within our uncertainty 
budget, we can use 
(unoscillated) ND 

data to correct 
prediction for FD

“extrapolation”
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The NOvA strategy: “Far/Near ratio”

Constraining the prediction: ND extrapolation

Neutrino beam

Near detector
Source

Far detector

NND
(Eν

rec
)=Φ(Eν

true
)×σ(Eν

true , A)×R (Eν

true
)×ϵ(...)

N (Eν

rec
)=Φ(Eν

true
)×Posc(Eν

true
)×σ (Eν

true , A)×R (Eν

true
)×ϵ(...)

Identical detectors share 
all the ingredients 

except the oscilliations

Correct the true event rate (Φ×σ×...) 
using the ND

and propagate that
(F/N captures geometrical 

differences between detectors)

Concept:
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1. Using the predicted 'unsmearing' matrix, correct the underlying  
unoscillated (true) E

ν
 distribution based on the ND data.

The NOvA strategy: “Far/Near ratio”

Constraining the prediction: ND extrapolation
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2. Multiply this corrected “true” spectrum by the geometric and oscillation 
functions to get the “extrapolated” true E

ν
 prediction at the FD.

The NOvA strategy: “Far/Near ratio”

Constraining the prediction: ND extrapolation
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3. Using the predicted mapping at the FD, convert back to 
reconstructed energy to compare to the observed FD spectrum.

The NOvA strategy: “Far/Near ratio”

Constraining the prediction: ND extrapolation
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Constraining the prediction: ND extrapolation

Extrapolation effect
Systematically 

shifted prediction

F/N constrains systematics too
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Constraining the prediction: ND extrapolation

F/N constrains systematics too

(these for ν
e
 event count, but effect on ν

μ
 similar)
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Constrained νμ FD prediction vs. data

Data antineutrino candidates 65

Best fit total prediction 52

    ↳ cosmic bkgd. 0.5

    ↳ beam bkgd. 0.7

Data neutrino candidates 113

Best fit total prediction 124

    ↳ cosmic bkgd. 2.1

    ↳ beam bkgd. 2.0
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Constraining the prediction: νe extrapolation

ν
e
 extrapolation 

requires more care:

● No signal at ND (use ν
μ
...)

● Beam ν
e
 oscillate very little 

over this L/E
● ν

μ
 almost entirely disappear

● NC doesn't change due to 
oscillations (assume no 
steriles)

Need to disentangle 
(“decompose”) before 

applying Far/Near makes 
any sense.

Least ν
e
-like Most ν

e
-like

(Divided into bins of event classifier)

ND
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Least ν
e
-like Most ν

e
-like

Target
p π, K

μ

ν
μ

ν
e

To 
ND

① Constraining the parent 
particle production via ND ν

μ
 

interactions tells us about the 
CC components...

e

Constraining the prediction: νe extrapolation

ND
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Least ν
e
-like Most ν

e
-like

② … while examining the 
Michel electron spectrum in 

candidate events tells us about 
the ν

μ
 fraction.

μ
ν

μ

ν
e

ν
μ

e
hadrons

Constraining the prediction: νe extrapolation

ND
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ND

Least ν
e
-like Most ν

e
-like

The “beam” and “Michel” 
constraints together tell us how 

to use the ND information to 
correct each component the 

FD spectrum.

Constraining the prediction: νe extrapolation



Imperial / May 29, 2019J. Wolcott / Tufts University65

ND

Least ν
e
-like Most ν

e
-like

For antineutrinos, addition of 
a significant “wrong-sign” 

component (neutrinos) means 
more deg of freedom than 

constraints

Component-wise constraint a 
work in progress→ correcting 
according to MC proportions 

in each bin for now

Constraining the prediction: νe extrapolation
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Constrained νe FD prediction vs. data

Data antineutrino candidates 18

Best fit total prediction 16

    ↳ cosmic bkgd. 0.7

    ↳ beam bkgd. / app. νe 5.3 / 1.1

Data neutrino candidates 58

Best fit total prediction 59

    ↳ cosmic bkgd. 3.3

    ↳ beam bkgd. / app. νe 11.1 / 0.7
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Constrained νe FD prediction vs. data

Data antineutrino candidates 18

Best fit total prediction 16

    ↳ cosmic bkgd. 0.7

    ↳ beam bkgd. (app. νe) 5.3 (1.1)

Data neutrino candidates 58

Best fit total prediction 59

    ↳ cosmic bkgd. 3.3

    ↳ beam bkgd. (app. νe) 15.1 (0.7)

4.2σ observation:

first significant observation of ν
e
 

appearance
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Extracting oscillation parameters
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Fitting the spectra

We vary the 
oscillation 

parameters in these 
4+4+3+3=17 
predictions 

simultaneously to 
find the best fit with 

the FD data.



