



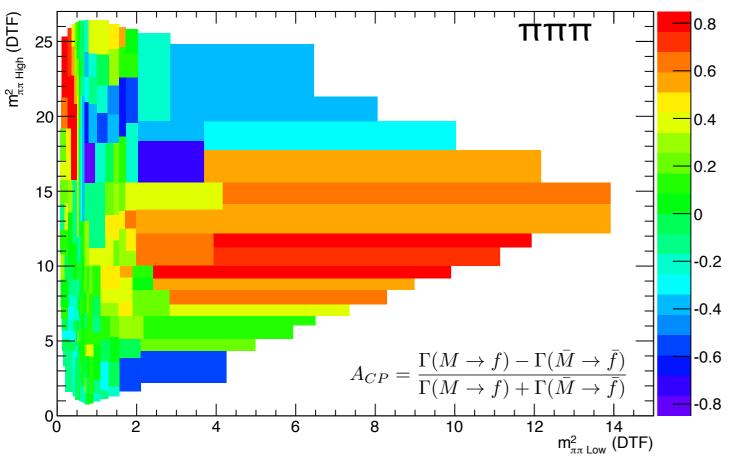
# Challenges and future of three-body heavy meson decays

### Patricia C. Magalhães

University of Bristol

seminar @ Imperial College London, 30 October 2019




### discussion topics

Why we study 3-body hadronic decay?

Please stop me at any moment!

- What are the tools?
  - Dalitz plot
  - 2-body x 3-body
  - dynamics
- $D^+ \to K^-K^+K^- \operatorname{decay}$ 
  - can extract KK scattering amplitude
- CP violation in B decays
  - charm rescattering in  $B^+ \to K^- K^+ K^-$
- final remarks

- Standard Model works quite well but... some gaps!
  - baryogenesis!
- CP-Violation
  - $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$  massive localized Acp





dynamic effect !!

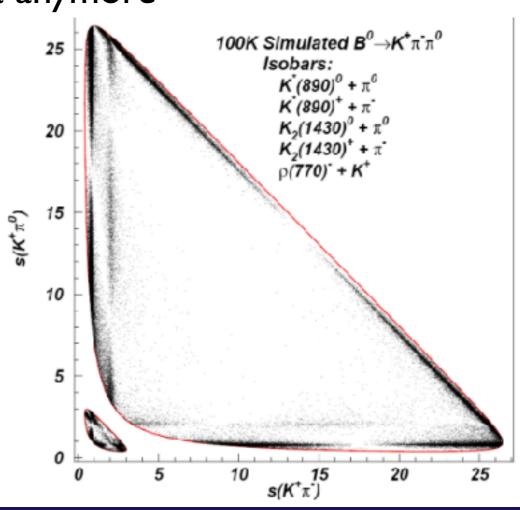
Ist observation in charm

$$D^0(\bar{D^0}) \rightarrow h^-h^+ \text{mixing}$$

CPV on three-body?

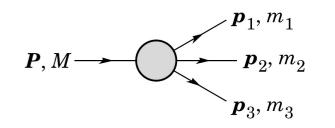
can lead to new physics

### Context


- D and B three-body HADRONIC decays are dominated by low E resonances
  - spectroscopy: new resonances, their properties...
  - information of MM interactions  $\longrightarrow$  no K $\overline{K}$  available

Ist observation of  $\sigma$  [ $f_0(600)$ ] and  $\kappa$  [ $K_0^*(700)$ ] in D decays

new high data sample from LHCb
 simple models (only focus on two-body resonances)
 are not enough to explain data anymore


### theoretical challenge!

- B and D 3-body phase space ...
  - ≠ scales!!! → similar FSI
  - B phase-space → + FSI possibilities



### Three-body kinematics: DALITZ plot

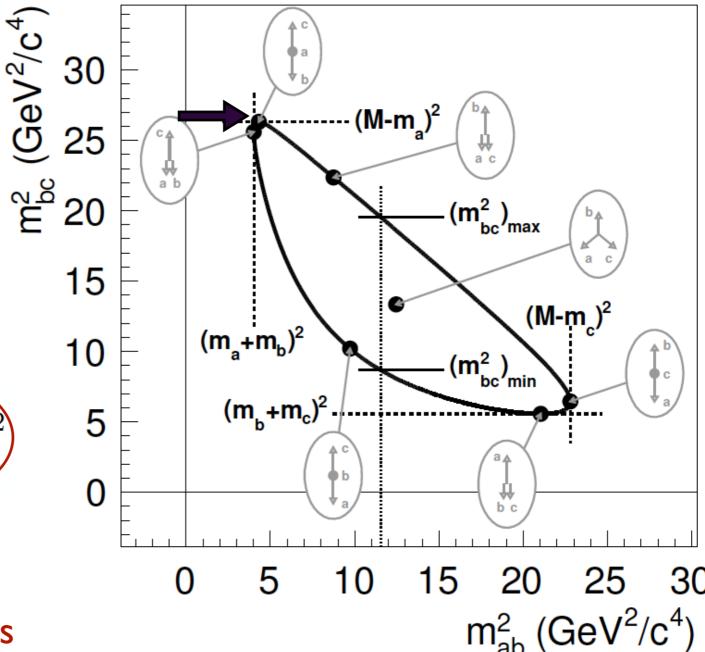
- In three-body decay phase-space is NOT one-dimension!
  - bi-dimension phase-space information



DALITZ PLOT: proposed by Richard Dalitz (1925-2006) in 1953

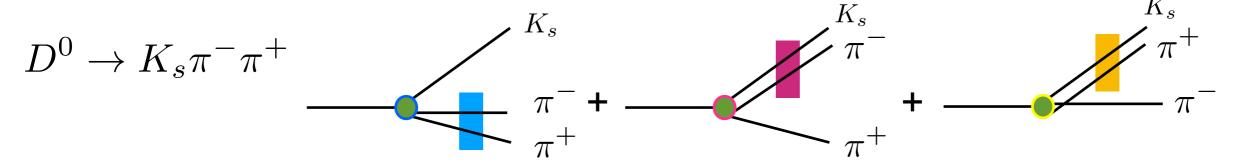
### Mandelstam variables for 3-body

$$s_{12} = (p_1 + p_2)^2 = m_{12}^2$$


$$s_{13} = (p_1 + p_3)^2 = m_{13}^2$$

$$s_{23} = (p_2 + p_3)^2 = m_{23}^2$$

$$s_{12} + s_{13} + s_{12} = M^2 + m_1^2 + m_2^2 + m_3^2$$


$$\frac{d\Gamma}{ds_{12}ds_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \left( \mathcal{A}(s_{12}, s_{23}) |^2 \right)$$

$$A(s_{12},s_{23})=\sum A_k(s_{12},s_{23})$$
 dynamics  $a_{12},s_{23}=\sum A_k(s_{12},s_{23})$  resonances

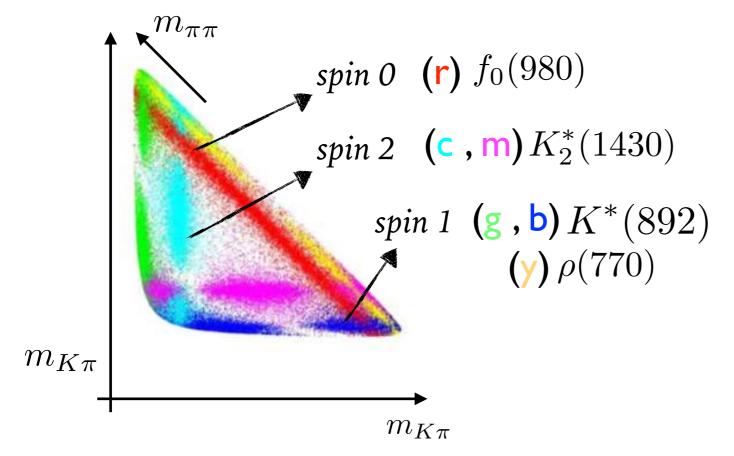
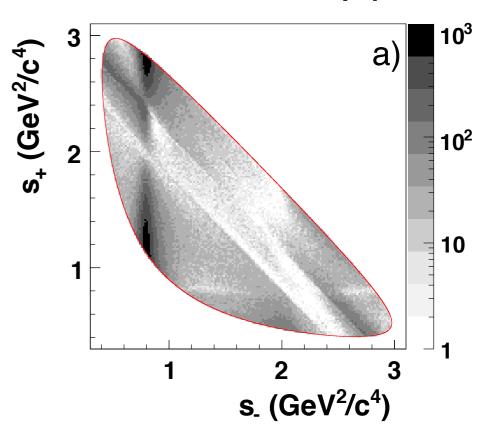


