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● Primer: Neutrino Oscillations

● Introduction to DUNE

● The PRISM Concept
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sector?

Could neutrino sector CP 
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the remaining neutrino 
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Is there significant CP 
violation in the neutrino 

sector?

Could neutrino sector CP 
violation explain the 

matter/anti-matter asymmetry?

What is the mass ordering of 
the neutrino mass states?

What are the precise values of 
the remaining neutrino 
oscillation parameters?

I believe that the biggest barrier to 
progress is neutrino interaction 

mis-modelling.
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● Three generations of matter:
○ Three neutrinos paired with charged 

leptons: electron, muon, tau.

● Neutrinos are:
○ Electro-magnetically neutral
○ Massless within the standard model
○ Interact via mainly via the weak force.
○ Absurdly abundant
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PhysRevLett.113.101101
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Pontecorvo–Maki–Nakagawa–Sakata

Interaction with matter in flavor 
eigenstate defined by charged 
lepton.
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Pontecorvo–Maki–Nakagawa–Sakata

Journal of Physics G: Nuclear and Particle Physics. 43. 10.1088/0954-3899/43/8/084001

Interaction with matter in flavor 
eigenstate defined by charged 
lepton.

Which mass ordering?
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e.g. created as muon neutrinos

Pontecorvo–Maki–Nakagawa–Sakata

Propagate as 
superposition of 
mass/energy  
eigenstates.

Interaction with matter in flavor 
eigenstate defined by charged 
lepton.
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Propagate as 
superposition of 
mass/energy  
eigenstates.

Pontecorvo–Maki–Nakagawa–Sakata

Projecting back to flavor 
eigenstates reveals a different 
flavor mixture.
(if |𝚫m2

ij| ≠ 0)

Interaction with matter in flavor 
eigenstate defined by charged 
lepton.

e.g. created as muon neutrinos

L = 295 km
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● Unitarity lets us re-parameterize PMNS matrix in terms of:
○ Three mixing angles: Cij = cos(θij)
○ CP violating phase: 0<δCP<2𝛑

SolarReactorAtmospheric
/Accelerator



L. Pickering    14

● To leading order, muon 
neutrino survival probability 
depends on mixing angles, 
and mass-squared splittings.
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𝚫m2

● To leading order, muon 
neutrino survival probability 
depends on mixing angles, 
and mass-squared splittings.

● Choose L/E for                           
maximum effect: 

L = 295 km
𝚫m32 = 2.56 x10-3 eV2

First maximum
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● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter.
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● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter. No CPV

Maximal CPVWhat is the value of δCP?
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● Electron neutrino appearance 
probability has ‘CP odd’ term.
○ Sign flip between matter and 

antimatter. No CPV

Maximal CPV

Most sensitive to δCP when other 
parameters are known precisely
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● Evidence for neutrino oscillation is 
overwhelming: c.f. 2015 Nobel Prize

● We know: all mixing angles and 
both mass-squared splittings ≠ 0.

PDG 2018: 
Neutrino Masses, Mixing, and Oscillations

Phys. Rev. D97, 072001 (2018)
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● Evidence for neutrino oscillation is 
overwhelming: c.f. 2015 Nobel Prize

● We know: all mixing angles and 
both mass-squared splittings ≠ 0.

● Search for CP violation in the 
neutrino sector—i.e. measure δCP

○ Most sensitivity when other parameters 
are well known

○ Current generation experiments have 
some sensitivity to δCP, but disagree on 
the best fit...

○ Need new experiment for definitive  
'five sigma' result...

Nature 580 7830 p339 (2020)

https://www.nature.com/articles/s41586-020-2177-0
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● Unprecedented 
sensitivity to osc. 
params.