Imperial / May 29, 2019J. Wolcott / Tufts University70

Fitting the spectra

We vary the 
oscillation 

parameters in these 
4+4+3+3=17 
predictions 

simultaneously to 
find the best fit with 

the FD data.
● Apply external constraint for θ13

(PDG 2017, sin22θ13 = 0.082)
● Perform joint analysis

since θ23 affects both (includes correlated systematics)
● Mass hierarchy and δ sensitivity will grow with additional ν exposure 

(more momentarily)

+ ...
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Oscillation results: atmospheric sector

Big question:
Is there a symmetry governing the ν

μ
/ν

τ
 

mixing into the 2nd and 3rd mass states?
(Is θ

23
 “maximal” = 45º?)º?)

ν
e

ν
μ

ν
τ

ν
3
= ?

Leaning towards “no”,
at about 1.8σ confidenceσ confidence
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Oscillation results: since the last time

Previous result (ν only):

consistent with maximal mixing (0.8σ)

New ν data

strongly favors nonmaximal mixing

+

Updated analysis (ν only):

favors maximal mixing

Asymmetry in maximal 
disappearance for ν

μ
 vs ν

μ
 due to 

matter effects → NH implies UO 

Joint ν
μ
 + ν

μ
 fit prefers 

upper octant (~1σ)
(the rest from ν

e
 app)
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Oscillation results: reactor sector

Big question:
Which way around

are the mass states ordered?

Preference for NH (IH excluded at 1.8σ confidenceσ)

vs
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Big question:
Is CP symmetry

violated by leptons?
(Is δ nonzero?)

Consistent with CP 
conservation.

(δ=3π/2 excluded at >1σ)

ν⇔ν
?

Oscillation results: reactor sector
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Looking ahead

For current favored parameters, 
reach 3σ on mass hierarchy

by end of run in 2024

2σ sensitivity to CP violation
for ~30-40% of parameter space

by 2024

this analysis

this analysis
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Looking ahead

For current favored parameters, 
reach 3σ on mass hierarchy

by end of run in 2024

this analysis

2019 update

this analysis

2019 update coming (hopefully)
at Fermilab Users Meeting in June!
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Summary

● NOvA has a robust 3-flavor neutrino oscillation analysis
● νμ disappearance and νe appearance selections efficient and well 

characterized 
● Systematics well constrained by careful analysis & extrapolation technique

● Neutrino oscillation takeaways shaping up:
● Reject maximal θ23 at 1.8σ  (indications of no μ-σ  (indications of no μ-indications of no μ-τ symmetry in mixing))

● Favor normal hierarchy at 1.8σ  (indications of no μ-σ (indications of no μ-potential symmetry to charg)ed lepton ordering))
● Consistent with CP conservation

● 4.2σ observation of observation observation of of observation of νe observation of appearance observation of  observation of (indications of no μ-standard framework applies to ν)

● Data continues to stream in
● Update with ~8σ  (indications of no μ-0% more antineutrino data rig)ht around the corner
● Looking) forward to major milestones in particle physics in not-too-distant future!
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Overflow
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PIDPID

Decompose:
νμ/νe/NC

Decompose:
νμ/νe/NC

N to FN to F
N to FN to F
N to FN to F

FD 
Prediction

FD 
Prediction

νμ Cosmic 

Rejection

νμ Cosmic 

Rejection

νe Cosmic 

Rejection

νe Cosmic 

Rejection

N to FN to F

ND νμ 

Spectrum

ND νμ 

Spectrum

ND νe-like 

Spectrum

ND νe-like 

Spectrum

FD νe 

Spectrum

FD νe 

Spectrum

PIDPID

Resolution 
Bins

Resolution 
Bins

Near to 
Far

Near to 
Far

FD 
Prediction

FD 
Prediction

FD νμ 

Spectrum

FD νμ 

Spectrum

Sign
al

B
ackgro

u
n

d

Analysis flow
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Neutrino interaction model adjustments
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νe appearance: constraining beam νe bknd