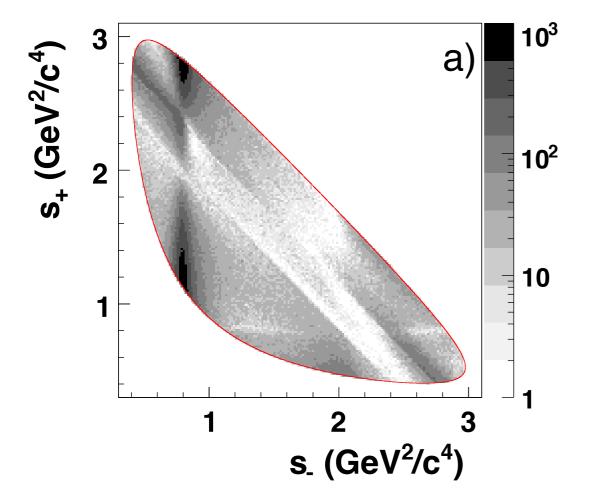
### Three-body kinematics: DALITZ plot

common cartoon to described 3-body decay



If true, one expect 2-body resonances



image credit:Tom Latham

But in reality.....
not all of them are clearly present



BABAR Phys.Rev. Lett. 105 (2010) 081803

$$D^0 \to K_s \pi^- \pi^+$$



• 
$$D^0 \to K^- \pi^+ \pi^0$$

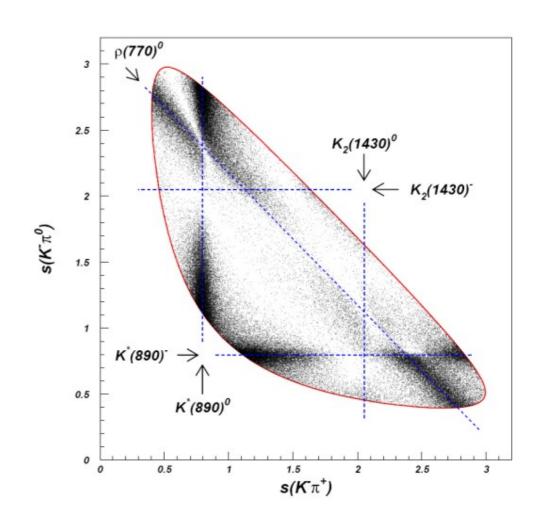
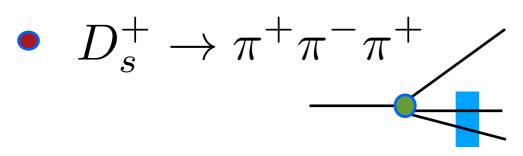
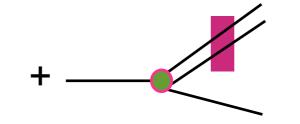
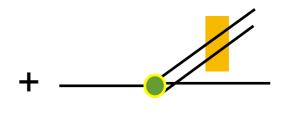
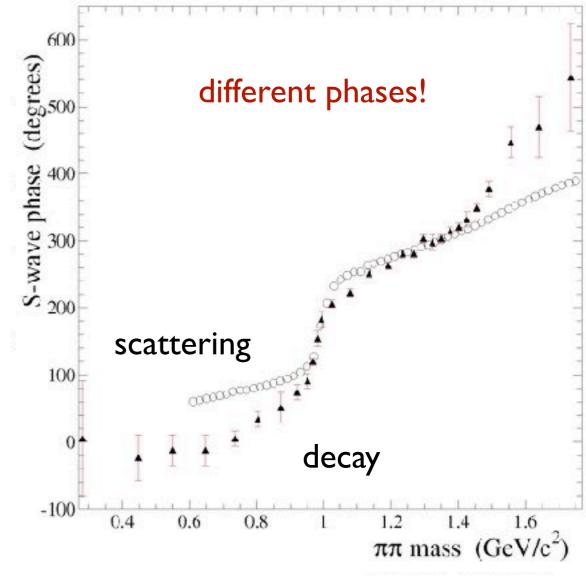






image credit:Brian Meadows

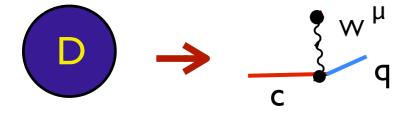
- Similar final state but different interference pattern
  - different dynamics to be understood
- -> to disentangle the interference we need amplitude analysis
  - new hight sample data cannot be described only by adding resonances!



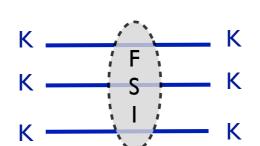


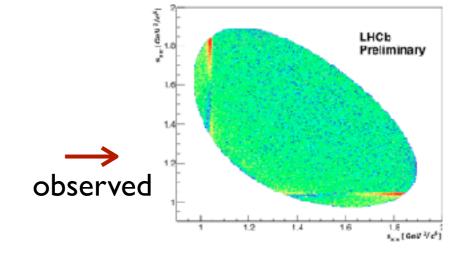



- If this picture is the reality:
  It should only contain 2-body informations!
- → Is not as simple as it look like!

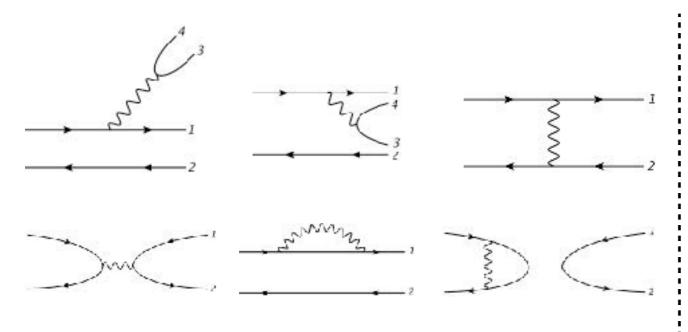

- Quantum numbers:
- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin! and  $\neq$  dynamics

phase from decay should be the same as scattering



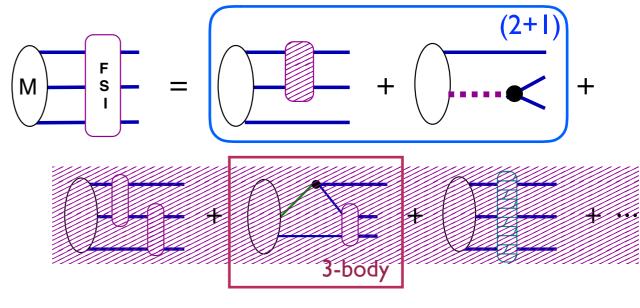


Phys.Rev. D 79 (2009) 032003

• dynamics  $D^+ \rightarrow K^-K^+K^-$ 







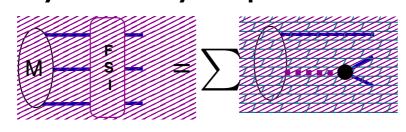

primary vertex - weak -



QCD, CKM coupling and phase

Final State Interactions - strong -




2-body is crucial!!!!

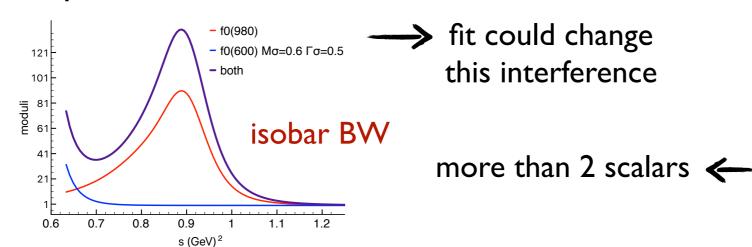
To extract information from data we need an amplitude MODEL

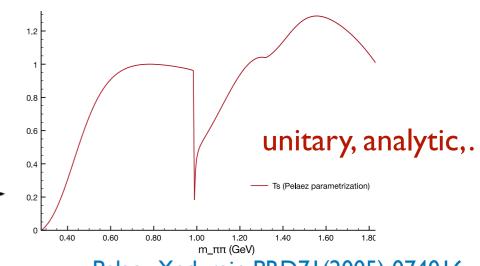
$$\frac{d\Gamma}{ds_{12}ds_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{A}(s_{12}, s_{23})|^2$$
 dynamics



- isobar model: widely used by experimentalists
  - (2+1)approximation:




→ ignore the 3rd particle (bachelor)


$$A = \sum c_k A_k$$
, + NR

 $A = \sum c_k \, A_k, \ + \ \mathsf{NR} \quad \left\{ \begin{array}{l} \mathsf{non\text{-}resonant} \ \mathsf{as} \ \mathsf{constant} \ \mathsf{or} \ \mathsf{exponential!} \\ \mathsf{each} \ \mathsf{resonance} \ \mathsf{as} \ \mathsf{Breit\text{-}Wigner} \quad \mathsf{BW}(s_{12}) = \frac{1}{m_R^2 - s_{12} - i m_R \Gamma(s_{12})}, \\ \mathsf{weak} \ \mathsf{vertex} \ \mathsf{is} \ \mathsf{not} \ \mathsf{considered} \ \mathsf{explicitly} \end{array} \right.$ 



worst problems: ππ S-wave





Pelaez, Yndurain PRD71 (2005) 074016

- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory!