● Measurement of 𝛅CP 
and mass ordering

● Solar 𝛎’s
● Geo 𝛎’s
● SN 𝛎’s
● Banana 𝛎’s

● NSI
● Sterile 𝛎’s
● Cross 

sections

● >1100 Collaborators
● 34 Countries

Collaboration PMNS Oscillations Rich Physics Program
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and mass ordering

● NSI
● Sterile 𝛎’s
● Cross 
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● >1100 Collaborators
● 34 Countries

Collaboration PMNS Oscillations Rich Physics Program
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● Sample osc. beam
● Infer osc. params

● Sample unosc. beam
● Constrain flux*xsec

● Produce 
neutrino beam
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● Infer osc. params

● Sample unosc. beam
● Constrain flux*xsec

● Produce 
neutrino beam
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Proton beam

Fixed target
π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons
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Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.
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Fixed target
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π+

π-

𝛎

𝛍+
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mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
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● This secondary beam of particles decays to produce neutrinos.
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● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos

Neutrino mode, focussing positive particles

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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● Proton beam strikes a fixed target producing secondary hadrons: 
mostly pions and kaons

● These are sign-selected and focussed by one or more magnetic 
horns.

● This secondary beam of particles decays to produce neutrinos.

● The horn current can be inverted to produce mostly anti-neutrinos

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

Anti-neutrino mode, focussing negative particles

𝛍-

𝛎
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π
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𝛎
𝛍

π
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K. Duffy Thesis

𝛎
𝛍

π

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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● Boosted π decay kinematics result in lower energy neutrinos off beam 
axis.

K. Duffy Thesis

𝛎

𝛍𝛎
𝛍

π

https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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● Boosted π decay kinematics result in lower energy neutrinos off beam 
axis.

○ Exploited by T2K and NOvA to achieve narrow-band beam for maximal oscillation signal 
at first oscillation maximum

Phys. Rev. D 87, 012001

K. Duffy Thesis

J-PARC neutrino flux

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.012001
https://link.springer.com/book/10.1007%2F978-3-319-65040-1
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● By contrast, DUNE will use an on axis, wide band beam:
○ Access to physics at higher order oscillation maxima

First maximum

Second maximum
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Numus.

. Beam .

● By contrast, DUNE will use an on axis, wide band beam:
○ Access to physics at higher order oscillation maxima

● Unprecedented neutrino interaction rate

C. Wilkinson
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● Sample osc. beam
● Infer osc. params

● Sample unosc. beam
● Constrain flux*xsec

● Produce beam
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● ArgonCube: LAr TPC
○ Primary target, similar to FD

ArgonCube

𝛎

ArgonCube FV MPD FVDUNE Preliminary

𝛎
𝛎

𝛎

𝛎 MPD
SAND
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● ArgonCube: LAr TPC
○ Primary target, similar to FD

● MPD: GAr TPC + ECal + 
Low mass magnet

○ Charge/momentum/PID
○ Low threshold neutrino 

target

ArgonCube FV MPD FVDUNE Preliminary

ArgonCube

𝛎
𝛎

𝛎

𝛎

𝛎 MPD
SAND
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● ArgonCube: LAr TPC
○ Primary target, similar to FD

● MPD: GAr TPC + ECal + 
Low mass magnet

○ Charge/momentum/PID
○ Low threshold neutrino 

target

● SAND: 3D plastic 
scintillator detector inside 
a superconducting 
solenoid:

○ Beam monitor

ArgonCube FV MPD FVDUNE Preliminary

ArgonCube

𝛎
𝛎

𝛎

𝛎

SAND

𝛎 MPD
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LArGONGArGON
CarBON

https://hiveminer.com/Tags/gargon/

https://hiveminer.com/Tags/gargon/
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● Sample osc. beam
● Infer osc. params

● Sample unosc. beam
● Constrain flux*xsec

● Produce beam
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● 4x10 kT LAr TPCs

SURF underground
facilities

R. Patterson FNAL, JETP

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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● 4x10 kT LAr TPCs:
○ Unprecedented FD event resolution

Surviving 𝜈𝜇

SURF underground
facilities

Appeared 𝜈e

R. Patterson FNAL, JETP

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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Surviving 𝜈𝜇

● 4x10 kT LAr TPCs:
○ Unprecedented FD event resolution and event rate!

