OBSERVATION OF NEW PENTAQUARK CANDIDATES

Nathan Jurik

University of Oxford

HEP Group Seminar

Imperial College, 23 October 2019

OUTLINE

- Pentaquarks introduction
- Not so brief review of the recent history of pentaquarks in $\Lambda_b^0 \to J/\psi \ pK^-$
 - Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays [arXiv:1507.03414]
 - Model-independent evidence for $J/\psi p$ contributions to $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays [arXiv:1604.05708]
- New, updated analysis of $\Lambda_b^0 \rightarrow J/\psi \, pK^- \, [arXiv:1904.03947]$
- Interpretations
- Outlook

HADRONS

- Valence quarks used to classify hadrons and determine quantum numbers.
- Hadrons can be classified according to their number of quarks (n_q) and antiquarks $(n_{\bar{q}})$: $\mathcal{B} = \frac{1}{3}(n_q n_{\bar{q}})$
 - "baryons" have $\mathcal{B} = 1$, and "mesons" have $\mathcal{B} = 0$
 - The simplest cases for a meson is $q\overline{q}$, and for a baryon is $q\overline{q}q$
 - No known reason other "exotic" hadrons with different quark content $(q\bar{q}q\bar{q}, qqqq\bar{q})$ can't exist!

TETRA- AND PENTA-QUARKS CONCEIVED AT THE BIRTH OF QUARK MODEL

Volume 8, number 3	PHYSICS LETTERS	1 February 1964	8419/TH.412 21 February 1964
A SCHEMATIC	MODEL OF BARYONS AND ME	SONS *	AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING
California	M. GELL-MANN Institute of Technology, Pasadena, California		(* 11
	Received 4 January 1964		G. Zweig **)
A sim	nler and more elegant scheme can	he	CERNGeneva
construc	ted if we allow non-integral values	for the	
charges.	We can dispense entirely with the	basic	*) Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.
baryon b propertie	if we assign to the triplet t the folles: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon num	lowing ber $\frac{1}{3}$.	
We then	refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and	$1 s^{-\frac{1}{3}} of$	
the triple	et as "quarks" ⁶) q and the membe: <u>let as an</u> ti-quarks q . Baryons can	rs of the now be	6) In general, we would expect that baryons are built not only from the produ
construc	ted from quarks by using the comb	inations	of three aces, AAA, but also from AAAAA, AAAAAAAA, etc., where A
(q q q), (q q)	$qqq\bar{q}$, etc., while mesons are n	nade out	denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA
of (qq), barvon c	(qqqq), etc. It is assuming that the re-	epresen-	etc. For the low mass mesons and baryons we will assume the simplest
tations 1	, 8, and 10 that have been observe	d, while	possibilities, AA and AAA, that is, "deuces and treys".

 Searches for such states made out of the light quarks (u,d,s) are ~50 years old, but no undisputed experimental evidence has been.

EARLY PENTAQUARK SEARCHES

- Most early searches looked for baryons with an \overline{s} quark
 - "Partial-wave" analyses in 70's reported evidence, but were not confirmed.
- In 2003, several experiments reported evidence for a pentaquark candidate, the Θ^+

Experiment	Reaction	Mass~(GeV)	Significance
LEPS	$\gamma C \to K^+ K^- X$	$1.54{\pm}0.01$	4.6σ
DIANA	$K^+Xe \to K^0_S pX$	$1.539{\pm}0.002$	4.4σ
CLAS	$\gamma d \to K^+ K^- p n$	$1.542{\pm}0.005$	$(5.2\pm0.6)\sigma$
SAPHIR	$\gamma p \to K^0_S K^+ n$	$1.540{\pm}0.004$	4.8σ

- Evidence also shown for other candidates, but none of these would survive further studies with better statistics!
- The 2006 PDG review said: "The conclusion that pentaquarks in general, and the Θ^+ , in particular, do not exist, appears compelling.