### Models available

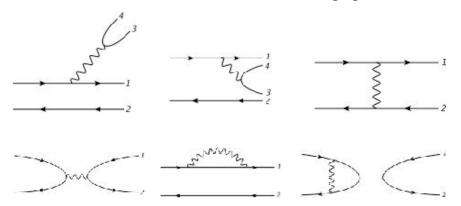


movement to use better 2-body (unitarity) inputs in data analysis

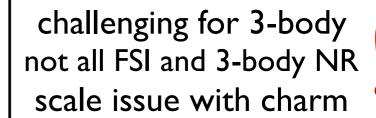


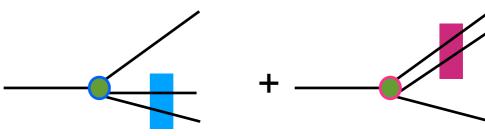
- "K-matrix": ππ S-wave 5 coupled-channel modulated by a production amplitude
   used by Babar, LHCb, BES III- analyticity problems!

  Anisovich PLB653(2007)
- rescattering  $\pi\pi \to KK$  contribution in LHCb  $\begin{cases} B^\pm \to \pi^+\pi^-\pi^\pm & \text{[arXiv:1909.05212;} \\ B^\pm \to K^-K^+\pi^\pm & \text{[arXiv:1909.05211]} \end{cases}$  Pelaez, Yndurain PRD71(2005) 074016

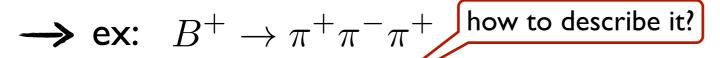

new parametrization Pelaez, and Rodas EPJ. C78 (2018) 11,897

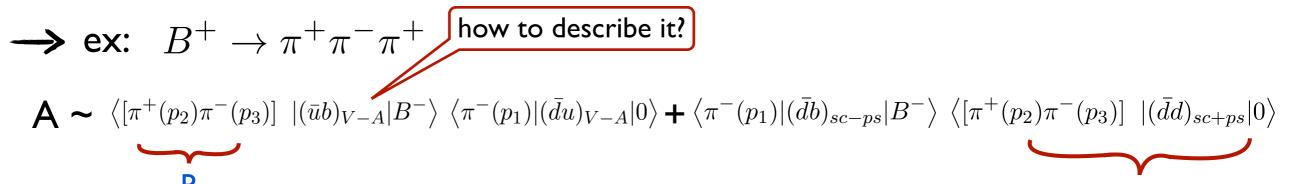
-> other scalar and vector form factors available


Limited to low E (2 GeV)!


```
<\pi\pi|0> \qquad \text{scalar} \qquad \text{Moussallam EPJ C 14, 111 (2000); Daub, Hanhart, and B. Kubis JHEP 02 (2016) 009.}  \text{Vector} \qquad \text{Hanhart, PL B715, 170 (2012); Dumm and Roig EPJ C 73, 2528 (2013).}  < K\pi|0> \qquad \text{scalar Moussallam EPJ C 53, 401 (2008); Jamin, Oller and Pich, PRD 74, 074009 (2006) }  \text{Vector Boito, Escribano, and Jamin EPJ C 59, 821 (2009).}  < KK|0> \qquad \text{Fit from 3-body data PCM, Robilotta + LHCb JHEP 1904 (2019) 063}  \text{extrapolate from unitarity model} \qquad \text{Albaladejo and Moussallam EPJ C 75, 488 (2015).}  \text{quark model with isospin symmetry Bruch, Khodjamirian, and Kühn , EPJ C 39, 41 (2005)}
```

QCD factorization approach > factorize the quark currents



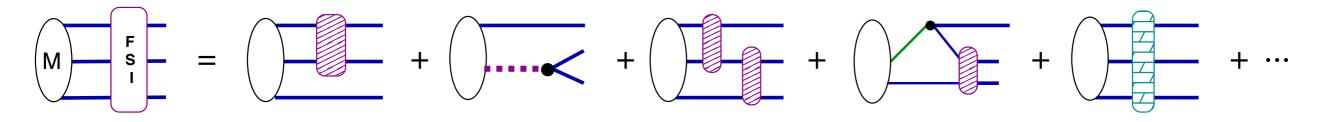


Chau [Phys. Rep. 95,1(1983)]



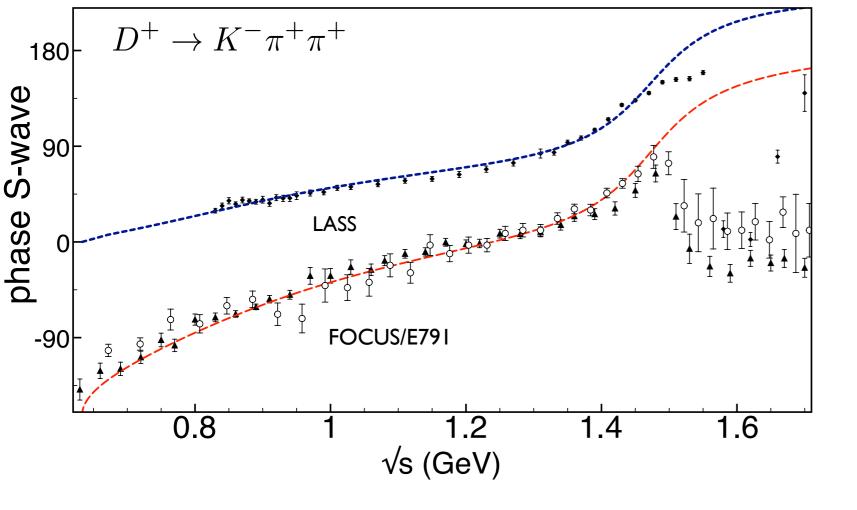


$$\mathcal{H}_{\text{eff}}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pq}^* V_{pb} \left[ C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) + C_{7\gamma}(\mu) O_{7\gamma}(\mu) + C_{8g}(\mu) O_{8g}(\mu) \right] + \text{ h.c. },$$






- naive factorization  $\left\{ \begin{array}{l} \text{- intermediate by a resonance } R; \\ \text{- FSI with scalar and vector form factors } \text{FF} \end{array} \right.$ 
  - - $\rightarrow$  parametrizations for B and D $\rightarrow$ 3h Boito et al. PRD96 113003 (2017)
- modern QDC factorization: improvement to include "long distance"


Klein, Mannel, Virto, Keri Vos JHEP10 117 (2017)

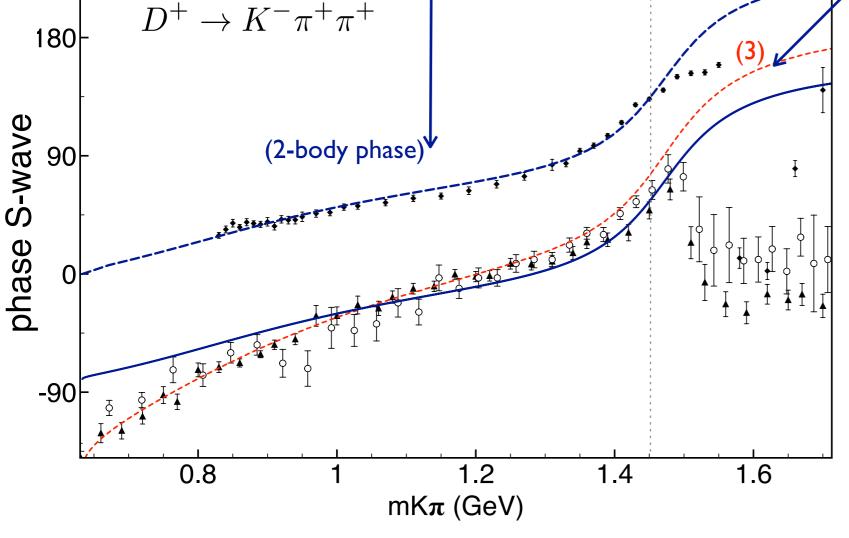


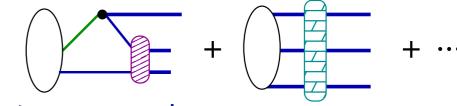
Three-body FSI (beyond 2+1)



shown to be relevant on charm sector




13


### Models available



Three-body FSI (beyond 2+1)

shown to be relevant on charm sector





PRD92 094005 (2015)

3-body approaches

PCM et.al: PRD84 094001 (2011), S.Nakamura PRD93 014005 (2016) Niecknig, Kubis, JHEP10 142 (2015)

- → 3-body FSI play a role
- data analysis...
- > can we extract 2-body information from 3-body?