SURF underground
facilities

R. Patterson FNAL, JETP

DUNE Preliminary DUNE Preliminary

Appeared 𝜈e

http://vmsstreamer1.fnal.gov/Lectures/WC/presentations/190802Patterson.pdf
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● Shouldn’t be too hard
○ Sophisticated detectors
○ Powerful neutrino beams

● Look for signature 
'oscillation' shape in flux at 
the 'far' detector...

DUNE Far Det.
Unoscillated
Oscillated
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Get rid of xsec if time

Phys. Rev. Lett. 121, 171802

● Mass-squared splitting shifts the 
‘dip’

● Mixing angle determines the 
depth of the ‘dip’

𝚫
𝛘2

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.171802
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● Look for signature ‘oscillation’ shape in flux at the far detector

DUNE Far Det.
Unoscillated
Oscillated
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● Look for signature ‘oscillation’ shape in flux at the far detector

DUNE Far Det.
Unoscillated
OscillatedBut...
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● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the flux, only the event rate
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Number of 
events = Flux Cross 

section∙

𝛎

𝛎

𝛎

● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the flux, only the event rate
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Number of 
events = Flux Cross 

section∙

𝛎

𝛎

𝛎

● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the flux, only the event rate

Number of 
events

Flux Cross 
section∙
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Number of 
events = Flux Cross 

section∙

𝛎

𝛎

𝛎

● Look for signature ‘oscillation’ shape in flux at the far detector

● We cannot observe the flux, only the event rate

Number of 
events

Flux Cross 
section∙

But...
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● Look for signature ‘oscillation’ shape in flux at the far detector…

● We cannot observe the flux, only the event rate

● We have to reconstruct the energy from observables

𝛎

𝛎

𝛎

Number of 
observed 

events
= Flux Cross 

section∙ ∙ Detector 
effects



L. Pickering    63

● Look for signature ‘oscillation’ shape in flux at the far detector…

● We cannot observe the flux, only the event rate

● We have to reconstruct the energy from observables

𝛎

𝛎

𝛎

Number of 
observed 

events
= Flux Cross 

section∙ ∙ Detector 
effects
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● Wiggle model parameters at the Near Detector

Phys. Rev. D 96, 092006

Near 
detector 
data

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006


L. Pickering    66

Phys. Rev. D 96, 092006

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section) 

Near 
detector 
data

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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Phys. Rev. D 96, 092006

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 

Near 
detector 
data

Far 
detector 
data

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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Phys. Rev. D 96, 092006

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 

● Infer oscillation parameters from observed data

Near 
detector 
data

Far 
detector 
data

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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Phys. Rev. D 96, 092006

● Wiggle model parameters at the Near Detector
○ Uses near detector data to constrain model parameters (flux, detector, cross section)

● Trust model + uncertainties to predict far detector data for a given 
oscillation hypothesis. 

● Infer oscillation parameters from observed data

Near 
detector 
data

Traditional Oscillation Analyses: Tune model with near 
detector data, and have to assume it is correct at the far 
detector.

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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● What if the model isn't correct? We can end up:
○ ⇒ Attributing data/MC discrepancy to the wrong energy range at the near detector
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● What if the model isn't correct? We can end up:
○ ⇒ Attributing data/MC discrepancy to the wrong energy range at the near detector
○ ⇒ Predicting an incorrect observed far detector spectrum 
○ ⇒ Exacting biased oscillation parameters.

Phys. Rev. D 91, 072010

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
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● Uncertain 'missing energy' for 
interactions with bound nucleons.

●

Neutrino CCQE

Nucleus
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visible muon energy for the same 
true neutrino energy.
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● Uncertain 'missing energy' for 
interactions with bound nucleons.

● More missing energy → less 
visible muon energy for the same 
true neutrino energy.

● Incorrect prediction at far detector 
induces significant biases in 𝚫m23 

Neutrino CCQE

Nucleus

E
ve

n
ts

/5
0

 M
eV

Expected 
sensitivity

Mis-modelled 
missing energy

𝚫m2
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● Why can we not just look at near/far ratio?