TETRAQUARK CANDIDATES: "XYZ STATES"

- Several charmonium and bottomonium-like states observed by several experiments.
 - Don't fit into the conventional quark model and are candidates for tetraquarks.
- Example: Z(4430) is a $c\bar{c}d\bar{u}$ candidate seen by Belle in 2007 and confirmed in 2014 by LHCb.

 Perhaps heavy quarks are necessary to help stabilise these states? "Multiquark" states with light quarks are too broad?

LHCB DETECTOR

- Forward arm spectrometer designed for precision CP violation measurements and decays of bottom and charm hadrons.
- Rapidity coverage 2.0 < y < 4.5
- Excellent particle identification:
 - Muons: $\varepsilon \sim 97\%$ for $1 3\% \pi \rightarrow \mu$ misidentification
 - Kaons: $\varepsilon \sim 95\%$ for $5\% \pi \rightarrow K$ misidentification
- Very good vertex resolution: $\sigma = 20 \mu m$ impact parameter resolution
- Momentum resolution $\Delta p/p = 0.5\%$ at 20GeV to 0.8% at 100 GeV

Int. J. Mod. Phys. A 30 (2015) 1530022

 $\Lambda_{h}^{0} \rightarrow J/\psi \ pK^{-}$ SELECTION

- Candidates have a $(\mu^+\mu^-)Kp$ vertex, with the $(\mu^+\mu^-)$ pair consistent with a J/ψ
- Standard selection to ensure good track and vertex quality,
- Requirements on particle identification, p_T , and separation from the primary vertex.

- Backgrounds from B^0 and B_s decays are vetoed.
- Final background suppression is done with a boosted decision tree.

$$\Lambda_b^0 \to J/\psi \ pK^- \ SIGNAL$$

UNEXPECTED STRUCTURE IN $m_{J/\psi p}$

- Decays to $J/\psi pK^-$ final state can proceed through intermediate resonances.
- In Kp system, we expect to see peaking structures in invariant mass, m_{Kp}
 Λ(1520) and other Λ^{*}'S → p K⁻
- We don't expect to see something similar in $m_{I/\psi p}!$

AMPLITUDE ANALYSIS

- Use helicity formalism to write down matrix element describing the full process $\Lambda_b \rightarrow \Lambda^* J/\psi$ with $\Lambda^* \rightarrow Kp$ and $J/\psi \rightarrow \mu\mu$
 - Six-dimensional: use m_{Kp} and 5 decay angles
- Included Breit-Wigner resonances for wellestablished states in PDG

State	J^P	$M_0 ({\rm MeV})$	$\Gamma_0 (MeV)$	# amplitudes
$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	4
A(1520)	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	6
A(1600)	$1/2^{+}$	1600	150	4
A(1670)	$1/2^{-}$	1670	35	4
A(1690)	$3/2^{-}$	1690	60	6
$\Lambda(1800)$	$1/2^{-}$	1800	300	4
$\Lambda(1810)$	$1/2^{+}$	1810	150	4
$\Lambda(1820)$	$5/2^{+}$	1820	80	6
$\Lambda(1830)$	$5/2^{-}$	1830	95	6
$\Lambda(1890)$	$3/2^{+}$	1890	100	6
$\Lambda(2100)$	$7/2^{-}$	2100	200	6
$\Lambda(2110)$	$5/2^{+}$	2110	200	6
A(2350)	$9/2^{+}$	2350	150	6 12
A(2585)	?	≈ 2585	200	6

• m_{Kp} is well-described but $m_{J/\psi p}$ looks terrible

- Addition of non-resonant terms, Σ^* 's or extra Λ^* 's doesn't help.
- Not possible to describe the peaking structure with conventional resonances!

INCLUDE P_c CONTRIBUTIONS

- P_c contributions added to the matrix element and allowed to interfere with Λ^*
 - Also modeled with Breit-Wigner resonances

- Angular distributions depends on spin-parity (J^P)
 - Can probe perform different fits to probe quantum numbers.