### amplitude analysis for D decay



### Theoretical model

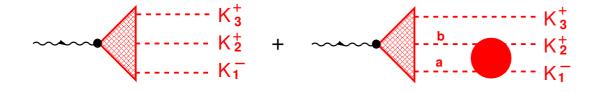
PHYSICAL REVIEW D **98,** 056021 (2018)

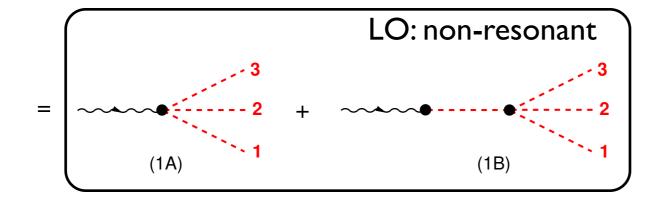
arXiv:1805.11764 [hep-ph]

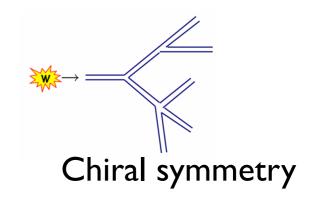
Multimeson model for the  $D^+ \rightarrow K^+K^-K^+$  decay amplitude

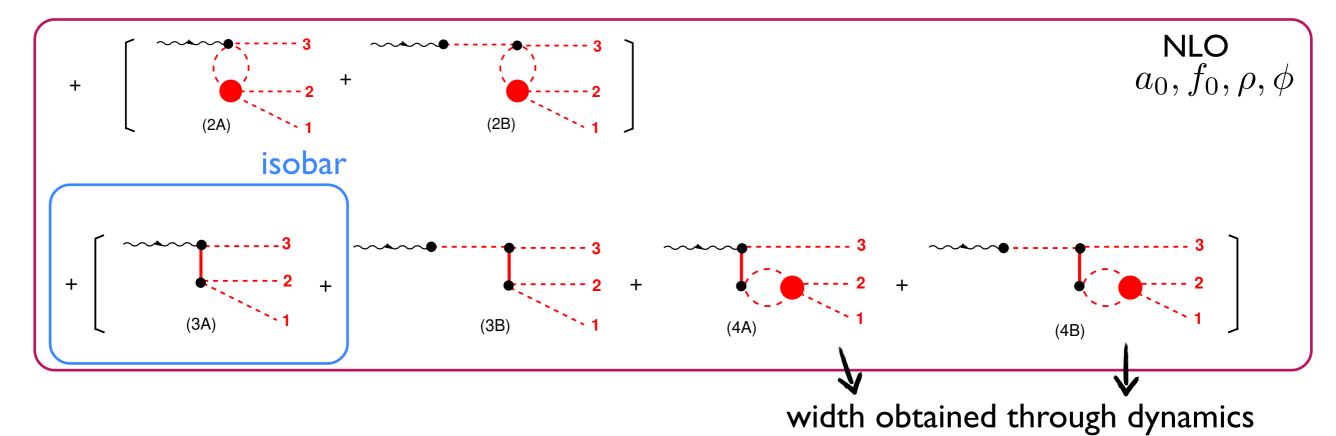
R. T. Aoude, <sup>1,2</sup> P. C. Magalhães, <sup>1,3,\*</sup> A. C. dos Reis, <sup>1</sup> and M. R. Robilotta<sup>4</sup>







KK scattering amplitude

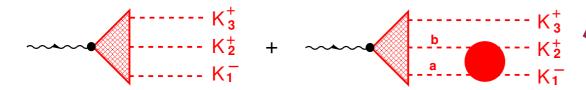

- alternative to isobar model in amplitude analysis
  - depart from a fundamental theory —> Chiral Lagrangian
    - track the ingredients we include in our model!
    - $A^{JI}_{ab}$  unitary scattering amplitude for  $ab \to K^+K^-$  full FSI: coupled channel,




parameters have physical meaning: resonance masses and coupling constants










 $K\bar{K}$  coupled-channel unitary amplitude  $\pi\pi,\,\eta\eta,\,\pi\eta,\,\rho\pi$ 

• isospin decomposition [J, I = (0, 1), (0, 1)]

### Triple M LHCb fit





| $T^S$ | $=T_{NR}^{S}$ | $+T^{00}$ | $+T^{01}$ |
|-------|---------------|-----------|-----------|
| _     | -NR           | 1 -       | 1 -       |

$$T^P = T_{NR}^P + T^{11} + T^{10}$$

|              | I                                               |
|--------------|-------------------------------------------------|
| parameter    | value                                           |
| F            | $94.3^{+2.8}_{-1.7} \pm 1.5 \mathrm{MeV}$       |
| $m_{a_0}$    | $947.7^{+5.5}_{-5.0} \pm 6.6 \mathrm{MeV}$      |
| $m_{S_o}$    | $992.0^{+8.5}_{-7.5} \pm 8.6 \mathrm{MeV}$      |
| $m_{S_1}$    | $1330.2^{+5.9}_{-6.5} \pm 5.1 \mathrm{MeV}$     |
| $m_{\phi}$   | $1019.54^{+0.10}_{-0.10} \pm 0.51 \mathrm{MeV}$ |
| $G_{\phi}$   | $0.464^{+0.013}_{-0.009} \pm 0.007$             |
| $c_d$        | $-78.9^{+4.2}_{-2.7} \pm 1.9 \text{MeV}$        |
| $c_m$        | $106.0^{+7.7}_{-4.6} \pm 3.3 \mathrm{MeV}$      |
| $	ilde{c}_d$ | $-6.15^{+0.55}_{-0.54} \pm 0.19 \text{MeV}$     |
| $	ilde{c}_m$ | $-10.8^{+2.0}_{-1.5} \pm 0.4 \mathrm{MeV}$      |

 $0095 \,\mathrm{GeV}^2$ 

1600

1400

| $FF_{NR}$  | $FF^{00}$  | $\mathrm{FF}^{01}$ | $\mathrm{FF}^{10}$ | $\mathrm{FF}^{11}$ | $FF_{S-wave}$ |
|------------|------------|--------------------|--------------------|--------------------|---------------|
| $14 \pm 1$ | $29 \pm 1$ | $131\pm2$          | $7.1 \pm 0.9$      | $0.26 \pm 0.01$    | $94 \pm 1$    |

### strong destructive interference in S-wave

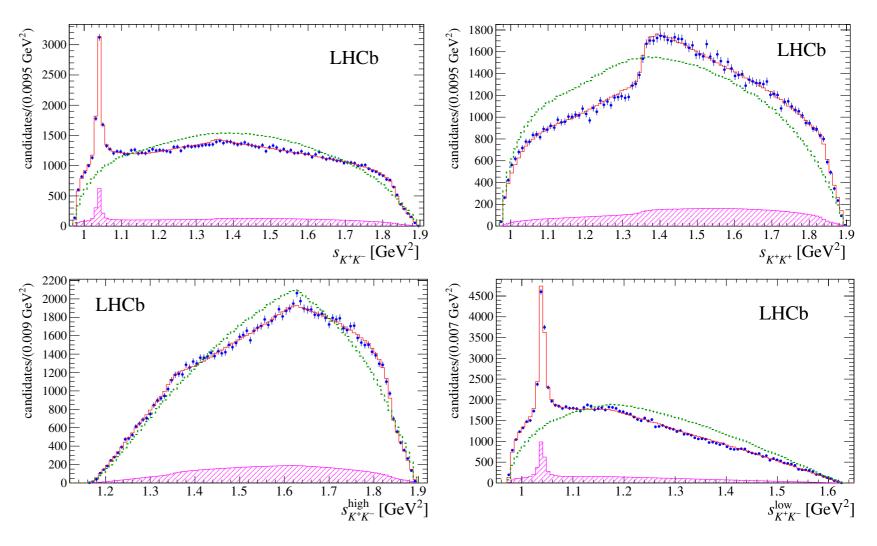



Figure 11. Projections of the Dalitz plot onto (top left)  $s_{K^+K^-}$ , (top right)  $s_{K^+K^+}$ , (bottom left)  $s_{K^+K^-}^{\text{high}}$  and (bottom right)  $s_{K^+K^-}^{\text{low}}$  axes, with the fit result with the Triple-M amplitude superimdashed green line is the phase space distribution weighted by the efficiency. The