Target
p π, K

μ

ν
μ

ν
e

To ND

Kaon-ancestor neutrinos g)et a sing)le weig)ht: -6.3%

Assig)n discrepancies in ND 
ν

μ
 contained and 

uncontained samples to 
flux;  derive observation of corrections observation of 
according observation of to observation of parent observation of 

mesons (indications of no μ-which also result 
in beam ν

e
)

Pion-ancestor neutrinos are corrected
in bins of parent (indications of no μ-p

z
, p

T
).  Averag)e ~ +2%
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Examine distribution of Michel electrons in each bin 
of ND ν

e
 selected sample after beam ν

e
 constraint 

(prev slide)

Fit these 18 distributions to determine
ν

μ
 CC / NC corrections in each bin

νe appearance: constraining νμ CC/NC ratio
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Systematics

Uncertainties dominated by statistics, 
but

detector calibration
and neutrino interactions

growing in importance
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• Near Detector
– cosmic μ dE/dx  [~vertical]

– beam μ dE/dx  [~horizontal]

– Michel e- spectrum

– 𝜋0 mass

– hadronic shower E-per-hit

• Far Detector
– cosmic μ dE/dx  [~vertical]

– beam μ dE/dx  [~horizontal]

– Michel e- spectrum

• All agree to 5%

Data
MC 𝜋0 signal
MC bkgd

Data 𝜇: 134.2 ± 2.9 MeV
Data 𝜎:   50.9 ± 2.1 MeV
 
MC 𝜇:   136.3 ± 0.6 MeV
MC 𝜎:     47.0 ± 0.7 MeV

NC 𝜋0

events

Fixing the energy scale

CC ν
μ
 

events
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νe Efficiency Checks

• Test hadronic showers:
– Muon removed, simulated electron 

added to νμ CC in ND events

– Data & MC efficiencies agree within 
2%

• Test electromagnetic 
showers:
– Muon removed from 

bremsstrahlung in FD cosmic ray 
events

– Good data-MC agreement in both 
core and peripheral samples
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Effect of extrapolation

~10-15% uncertainties become 
~2-3% residual uncertainties 

after extrapolation
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Parameterizing
systematic effects

1. Construct predictions for ±1σ, 
±2σ variations in each uncertainty 

for the target distribution
(for given (Δm2

32
,θ

23
))...

2. Examine the 
ratio of each of 

these to the 
nominal 

prediction...

3. Construct parameterized 
functions describing the 

variation in each bin of the 
target distribution

(enables us to quickly get 
arbitrary size shifts for each 

systematic)

(These are cubic 
splines, but the linear 

term is sufficient to 
describe the trend in 

this case)

Bin #8

Bin 
#16

Bin 
#28

Bin 
#23

Bin 
#8

Bin 
#16

Bin 
#28

Bin 
#23
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Parameterizing systematic effects

Systematics that shift events between bins of the prediction can be problematic
(this bin-by-bin ratio adjument isn't handling them 'correctly')

Bin #8 Bin 
#1
6

Bin 
#2
8

Bi
n 

#2
3

(θ 23
 = 45º?)˚)

(θ
23  = 41˚)

N
ote diff erence

 in bin #1 6
 (oscil lation dip )

(θ
23

 = 45º?)˚)

(θ
23

 = 
41˚)

(*reminder: 20% is for illustration only.
~5º?)% is current actual uncertainty,

but harder to see the effect)

(θ
23

 = 45º?)˚) *

*
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Wrong-sign cross-checks

• ~10% systematic uncertainty on wrong-sign from flux and cross section 
– Both in νμ-like and νe-like events.

– Does not include uncertainties from detector effects.

• Confirm using data-driven cross-checks of the wrong-sign contamination
– 11% wrong-sign in the νμ sample checked using neutron captures.

– 22% wrong-sign in beam νe checked using identified protons and event kinematics.

ν̅μ
ν̅e
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Calculation of mass hierarchy significance

• Throw 
pseudoexperiments at 
best fit in IH
– Run fitting procedure for each
– Compute χ2 between best fit for 

this pseudoexpt and global best 
fit (NH,UO)

● if best fit is in IH, set Δχ2 = 
0

→ creates distribution at left

• Integrate to the right from 
observed Δχ2 in data

• Use this p-val to look up 
Gaussian significance

Want to know:
“how often could the true IH solution fluctuate

to NH and give us a Δχ2 at least as poor as we observe?”

pileup at 0 from “boundary”
(insisting we get an NH best fit)
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νe-νe dependence on parameters
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