INCLUSION OF A P_c CONTRIBUTION

- Tested all J^P of P_c^+ up to $7/2^{\pm}$
 - Best fits have $J^P = \frac{5}{2}^{\pm}$, but are far from satisfactory

INCLUSION OF TWO P_c CONTRIBUTIONS

- With two P_c resonances we are able to describe the peaking structure!
 Best fit has J^P(P_c(4380), P_c(4450))=(3/2⁻, 5/2⁺), but (3/2⁺, 5/2⁻) and (5/2⁺, 3/2⁻) are comparable.
- Additional P_c resonances did not result in significant improvement in fit quality.

RESONANCE PHASE MOTION

- Relativistic Breit-Wigner function is used to model resonances $BW(m|M_0,\Gamma_0) = \frac{1}{M_0^2 - m^2 - iM_0\Gamma(m)}$
- Exhibits a circular trajectory when displayed in complex plane, with phase change of 180° across pole.

RESONANCE PHASE MOTION

- Study phase motion by replacing the Breit-Wigner shape for individual P_c 's with 6 evenly spaced amplitudes in $M_0 \pm \Gamma_0$ range
- Plot fitted values for amplitudes in an Argand diagram
 - P_c(4450): shows a rapid counterclockwise change of phase across the pole mass
 - P_c(4380): does show large phase change, but much less nice looking.

A MODEL-INDEPENDENT CONFIRMATION

- Amplitude analysis used resonances listed in the PDG
 - Also tested that adding additional contributions would not change conclusions.
- Many more states are predicted than are observed.
- A second analysis showed with minimal assumptions that resonances in *Kp* system alone cannot account for the data.

METHOD

- Demonstrate compatibility/incompatibility of the data with hypothesis only intermediate resonances decaying to Kp are present (H_0) .
- A PDF representing this hypothesis is constructed from the data as $\mathcal{F}(m_{Kp}, \cos \theta_{\Lambda^*} | H_0) = \mathcal{F}(m_{Kp}) \mathcal{F}(\cos \theta_{\Lambda^*} | H_0, m_{Kp})$

THE PDF'S

- The $\mathcal{F}(m_{Kp})$ comes directly from observed data.
- The angular distribution can be expanded in terms of Legendre polynomials P_l in bins of m_{Kp} $dN/d \cos \theta_{\Lambda^*} = \sum_{l=0}^{l_{max}} \langle P_l^U \rangle P_l(\cos \theta_{\Lambda^*})$ where $\langle P_l^U \rangle$ is the unnormalized Legendre moment of rank l
- In presence of Kp resonances with spin up to J_{max} moments above $l_{max} = 2J_{max}$, correspond to statistical fluctuations or additional sources.
 - Allows for creation of H_0 hypothesis PDF
 - *l_{max}* chosen conservatively based off observed data & quark model expectations

COMPATIBILITY WITH $m_{J/\psi p}$

- The 2D *PDF* is projected onto $m_{J/\psi p}$ and compared to the data
 - Clearly fails to reproduce the data!
- Compatibility is probed via log-likelihood ratio test with H_1 hypothesis.
 - Includes high enough order Legendre moments to reproduce structures in the data.
- Toys used to get test variable distribution under H_0 hypothesis
- The hypothesis that only Kp contributions are present in the data can be ruled out at over 9σ confidence level.

CONCLUSIONS FROM MODEL INDEPENDENT ANALYSIS

- The hypothesis that the data can be accounted for with only resonances in Kp system rejected at over 9σ
- A powerful conclusion, but really the only one that can be made.
 - Useful reference for stating narrow structures in $m_{J/\psi p}$ be attributed to Kp resonances.
- Formally not able to say anything about the source of these higher moments.
 - Peak in $m_{J/\psi p}$ is rather telling, though.