LHCb

LHCb

0/2019

Patricia Magalhães

### Final State Interaction in B decays as a source of CP violation



Charge Parity Violation

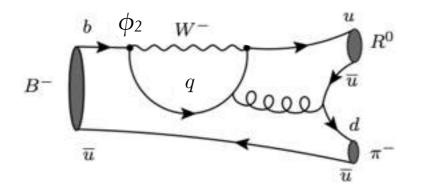
$$\Gamma(M \to f) \neq \Gamma(\bar{M} \to \bar{f})$$

$$\left| \frac{P}{f} \right|^2 \neq \left| \frac{\overline{P}}{f} \right|^2$$

- condition to CPV
  - $\rightarrow$  2 \neq amplitudes, SAME final state with strong  $(\delta_i)$  and weak  $(\phi_i)$  phase

$$\langle f | T | M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$$




$$\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$

.. 
$$\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$



Bander Silverman & Soni PRL 43 (1979) 242

strong phase

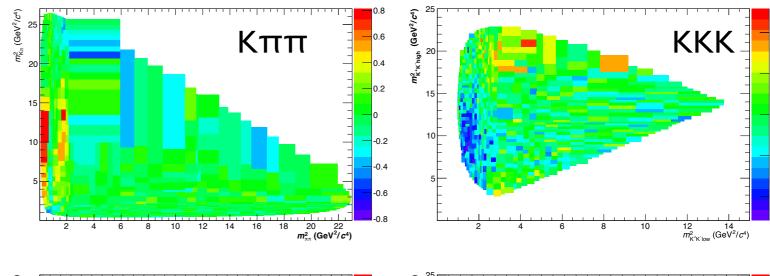


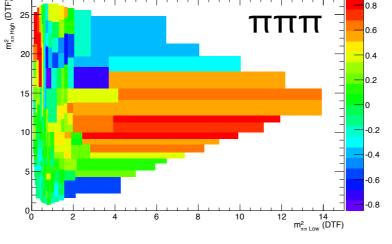
Vub  $R^0$ 

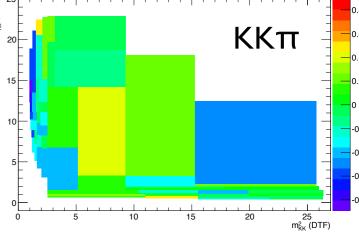
weak phase: CKM

Patricia Magalhães

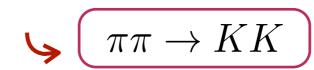
- $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$  massive localized Acp


 $A_{CP} = \frac{\Gamma(M \to f) - \Gamma(M \to f)}{\Gamma(M \to f) + \Gamma(\overline{M} \to \overline{f})}$ 


- suggest dynamic effect
- middle looks "empty"  $\rightarrow$  CPV
- BSS model




not enough!!

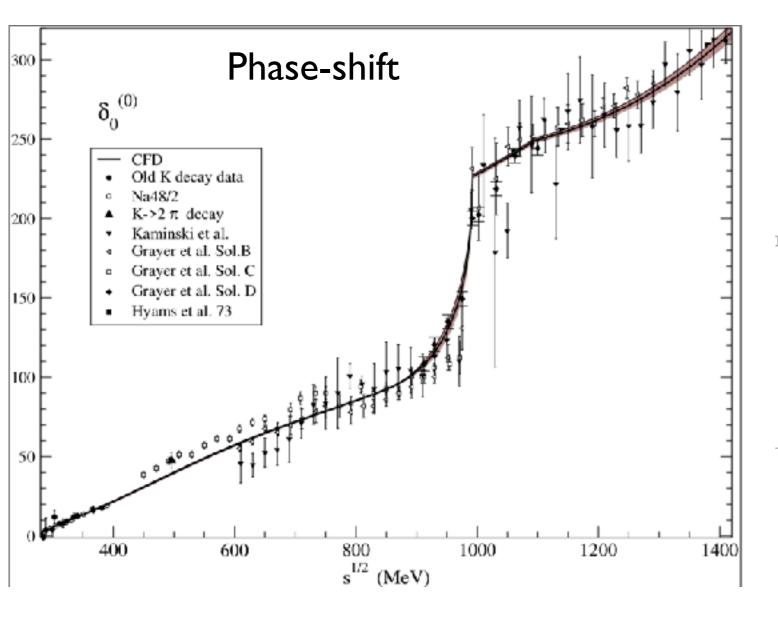

hadronic interactions → strong phase



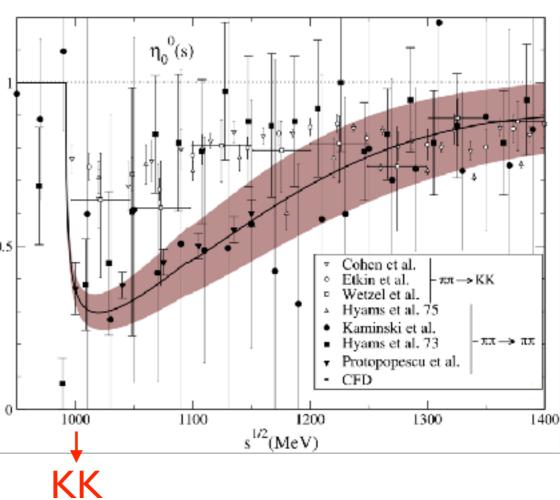




 $\bullet$   $B^{\pm} \to \pi^{\pm}\pi^{-}\pi^{+}$  and  $B^{\pm} \to \pi^{\pm}K^{-}K^{+}$ low-energy CPV with opposite signs



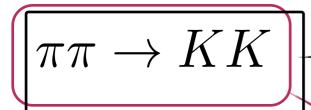

Frederico, Bediaga, Lourenço PRD89(2014)094013


•  $\pi\pi$  scattering data S-Wave

Pelaez, Yndurain PRD71(2011) 074016

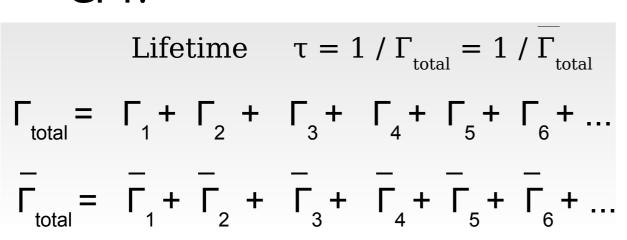
amplitude 
$$\hat{f}_l(s) = \left\lceil \frac{\eta_l e^{2i\delta_l} - 1}{2i} \right\rceil$$
.

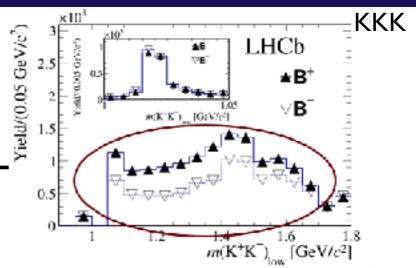


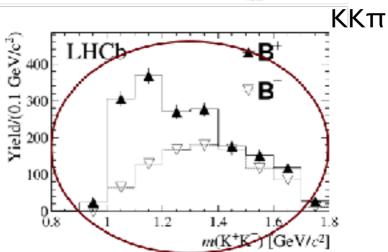

### Inelasticity

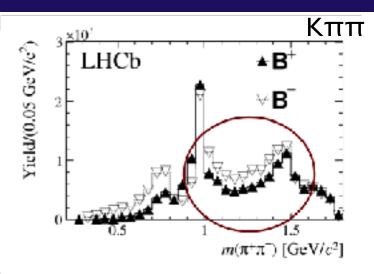


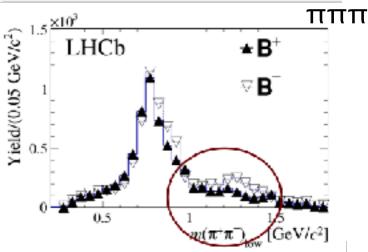
$$\sigma_l^{\text{el}} = \frac{1}{2} \left\{ \frac{1 + \eta_l^2}{2} - \eta \cos 2\delta_l \right\},\,$$