Number of near 
detector events = Flux Cross 

section
Detector 
effects∙ ∙

Number of far 
detector events = Flux Cross 

section
Detector 
effects∙ ∙Oscillation 

probability ∙

Want to know this
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○ Convolution of detector effects with flux ∙ cross section
○ Cannot directly compare near and far observables to extract oscillations
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● Why can we not just look at near/far ratio?
○ Because it isn't that simple...
○ Convolution of detector effects with flux ∙ cross section
○ Cannot directly compare near and far observables to extract oscillations

What if we could make near detector measurements, 
in an oscillated flux?

Want to know this
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● Sample different fluxes at different 
off axis angles.

DUNE Preliminary
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● Sample different fluxes at different 
off axis positions.

DUNE Preliminary

33 m

𝛎

𝛎 𝛎

𝛎
𝛎
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● Sample different fluxes at different 
off axis positions.

LBNF 574 m
Near hall
prediction

DUNE Preliminary

DUNE Preliminary

33 m

𝛎

𝛎 𝛎

𝛎
𝛎
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33 m● Sample different fluxes at different 
off axis positions.

LBNF 574 m
Near hall
prediction

DUNE Preliminary

DUNE Preliminary
𝛎

𝛎 𝛎

𝛎
𝛎
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● Sample different fluxes at different 
off axis positions.

LBNF 574 m
Near hall
prediction

33 m

DUNE Preliminary

DUNE Preliminary
𝛎

𝛎 𝛎

𝛎
𝛎
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● Sample different fluxes at different 
off axis positions.

LBNF 574 m
Near hall
prediction

33 m

𝛎

𝛎 𝛎

𝛎
𝛎

DUNE Preliminary

DUNE Preliminary
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● Sample different fluxes at different 
off axis positions.

LBNF 574 m
Near hall
prediction

33 m

𝛎

𝛎 𝛎

𝛎
𝛎

DUNE Preliminary

DUNE Preliminary
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sines and cosines
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● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075
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● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075

Fr
eq

u
en

cy

Ti
m

e



L. Pickering    92

● Approximate function as a linear sum of 
sines and cosines

By Original by en:User:Glogger, vectorization by User:SidShakal. - 
Hand-traced in Inkscape, based on 
Image:Fourierop_rows_only.png., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3570075
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● Would like to approximate an oscillated far detector flux at the near 
detector

DUNE Preliminary
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● Would like to approximate an oscillated far detector flux at the near 
detector: Try a linear sum of off axis near detector fluxes!

○ Determine a linear combination of near detector off axis fluxes that reproduces the 
oscillated far detector flux.

DUNE Preliminary
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● Use the 2D flux prediction at the near detector to approximate an 
oscillated far detector flux

○ Determine a linear combination of near detector off axis fluxes that reproduces the 
oscillated far detector flux.

DUNE Preliminary
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● Use the PRISM method to build: 
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● Use the PRISM method to build:
● Cross sections are not position dependent
● When we pick the correct oscillation hypothesis:

○ Signal event rates are the same near and far! 

The novel DUNE-PRISM Technique: Make near detector 
measurements in oscillated far detector fluxes!
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DUNE Preliminary

● Have so far been matching fluxes 

X = Predicted FD 
Flux
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● Have so far been matching fluxes:
○ PRISM flux matching only depends on the off axis position of an interaction
○ Can use the same linear combination coefficients for event rate.

X

Number of 
events = Flux Cross 

section∙

=
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Number of 
observed 

events
= Flux Cross 

section∙ ∙ Detector 
effects

● Have so far been matching fluxes:
○ PRISM flux matching only depends on the off axis position of an interaction
○ Can use the same linear combination coefficients for event rate.
○ Can predict the event rate in any near detector observable

X =
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● Elephant in the room
DUNE Preliminary
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● Elephant in the room
DUNE Preliminary
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● Have to correct for this mismatch 
by using far detector simulation:

○ Want to minimize model assumptions 
wherever possible…

DUNE Preliminary
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● Have to correct for this mismatch 
by using far detector simulation:

○ Want to minimize model assumptions 
wherever possible…

● This happens because no off axis 
fluxes peak higher than on axis

DUNE Preliminary

DUNE Preliminary

But what if we could use some that did 
peak higher?
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● If we vary the current in the magnetic horns, we change their 
momentum acceptance

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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● If we vary the current in the magnetic horns, we change their 
momentum acceptance:

○ For a lower current, some higher energy pions might not be well focussed...