FULL RUN I + RUN 2 DATASET

- New analysis boosted from improvements in the data selection, integrated luminosity, and cross-section ($\sqrt{s} = 13$ TeV vs 7-8 TeV)
 - 9x more statistics than in previous studies.

DATA CONSISTENCY CHECK

- The 6D amplitude model fit to masses and decay angles was repeated.
- Resulting P_c(4450)⁺ and P_c(4380)⁺ parameters consistent with the 2015 results

A CLOSER LOOK

- With 9x more statistics, and a finer binning
 - Appearance of narrow peak at 4312 MeV
 - $P_c(4450)$ splitting into two peaks?
- Mass resolution is 2.3-2.7 MeV in 4.3-4.6 GeV region
 - Thanks to excellent momentum resolution, vertexing and J/ψ and Λ_b mass constraints
- Widths comparable to resolution!

SUPPRESSION OF Λ^* CONTRIBUTIONS

- Can Eliminate 80% of $\Lambda^* \to Kp$ backgrounds by cutting on $m_{K\pi} > 1.9$ GeV
- Can clearly see three peaks!
 - Henceforth referred to as $P_c(4312)$, $P_c(4440)$, $P_c(4457)$

DALITZ PLOT

• New $P_c(4312)$ band clearly visible across Dalitz plane.

ANALYSIS STRATEGY

- Many challenges to overcome for an amplitude analysis
 - Could be years before converging on results.
- But... no need for amplitude analysis to prove that narrow $J/\psi p$ peaks are not Λ^* reflections
- Perform one-dimensional fits to $m_{J/yp}$ to characterize the narrow peaks.
 - Measure mass, width, and rates.
 - Can't hope to measure quantum numbers or to be sensitive to broad $J/\psi p$ contributions like $P_c(4380)$.

FIT MODEL

- Signal modelled using relativistic Breit-Wigner
 - Convolved with detector resolution (2-3 MeV)
 - Added incoherently, as interference effects can't be disentangled from only $m_{J/\psi p}$
 - Several interference configurations tested as part of systematic uncertainty.
- Background modelled with Chebychev polynomial
 - Polynomial degree varied as part of systematic uncertainty studies.
 - Additional fits done with possible broad Breit-Wigner P_c contributions.

A BETTER Λ^* SUPPRESSION

- Rather than cut away events, weight them according to expected background contribution
- As $\bar{x} = \sum_{i}^{N} x_{i}/N$ is not best estimator if errors $\sigma_{i}(x)$ are not equal, it's not optimal to average all events with equal weights.
- P_c rates are small relative to Λ^* backgrounds.
 - Statistical errors on P_c parameters driven by background fluctuations.
- Λ^* contributions mostly populate $\cos \theta_{P_c} > 0$
 - Use inverse of distribution as weight.

FITS TO $J/\psi p$ MASS DISTRIBUTIONS

- Fits are performed with three methods.
- The $\cos \theta_{P_c}$ -weighted data is most sensitive, and is used as default approach for measuring masses and widths.
 - Different approaches have different Λ^* compositions and help probe systematic uncertainties.
- To determine the relative production rates, must fit full data set after efficiency correction.

FITS WITH INTERFERENCES

- Also perform fits with coherent sum between various Breit-Wigner amplitudes
 - Include additional phase to control interference
 - Including broad P_c⁺ contribution.
 - Example of a fit with interference: $P_c(4312)^+$ interfering with a broad P_c^+
- No significant evidence for interferences
- Largest source of systematic uncertainty.