Inelasticity: one minus the probability of losing signal (1==elastic)


low-energy CPV [1 - 2] GeV





Frederico, Bediaga & Lourenço PRD89(2014)094013


- FSI → strong phase
   Wolfenstein PRD43 (1991) 151
- CPT:

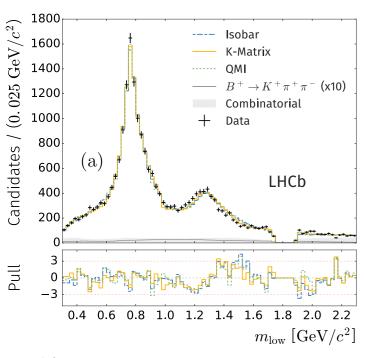


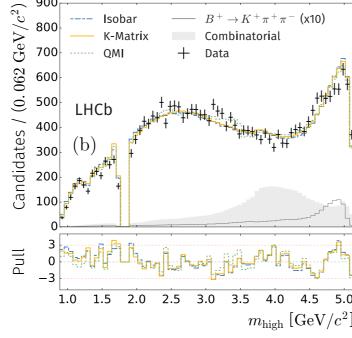


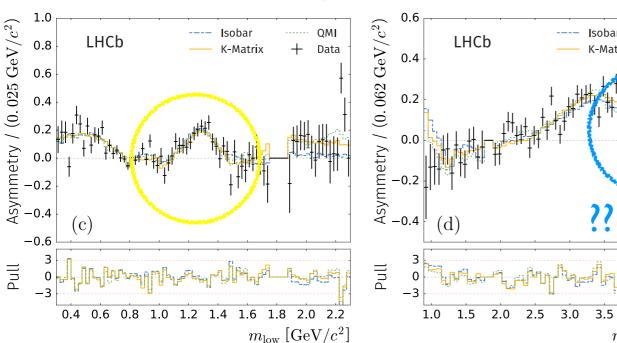







CPV in one channel should be compensated by another one with opposite sign


### CPV: amplitude analysis $B^{\pm} \to \pi^- \pi^+ \pi^{\pm}$




### recent Amplitude analysis $B^{\pm} \rightarrow \pi^- \pi^+ \pi^{\pm}$ [arXiv:1909.05212(PRD); 1909.05211(PRL)]

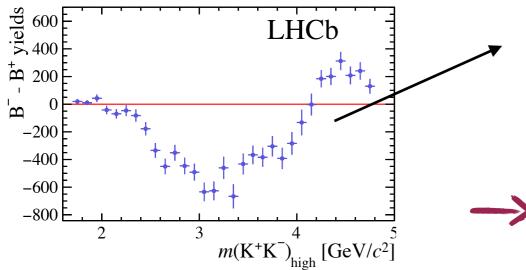
- $(\pi^-\pi^+)_{S-Wave}$  3 different model:
  - $\hookrightarrow$   $\sigma$  as BW (!) + rescattering;
  - ▶ P-vector K-Matrix;
  - binned freed lineshape (QMI);



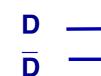


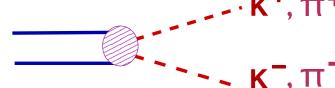


| Contribution     | Fit fraction $(10^{-2})$ | $A_{CP} (10^{-2})$        | $B^+$ phase (°)      | $B^-$ phase (°)      |
|------------------|--------------------------|---------------------------|----------------------|----------------------|
| Isobar model     |                          |                           |                      |                      |
| $ \rho(770)^0 $  | $55.5 \pm 0.6 \pm 2.5$   | $+0.7 \pm 1.1 \pm 1.6$    | _                    | _                    |
| $\omega(782)$    | $0.50 \pm 0.03 \pm 0.05$ | $-4.8 \pm 6.5 \pm 3.8$    | $-19\pm6\pm1$        | $+8\pm 6\pm 1$       |
| $f_2(1270)$      | $9.0 \pm 0.3 \pm 1.5$    | $+46.8 \pm 6.1 \pm 4.7$   | $+5\pm 3\pm 12$      | $+53\pm2\pm12$       |
| $\rho(1450)^{0}$ | $5.2 \pm 0.3 \pm 1.9$    | $-12.9 \pm 3.3 \pm 35.9$  | $+127\pm4\pm21$      | $+154 \pm 4 \pm 6$   |
| $\rho_3(1690)^0$ | $0.5 \pm 0.1 \pm 0.3$    | $-80.1 \pm 11.4 \pm 25.3$ | $-26\pm7\pm14$       | $-47\pm18\pm25$      |
| S-wave           | $25.4 \pm 0.5 \pm 3.6$   | $+14.4 \pm 1.8 \pm 2.1$   |                      | _                    |
| Rescattering     | $1.4 \pm 0.1 \pm 0.5$    | $+44.7 \pm 8.6 \pm 17.3$  | $-35\pm 6\pm 10$     | $-4 \pm 4 \pm 25$    |
| $\sigma$         | $25.2 \pm 0.5 \pm 5.0$   | $+16.0 \pm 1.7 \pm 2.2$   | $+115\pm2\pm14$      | $+179 \pm 1 \pm 95$  |
| K-matrix         |                          |                           |                      |                      |
| $\rho(770)^{0}$  | $56.5 \pm 0.7 \pm 3.4$   | $+4.2 \pm 1.5 \pm 6.4$    | _                    | _                    |
| $\omega(782)$    | $0.47 \pm 0.04 \pm 0.03$ | $-6.2 \pm 8.4 \pm 9.8$    | $-15\pm6\pm4$        | $+8\pm 7\pm 4$       |
| $f_2(1270)$      | $9.3 \pm 0.4 \pm 2.5$    | $+42.8 \pm 4.1 \pm 9.1$   | $+19 \pm 4 \pm 18$   | $+80 \pm 3 \pm 17$   |
| $\rho(1450)^{0}$ | $10.5 \pm 0.7 \pm 4.6$   | $+9.0 \pm 6.0 \pm 47.0$   | $+155 \pm 5 \pm 29$  | $-166 \pm 4 \pm 51$  |
| $\rho_3(1690)^0$ | $1.5 \pm 0.1 \pm 0.4$    | $-35.7 \pm 10.8 \pm 36.9$ | $+19\pm8\pm34$       | $+5\pm8\pm46$        |
| S-wave           | $25.7 \pm 0.6 \pm 3.0$   | $+15.8 \pm 2.6 \pm 7.2$   | _                    | _                    |
| QMI              |                          |                           |                      |                      |
| $\rho(770)^{0}$  | $54.8 \pm 1.0 \pm 2.2$   | $+4.4 \pm 1.7 \pm 2.8$    |                      | _                    |
| $\omega(782)$    | $0.57 \pm 0.10 \pm 0.17$ | $-7.9 \pm 16.5 \pm 15.8$  | $-25\pm6\pm27$       | $-2\pm 7\pm 11$      |
| $f_2(1270)$      | $9.6 \pm 0.4 \pm 4.0$    | $+37.6 \pm 4.4 \pm 8.0$   | $+13\pm5\pm21$       | $+68 \pm 3 \pm 66$   |
| $\rho(1450)^{0}$ | $7.4 \pm 0.5 \pm 4.0$    | $-15.5 \pm 7.3 \pm 35.2$  | $+147 \pm 7 \pm 152$ | $-175 \pm 5 \pm 171$ |
| $\rho_3(1690)^0$ | $1.0 \pm 0.1 \pm 0.5$    | $-93.2 \pm 6.8 \pm 38.9$  | $+8\pm10\pm24$       | $+36 \pm 26 \pm 46$  |
| S-wave           | $26.8 \pm 0.7 \pm 2.2$   | $+15.0 \pm 2.7 \pm 8.1$   |                      |                      |


### • ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ [arXiv:1905.09244]

| Contribution    | Fit Fraction(%)        | $A_{CP}(\%)$             | Magnitude $(B^+/B^-)$    | Phase $[^o]$ $(B^+/B^-)$ |
|-----------------|------------------------|--------------------------|--------------------------|--------------------------|
| $K^*(892)^0$    | $7.5 \pm 0.6 \pm 0.5$  | $+12.3 \pm 8.7 \pm 4.5$  | $0.94 \pm 0.04 \pm 0.02$ | 0 (fixed)                |
|                 |                        |                          | $1.06 \pm 0.04 \pm 0.02$ | 0 (fixed)                |
| $K_0^*(1430)^0$ | $4.5 \pm 0.7 \pm 1.2$  | $+10.4 \pm 14.9 \pm 8.8$ | $0.74 \pm 0.09 \pm 0.09$ | $-176 \pm 10 \pm 16$     |
|                 |                        |                          | $0.82 \pm 0.09 \pm 0.10$ | $136\pm11\pm21$          |
| Single pole     | $32.3 \pm 1.5 \pm 4.1$ | $-10.7 \pm 5.3 \pm 3.5$  | $2.19 \pm 0.13 \pm 0.17$ | $-138 \pm 7 \pm 5$       |
|                 |                        |                          | $1.97 \pm 0.12 \pm 0.20$ | $166 \pm 6 \pm 5$        |
| $\rho(1450)^0$  | $30.7 \pm 1.2 \pm 0.9$ | $-10.9 \pm 4.4 \pm 2.4$  | $2.14 \pm 0.11 \pm 0.07$ | $-175 \pm 10 \pm 15$     |
|                 |                        |                          | $1.92 \pm 0.10 \pm 0.07$ | $140\pm13\pm20$          |
| $f_2(1270)$     | $7.5 \pm 0.8 \pm 0.7$  | $+26.7 \pm 10.2 \pm 4.8$ | $0.86 \pm 0.09 \pm 0.07$ | $-106 \pm 11 \pm 10$     |
|                 |                        |                          | $1.13 \pm 0.08 \pm 0.05$ | $-128 \pm 11 \pm 14$     |
| Rescattering    | $16.4 \pm 0.8 \pm 1.0$ | $-66.4 \pm 3.8 \pm 1.9$  | $1.91 \pm 0.09 \pm 0.06$ | $-56 \pm 12 \pm 18$      |
|                 |                        |                          | $0.86 \pm 0.07 \pm 0.04$ | $-81 \pm 14 \pm 15$      |
| $\phi(1020)$    | $0.3 \pm 0.1 \pm 0.1$  | $+9.8 \pm 43.6 \pm 26.6$ | $0.20 \pm 0.07 \pm 0.02$ | $-52 \pm 23 \pm 32$      |
|                 |                        |                          | $0.22 \pm 0.06 \pm 0.04$ | $107 \pm 33 \pm 41$      |

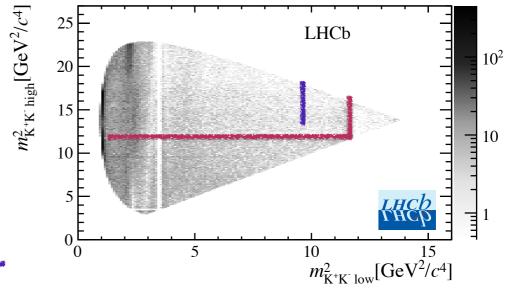

 $m_{\rm high} \, [{\rm GeV}/c^2]$ 


Data

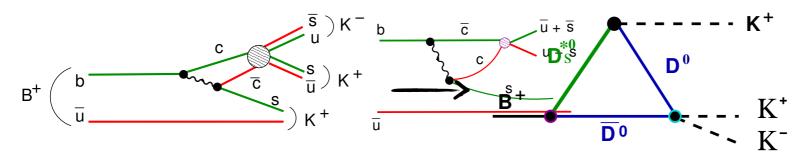
CPV high mass?



~  $D\bar{D}$  open channel ightharpoonup







same observed in coupled-channels

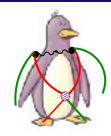
charm intermediate processes as source of strong phase

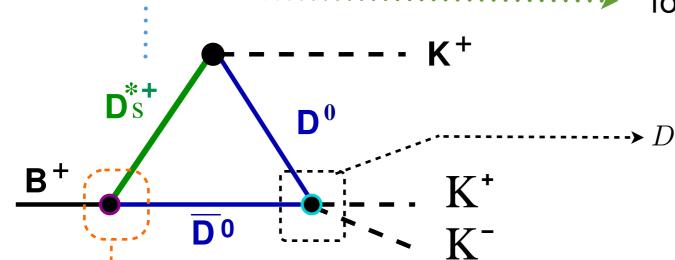
- $B^+ \to K^-K^+K^+$ 
  - high statistic 109k
  - nonresonant —> all phase-space
  - presence of charm resonances:  $\chi_{c0}$   $J/\psi$



dominated by penguin




### charm rescattering!


I. Bediaga, PCM, T Frederico PLB 780 (2018) 357

### hadronic loop

I. Bediaga, PCM,T Frederico PLB 780 (2018) 357







----->  $D^0 \bar{D^0} \rightarrow K^+ K^-$  scattering amplitude

### phenomenological:

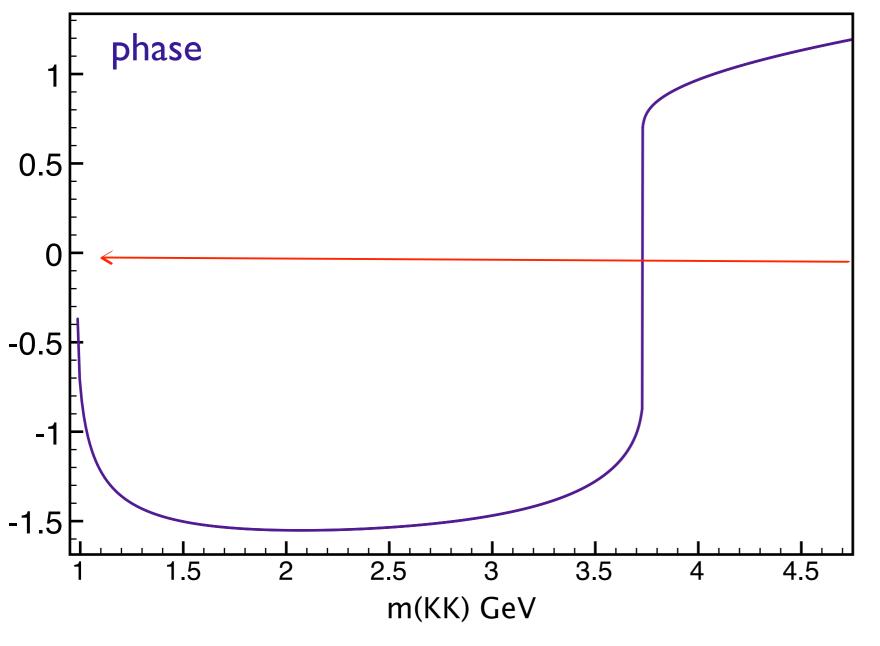
S- matrix unitarity + Regge theory

- ullet  $Br\left[B o DD_s^*
  ight]$  ~1%  $\longrightarrow$  1000 x  $Br\left[B o KKK
  ight]$
- hadronic loop three-body FSI introduce new complex structures

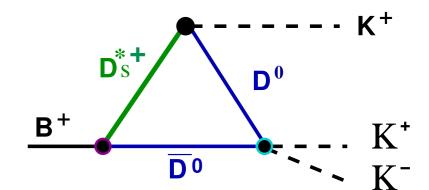
•• weak transition  $B^+ \to W^+ \bar{D^0}$  ••  $C_0 \times$  form factor to regulate

• 
$$B^+ \to \pi^+ \pi^- \pi^+$$

PCM & I Bediaga arXiv:1512.09284

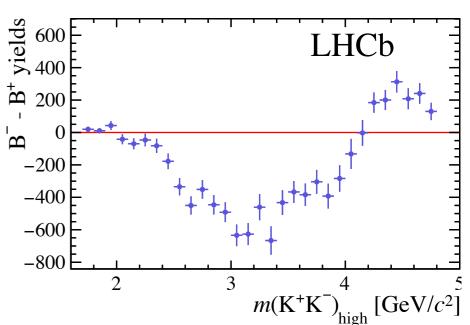

PCM & M Robilotta
PRD 92 094005 (2015) [arXiv:1504.06346]
PCM et al

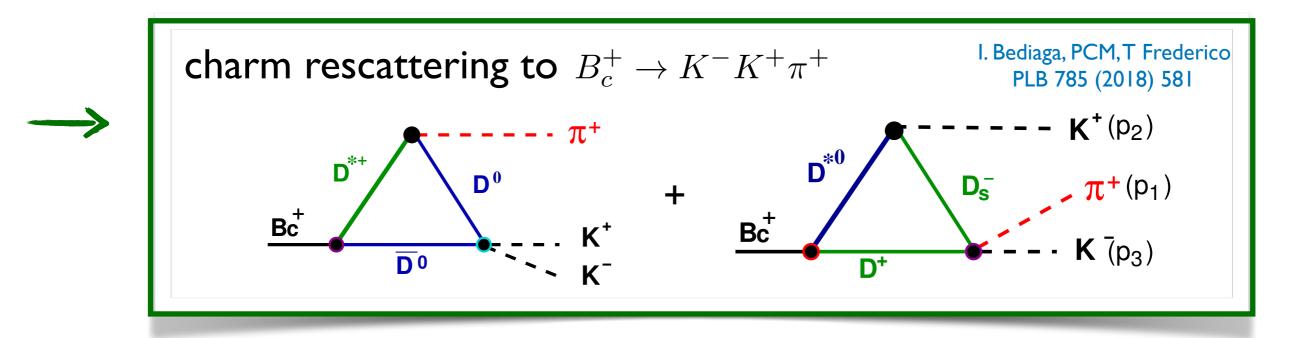
PRD 84 094001 (2011 ) [arXiv:1105.5120]