Proton beam

Fixed target

Focussing horn 1 Focussing horn 2

π+

π-

𝛎

𝛍+
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Ratio to 293 kA
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Ratio to 293 kA● Small variations are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 
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Ratio to 293 kA● Small variation are better:
○ Less change in far detector 

exposure

● Lower currents are better:
○ Current horn and power supply 

designed with 293 kA as the 
operating current. 

● 280 kA looks useful
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● Including an on-axis run at 
280 kA drastically improves 
the flux matching!

○ Much less far detector model 
correction required.
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● Now we can predict the far 
detector event rate using a 
linear combination of near 
detector observables!

Measured
ND Event Rate X

DUNE Preliminary

DUNE Preliminary

=
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● As the majority of the 
prediction is rearranged near 
detector data:

○ PRISM transfers near detector 
'constraint' even if the near 
detector sample is mis-modelled.

DUNE Preliminary
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● As the majority of the 
prediction is rearranged near 
detector data:

○ PRISM transfers near detector 
'constraint' even if poorly 
modelled.

● In a traditional analysis, the 
whole spectrum would be 
'correction'.

DUNE Preliminary

PRISM Oscillation Analysis: Rearranges near 
detector data to predict far detector 
observables with minimal dependence on 
interaction models.
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the near detector data well, but E𝛎

True⇒E𝛎
Obs  is 

wrong.
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● Case Study:
○ Move 20% of proton KE to neutrons but on-axis ND fit 

still works well
○ Clearly visible off axis

DUNE Preliminary

DUNE Preliminary



L. Pickering    125

On axis

● What if the model is wrong but it was missed?

● Can imagine a world where the model predicts 
the near detector data well, but E𝛎

True⇒E𝛎
Obs  is 

wrong.

● Case Study:
○ Move 20% of proton KE to neutrons but on-axis ND fit 

still works well
○ Clearly visible off axis
○ But not obvious how to handle it in a traditional 

analysis...

DUNE Preliminary

DUNE Preliminary
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● If we had trusted the on axis 
near detector constraint:

○ We would make a poor prediction 
of the data, even with the correct 
oscillation hypothesis.
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● If we had trusted the on axis 
near detector constraint:

○ We would make a poor prediction 
of the data, even with the correct 
oscillation hypothesis.

○ Would have extracted biased 
results, well outside quoted error 
estimates.

● What about if we ask PRISM?
○ The direct extrapolation of near 

detector data largely side-steps 
the modelling problem!
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● What might have been the 
best fit?

○ In this case, the traditional 
analysis would be badly biased.

PDG 3σ Error

True 
value
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● What might have been the 
best fit?

○ In this case, the traditional 
analysis would be badly biased.

● Oscillation parameters were 
varied to make up for a 
mismodelling.

● For this study, PRISM showed 
no such bias.

PDG 3σ Error

True 
value
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● PRISM is now part of the DUNE 
reference design.

● A mobile near detector renders 
mis-modelling much easier to 
identify

● The novel PRISM analysis uses an 
extra degree of freedom and uses 
it to build a robust oscillation 
analysis, largely free of interaction 
model dependence



Thanks for listening

L. Pickering    
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● Firstly, the 'true' MC stats 
error:

○ I.e. what I have been showing 
as the 'error' on the PRISM FD 
prediction.

● Comes from the actual 
simulated MC exposure.

○ Equivalent to 0.82 years with a 
(now known to be) 
sub-optimal exposure plan.
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Special 
HC run 
POT

● Now, set ND errors to be sqrt(predicted 
rate).

● CDR run plan, with 3.5 years POT
● Very hard to see, but the CDR plan 

predicts slightly worse errors than a flat 
plan.