SYSTEMATIC UNCERTAINTIES

- In addition to Λ* compositions in different fit samples, different interference configurations, and different combinations of polynomial and broad Breit-Wigner components.
- Fit in narrower mass ranges.
- Mass resolution is also varied within uncertainties.
- Removal of BDT from selection
- Nominal fits assume S-wave (no angular momentum) production and decay
 - Inclusion of P-wave factors is tested

RESULTS

• Mass, width, and relative rates are reported

State	$M \;[\mathrm{MeV}\;]$	$\Gamma \; [{\rm MeV} \;]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} \stackrel{3.7}{_{-}}{}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

- All widths are consistent with resolution, so upper limits set.
- Relative rates are defined as

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi \, p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p K^-)}$$

and should be interpreted with care as they include effects of interference with other resonances.

SIGNIFICANCES

- Significance of $P_c(4312)$ determined from $\Delta \chi^2$ with and without including it
 - Distribution under null hypothesis obtained from large sample of pseudo-experiments taking into account look-elsewhere effect
 - Significance of 7.3 σ (8.2 σ) for the $m_{K\pi}$ >1.9 GeV (cos θ_{P_c} -weighted) fits
- Two peak structure also tested against null hypothesis of one Breit-Wigner
 - Significance of 5.4 σ (6.2 σ) for the $m_{K\pi}$ >1.9 GeV (cos θ_{P_c} -weighted) fits

THEORETICAL INTERPRETATIONS

- Tightly-bound pentaquarks: all quarks in same colour-confinement volume
- "Molecular" pentaquarks: weakly bound meson+baryon
- Rescattering: triangle-diagram processes known to peak when all three hadrons nearly on mass shells

TIGHTLY-BOUND PENTAQUARKS

- Tend to use diquarks as building blocks
 - diquark+diquark+anti-quark
- These models predict many states
 - Proponents of these models will be happy to see more states.
- They have trouble explaining the widths.
 - Decay by fall-apart, would expect wider states
- Need something to slow down decay to make them narrow,
 - Angular momentum between diquarks?

MOLECULAR PENTAQUARKS

- Weakly bound meson+baryon system
- Shallow potential well, n=0,L=0 between hadrons
 - Very few states expected (S)
 - Weak binding expected: masses a few MeV below the related baryon-meson thresholds
- Decay by heavy quarks changing confinement partners, then fall-apart:
 - All states naturally narrow

HADRON RESCATTERING VIA TRIANGLE DIAGRAMS

Can peak above a threshold given by the sum of the masses of the rescattering hadrons (m3 + m4)

- Decent fits obtainable when assuming unrealistic Γ_0 for the excited D_s or $\Lambda(top)$
- When using realistic widths (bottom), clear that $P_c(4312)^+$, $P_c(4440)^+$ are too far from any rescattering thresholds to be triangle diagram peaks.

HADRON RESCATTERING VIA TRIANGLE DIAGRAMS

- $P_{c}(4457)^{+}$ is right at the $\Lambda_{c}^{+}(2595)\overline{D}^{0}$ threshold
 - Triangle diagram more plausible.
- PDG value used for $D_{s1}^*(2860)^-$ width
- Fit quality decent, but not as good as BW amplitude
- Amplitude analysis will be more enlightening
 - Interference effects may even change things.

MOLECULAR VS TIGHTLY BOUND

- All candidates are narrow, below relevant thresholds with plausible binding energies.
 - $P_c(4440) \sim 20$ MeV lower than $\Sigma_c^+ \overline{D}^{*0}$, but some models predict $1/2^-$ and $3/2^-$
 - Favours "molecular" pentaquarks with mesonbaryon substructure
- Diquark model takes nearness to thresholds as chance and must provide some mechanism to create narrow widths, e.g. separated by a potential barrier
 - No hypothesis can be ruled out at this point.

FUTURE PROSPECTS

- Several avenues to pursue in trying to figure out mechanism responsible for these peaks.
 - Could even be complicated interplay between several effects!
- More studies with $\Lambda_b^0 \to J/\psi \ pK^-$
 - Amplitude analysis has several challenges, but will be critical.
 - More data: will additional peaks appear in upgrade?
- Look for the P_c states in other decay modes and production mechanisms.
- Of course, look for other pentaquarks too.