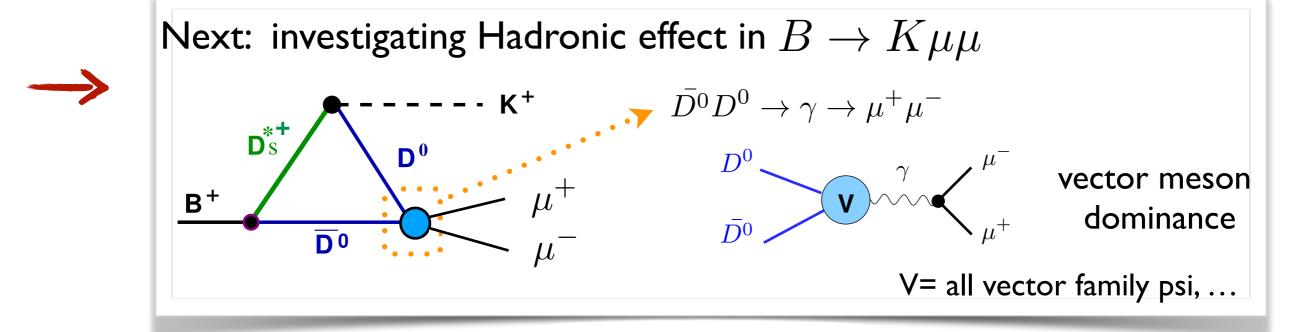

 $\pi^+$  (1)

### hadronic loop

• 
$$A = iC \ m_a^2 \int \frac{d^4\ell}{(2\pi)^4} \ \frac{T_{\bar{D^0}D^0 \to KK}(s_{23}) \left[-2 \, p_3' \cdot (p_2' - p_1)\right]}{\Delta_{D^{+*}} \Delta_{D^0} \, \Delta_{\bar{D^0}} \, \Delta_a} \ ,$$





can explain change CPV signal in DP!!!




Phase change signal in the same region as Acp data

Promising mechanism!







How much of the anomalies can be understood as hadronic effects?

### FSI are important and play a major role in hadronic 3-body decays!

- -> superposition of resonant and non-resonant at low and high energy
- Charm rescattering in under intense investigation : CPV on B, exotics, anomalies, .....
- Lots of theoretical limitations to be developed:
  - need to merge the short and long distance descriptions!
  - extend the meson-meson interaction to high E, ...
- Successful examples of cooperation between theory and experiment !!!
  - → Important tool!

Thank you very much!



image credit: unknown

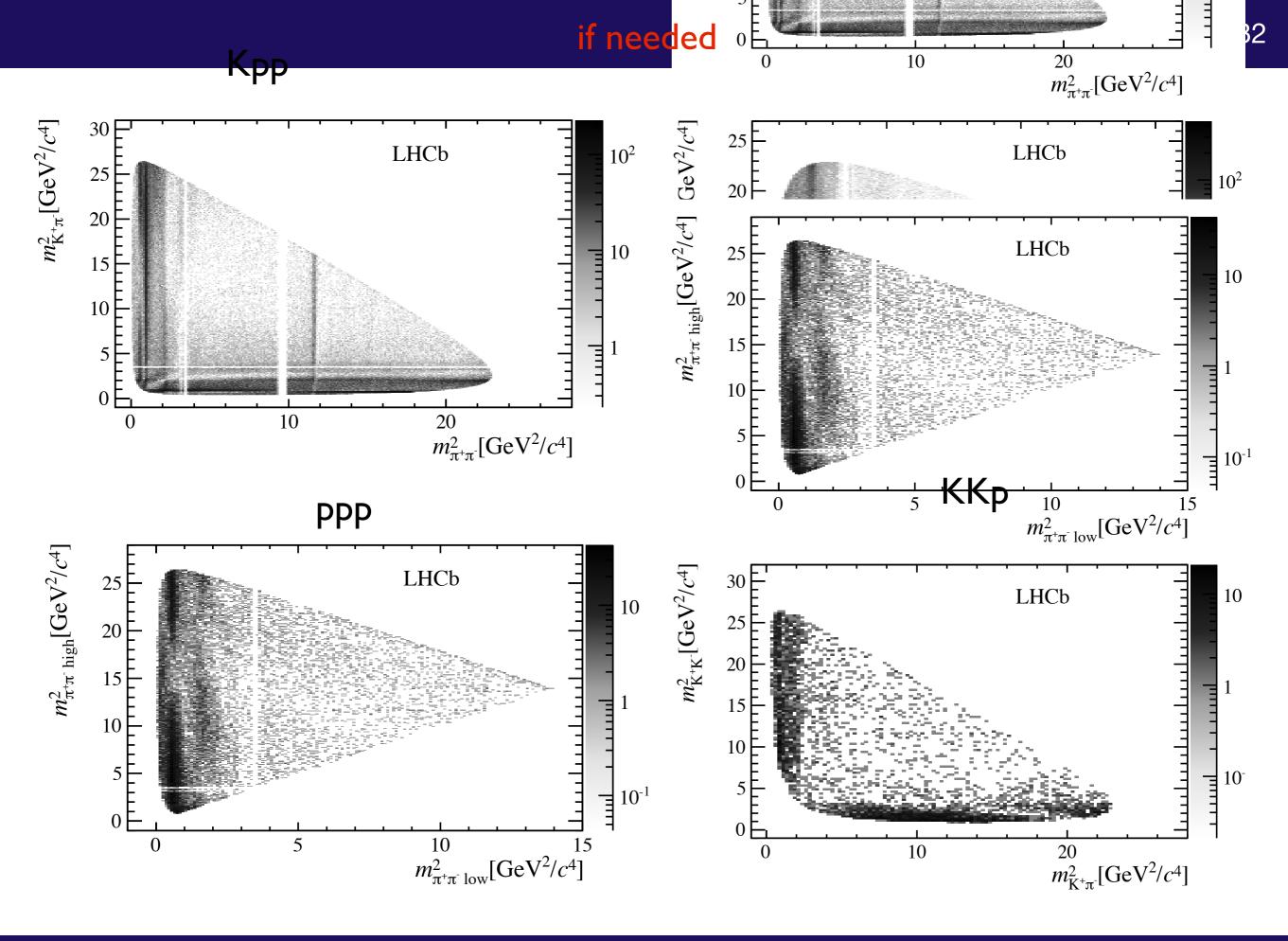
## Backup slides

### FSI in three-body decay:

### references

- I. Bediaga, I., T. Frederico, T. and O. Louren Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]
- J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren, Phys. Rev. D92, 054010 (2015) [ArXiv:1506.08332].
- PC Magalhães and I Bediaga arXiv:1512.09284;
- P. C Magalhães and R.Robilotta, Phys. Rev. D92 094005 (2015) [arXiv:1504.06346]; P.C.Magalhães et. al. Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 (2012).
- I. Caprini, Phys. Lett. B 638 468 (2006).

Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner, Eur. Phys. J. C 63 93 (2009).


F Niecknig and B Kubis - JHEP 10 142 (2015) ArXiv:1509.03188

- H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).
- S. X. Nakamura, arXiv:1504.02557 (2015).
- J. -P. Dedonder, A. Furman, R. Kaminski, L. Lesniak, L. and B. Loiseau, Acta Phys. Polon. B42, 2013 (2011), [Arxiv: 1011.0960]
- J.-P. Dedonder, R. Kaminski, L. Lesniak, and B. Loiseau, , Phys. Rev.D89, 094018 (2014).

Donoghue et al., Phys. Rev Letters 77(1996) 2178;

Suzuki, Wolfenstein, Phys. Rev. D 60 (1999)074019; Falk et al. Phys. Rev. D 57,4290(1998); Blok, Gronau, Rosner, *Phys. Rev Letters* 78, 3999 (1997).

many more ...