○ Haven't looked in to why, but now have the 
tools!
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NuFit 4.0
T2K2018
NOvA2018

DUNE Preliminary

http://ursaminorbeta.org.uk/neut/osc/osc.html
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Try it yourself!

NuFit 4.0
T2K2018
NOvA2018

DUNE Preliminary

http://ursaminorbeta.org.uk/neut/osc/osc.html
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● Also of interest to construct 
narrow band flux 
measurements.

Gaussian
Best match

DUNE Preliminary
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● Also of interest to construct fine 
band flux measurements.

○ Can be used to probe the ‘true’ 
reconstructed energy bias and 
inform simulation improvements

E. Smith, NOvA, NUFACT2019

Gaussian
Best match

DUNE Preliminary

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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● Wiggle model parameters at the ND

Phys. Rev. D 96, 092006

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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Phys. Rev. D 96, 092006

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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● Wiggle model parameters at the ND
● Get correlated flux/xsec uncertainties
● Make predictions at the FD

Phys. Rev. D 91, 072010
Phys. Rev. D 96, 092006

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
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● Wiggle model parameters at the ND
● Get correlated flux/xsec uncertainties
● Make predictions at the FD
● Infer oscillation parameters

Phys. Rev. D 91, 072010
Phys. Rev. D 91, 072010Phys. Rev. D 96, 092006

Phys. Rev. Lett. 123, 151803

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.151803
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● Wiggle model parameters at the ND
● Get correlated flux/xsec uncertainties
● Make predictions at the FD
● Infer oscillation parameters

Phys. Rev. D 91, 072010
Phys. Rev. D 91, 072010Phys. Rev. D 96, 092006

Phys. Rev. Lett. 123, 151803

One Line: Tunes model to ND, assumes it is correct at FD*

*Two line: The T2K MaCh3 Analysis performs a simultaneous ND+FD fit

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.092006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.151803
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1. Measure observed event rate at the near detector

E. Smith, NOvA, NUFACT2019

*WSB: Wrong Sign Background (nubar in nu-mode)

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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1. Measure observed event rate at the near detector
2. Use MC to predict true event rate at the near detector

E. Smith, NOvA, NUFACT2019

*WSB: Wrong Sign Background (nubar in nu-mode)

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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1. Measure observed event rate at the near detector
2. Use MC to predict true event rate at the near detector
3. Oscillate and correct for ND/FD differences

E. Smith, NOvA, NUFACT2019

*WSB: Wrong Sign Background (nubar in nu-mode)

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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1. Measure observed event rate at the near detector
2. Use MC to predict true event rate at the near detector
3. Oscillate and correct for ND/FD differences
4. Use MC to predict observed event rate at the far detector
5. Infer oscillation parameters

E. Smith, NOvA, NUFACT2019

*WSB: Wrong Sign Background (nubar in nu-mode)

Phys. Rev. Lett. 123, 151803

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.151803
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1. Measure observed event rate at the near detector
2. Use MC to predict true event rate at the near detector
3. Oscillate and correct for ND/FD differences
4. Use MC to predict observed event rate at the far detector
5. Infer oscillation parameters

E. Smith, NOvA, NUFACT2019

*WSB: Wrong Sign Background (nubar in nu-mode)

Phys. Rev. Lett. 123, 151803

One Line: Extrapolates ND data by 
assuming model prediction for E𝛎

Obs 
to E𝛎

True relationship.

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.151803
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● Flux fit correction seems a bit large dunnit?

● You’ve only shown one set of oscillation parameters, does it work 

over the whole allowed space?

● How do you do an appearance analysis…?

● Can you build any other interesting fluxes?

● The ND and FD are functionally un-identical though...

● Right, but do the flux uncertainties still cancel?
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● For appearance, cannot 
match ND 𝛎e ⇒ FD 𝛎e

● Instead: 
○ Use ND 𝛎𝛍 sample
○ Build appeared FD 𝛎e flux 

FD 𝛎𝛍→𝛎e

FD 𝛎𝛍→𝛎𝛍

DUNE Preliminary

DUNE Preliminary



L. Pickering    161

● For appearance, cannot 
match ND 𝛎e ⇒ FD 𝛎e

● Instead: 
○ Use ND 𝛎𝛍 sample
○ Build appeared FD 𝛎e flux 

● Have to correct for 
electron/muon 
reconstruction & 
cross-section differences.