NEWS FROM ATLAS

- Presented at Beauty conference: [link]
- Lack of charged hadron identification makes for more complicated analysis
- Must also analyse several other b-hadron decay modes with non-trivial decay dynamics.
- Analysis of Run I data yields 2270 \pm 300 signal candidates
 - Less than 1/10 of LHCb Run 1 analysis

- Description of data is poor with no P_c fit, though this model not completely excluded
- Update planned with full data sample.

$$P_c$$
 STATES IN $\Lambda^0_b \to J/\psi \ p\pi^-$

- Lower stats due to Cabibbo suppression
- Dominated by excited nucleon contributions
- Also possible contribution from $Z_c \rightarrow J/\psi \pi^-$
 - Three interfering decay chains
- Exotic contributions have a significance of 3.1σ
 - Not able to make conclusive statements.
- With full Run 1+2 statistics, should have bit less than statistics of original $\Lambda_b^0 \rightarrow J/\psi \ pK^-$ analysis

 P_c STATES IN $\Lambda_b^0 \rightarrow \chi_{c1,2} \ pK^-$

- Can look for $P_c(4457)$ just above threshold
 - Of course other P_c states as well
- Made difficult because requires reconstruction of photon
 - Lower efficiency, higher background
- Observation of the decay modes was done with Run I data
 - Amplitude analysis planned with full data set

[arXiv:1704.07900]

$$P_c$$
 STATES IN $B^0_{(s)} \rightarrow J/\psi \, p \bar{p}$

• First observation made of the suppressed $B^0_{(s)} \rightarrow J/\psi \, p \bar{p}$ decay modes

Suppression may be lifted from exotic contributions.

 $\mathcal{B}(B^0 \to J/\psi p\bar{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7}$ $\mathcal{B}(B^0_s \to J/\psi p\bar{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.39 \text{ (syst)}) \times 10^{-6}$

- Branching fractions higher than expected.
- Amplitude analysis with full Run I+2 data sets under way

DIRECT PRODUCTION

- Tricky to look for from pp collisions
 - Short-lived, so swamped by backgrounds.
 - Not clear that would be significant production if molecular picture is right!
- Studies underway to look for them in photoproduction at JLAB
 - Results already from GlueX, more to come

[arXiv:1905.10811]

OTHER PENTAQUARKS

- Discovery of further states is crucial for shedding light on internal bindings and the nature of these states.
 - Pentaquarks with different charge, spin-parity, isospin
- Weakly decaying pentaquarks which are too light to decay strongly
 - $P_{B^0p}^+ \rightarrow J/\psi K^+ \pi^- p$ and $P_{B_sp}^+ \rightarrow J/\psi \phi p$ limits set [arXiv:1712.08086]
- A systematic search should be done, as we also learn from non-observations
- Several searches underway, such as $\Lambda_b^0 \rightarrow J/\psi \Lambda K^-$ with Run I data [arXiv:1701.05274]

REFLECTIONS ON PREVIOUS AMPLITUDE ANALYSIS

- With an order of magnitude more data, not surprising the data has new things to tell
- $P_c(4312)$ was not significant, nor was splitting of $P_c(4450)$ into two resonances.
 - Unaccounted for contributions explain difficulty in determining J^P
 - Certain features of the amplitude analysis still surprising though, e.g. how nice the Argand diagram looked.
- Ultimately, we will have to await new amplitude analysis for more answers.

SUMMARY

- The narrow $P_c(4312)$ is discovered, and previously reported $P_c(4450)^+$ structure resolved into two narrow states: the $P_c(4440)^+$ and $P_c(4457)^+$
- These results shed more light on binding mechanism, but still require further elucidation.
- Towards this effort we continue to fully utilize the Run I+2 data, and have increased statistics on the way.
- We look forward to more input from theory and other experiments!

BACK UP