FD 𝛎𝛍→𝛎e

FD 𝛎𝛍→𝛎𝛍

DUNE Preliminary

DUNE Preliminary
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ND  𝛎e/𝛎𝛍

● Sample ND 𝛎e flux while 
scanning off axis angle.

● 𝛎e produced in 3-body decay: 
relative rate rises off axis.

○ Match ND 𝛎𝛍 to ND 𝛎e

● Use to check simulation of 
cross-section and 
reconstruction for 𝛎𝛍 and 𝛎e in 
a similar flux

DUNE Preliminary
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ND/FD selection.

● Want to avoid asking the 
simulation everywhere possible.
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● Must correct for differences in 
ND/FD selection.

● Want to avoid asking the 
simulation everywhere possible.

● An idea: develop data-driven 
geometric efficiency correction

○ How often would I have selected this 
energy deposit under relevant 
symmetry transformations

✘

✘✔
✔ ✔

Hadronic Showers
Muons

ND
LAr

FV
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simulation everywhere possible.

● An idea: develop data-driven 
geometric efficiency correction

○ How often would I have selected this 
energy deposit under symmetry 
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● Which events do I select at the 
FD and never see at the ND?
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● Must correct for differences in 
ND/FD selection.

● Want to avoid asking the 
simulation everywhere possible.

● An idea: develop data-driven 
geometric efficiency correction

○ How often would I have selected this 
energy deposit under symmetry 
transformations

● Which events do I select at the 
FD and never see at the ND?

● Also have to account for 
resolution difference ND/FD.

DUNE Preliminary

ND
LAr

FV
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● Flux fit correction seems a bit large dunnit?

● You’ve only shown one set of oscillation parameters, does it work 

over the whole allowed space?

● How do you do an appearance analysis…?

● Can you build any other interesting fluxes?

● The ND and FD are functionally un-identical though...

● Right, but do the flux uncertainties still cancel?
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● Study how flux errors affect the flux matching:
○ Determine flux match coefficients for nominal prediction
○ Apply the same coefficients to systematically varied 

ND/FD predictions.

● Here: hadron production uncertainties: 
○ e.g. two specific systematic universes

DUNE PreliminaryDUNE Preliminary
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● Study how flux errors affect the flux matching:
○ Determine flux match coefficients for nominal prediction
○ Apply the same coefficients to systematically varied 

ND/FD predictions.

● Here: 100 universes used in the TDR analysis
○ Cancellations down to a few percent still observed!

DUNE Preliminary
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𝛎
● DUNE-PRISM born out of earlier work to build 

a mobile Water Cherenkov detector in the 
J-PARC beam for Hyper-K.

● J-PARC PAC Proposal

arXiv:1412.3086 [physics.ins-det]

4o

1o

50
 m

https://j-parc.jp/researcher/Hadron/en/pac_1507/pdf/P61_2015-5.pdf
https://arxiv.org/abs/1412.3086
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● Elephant in the room

DUNE Preliminary
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● Flux fit correction seems a bit large dunnit?
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● Almost there, but we still have to deal with:
○ Making event rate predictions

○ Extrapolating observable quantities

○ Imperfect FD flux matching

○ Matching FD 𝛎e appearance spectrum 

○ ND and FD backgrounds

○ ND/FD selection and reconstruction differences
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● For appearance, cannot 
match ND 𝛎e ⇒ FD 𝛎e
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● For appearance, cannot 
match ND 𝛎e ⇒ FD 𝛎e

● Instead: 
○ Use ND 𝛎𝛍 sample
○ Build appeared FD 𝛎e flux 

● More in a few slides...

FD 𝛎𝛍→𝛎e

FD 𝛎𝛍→𝛎𝛍
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● Almost there, but we still have to deal with:
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○ ND/FD selection and reconstruction differences
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● So far we have just been talking about 
signal, and assuming ND and FD are 
functionally identical.

● Extra steps needed:
○ Subtract ND backgrounds
○ Add FD backgrounds
○ ND/FD efficiency differences
○ ND/FD reconstruction differences.

NC event 
rate at ND

Wrong 
sign event 
rate at ND



L. Pickering    185

● So far we have just been talking about 
signal, and assuming ND and FD are 
functionally identical.

● Extra steps needed:
○ Subtract ND backgrounds
○ Add FD backgrounds
○ ND/FD efficiency differences
○ ND/FD reconstruction differences.

NC event 
rate at ND

Wrong 
sign event 
rate at ND



L. Pickering    186

● Lots of simulation and analysis investigations still to do

● If you are:
○ Interested in the technique,
○ you can think of other ways of using off axis fluxes,
○ or just want to ask more questions
○ Or have great ideas for a logo...

● Get in touch!

L. Pickering        G. Yang              D. Douglas          C. Vilela                 T. Lord               M. Wilking                   

H. Tanaka                 K. Mahn                  
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● Wiggle systematics at ND and 
FD simultaneously

ND

FD

DUNE Preliminary DUNE Preliminary DUNE Preliminary
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ND FD

One Line: Similar to T2K, simultaneous ND and FD
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● Wiggle systematics at ND and 
FD simultaneously

● Search for best fit oscillation 
parameter values

DUNE Preliminary DUNE Preliminary DUNE Preliminary

ND

FD

ND FD

One Line: Similar to T2K, simultaneous ND and FD
Jazz hands OA!

DUNE Preliminary
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E. Smith, NOvA, NUFACT2019

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
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E. Smith, NOvA, NUFACT2019

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf


L. Pickering    194

E. Smith, NOvA, NUFACT2019

● If the models predicting Observable → True mappings 
are wrong then it is likely that inferred oscillation 
parameter constraints will also be wrong.

● … So we need them to be right!

J. Wolcott, NOvA, NUFACT2018

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf
https://indico.phys.vt.edu/event/34/contributions/710/attachments/607/771/2018-08-17_Wolcott_XS_unc_on_NOvA_osc_-_NuFACT.pdf
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C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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● Reweighting/Fake data 
technique that is being 
used more on T2K and 
DUNE (originated in 
Collider land).

● Get BDT to give you event 
weights that make your 
nominal MC look like 
something else in many 
distributions at once (but 
get the correlations 
correct).

C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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C. Vilela: DUNE Jan 2019

https://indico.fnal.gov/event/16764/session/14/contribution/51/material/slides/0.pdf
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● There are limits to this 
technique, but they’re much 
further off than 
multi-dimensional histogram 
reweighting.

● It’s still reweighting, cannot 
change total phase space.

● Doesn’t always produce a 
consistent model, for medium 
sized sets, weights can be 
noisey.
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● Can make flux predictions under 
different beam conditions:

○ e.g. Varied horn currents

● Seems to really change the game 
in terms of reducing the need for 
FD MC!

● Only need an on-axis sample: 
minimal disruption of FD data 
taking.

D. Douglas, T. Lord
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● If model isn’t correct:
○ ⇒ Attribute data/MC discrepancy to the wrong energy range at the ND
○ ⇒ Predict wrong FD spectrum

Phys. Rev. D 91, 072010

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.072010
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● If model isn’t correct:
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○ ⇒ Predict wrong FD spectrum

● Errors in:
○ Reconstructed energy

E. Smith, NOvA, NUFACT2019
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● If model isn’t correct:
○ ⇒ Attribute data/MC discrepancy to the wrong energy range at the ND
○ ⇒ Predict wrong FD spectrum

● Errors in:
○ Reconstructed energy ⇒ misplaced oscillation features in energy

E. Smith, NOvA, NUFACT2019

https://indico.cern.ch/event/773605/contributions/3498114/attachments/1897026/3130086/ESmith_NOvA_NuFACT2019_8-26-2019.pdf

