

First evidence of CNO neutrinos with Borexino

Barbara Caccianiga-INFN Milano

The Sun is powered by nuclear reactions occurring in its core

4 p $\rightarrow \alpha$ +2 e⁺ +2v (E released ~ 26 MeV)

- Neutrinos propagates from the core to the surface of the Sun in few seconds and then take only 8 minutes to reach the Earth;
- Unlike photons they provide a real time picture of the core of the Sun

 Φ (proton-proton chain v) ~6 x10 ¹⁰ v /cm²/sec

Solar neutrino spectrum

- Neutrinos propagates from the core to the surface of the Sun in few seconds and then take only 8 minutes to reach the Earth;
- Unlike photons they provide a real time picture of the core of the Sun

Solar neutrino spectrum

The glorious past

Astrophysics

Original motivation of the first experiments on solar v was to test Standard Solar Model (SSM);

Particle physics

Breakthrough! The solar neutrino problem provided one of the first hints towards the discovery of neutrino oscillations;

Both astrophysics and particle physics can greatly profit from a detailed knowledge of the solar neutrino spectrum

The importance of the CNO cycle

- In the Sun is subdominant; BUT
- It is dominant in more massive Stars

- A crucial process for energy production in the Stars;
- Never observed directly;

The importance of the CNO cycle: the solar metallicity puzzle

- Metallicity of the Sun: content of elements with Z>2;
- Metallicity is a crucial input parameter of the Standard Solar Model;
- Metallicity is obtained from spectroscopic measurement of the photosphere;
- The most recent re-evaluation of metallicity leads to values lower than previously obtained;
- The Standard Solar Model which uses in input the low metallicity (LZ-SSM) gives output at odds with the measurement from helioseismology (helioseismology== study of propagation of sound waves on the Sun's surface);
- The Standard Solar Model which uses in input the older metallicity (HZ-SSM) gives output in agreement with the measurements from helioseismology;

The importance of the CNO cycle: the solar metallicity puzzle

The predictions for CNO neutrinos depends on the input metallicity:

- Directly: CNO reactions depends directly on the content of C and N in the core of the Sun;
- Indirectly: CNO reactions (as pp-chain reactions) depends on temperature → which in turn depends on opacity → which in turn depends on metallicity

FLUX	High Metallicity (HZ)	Low Metallicity (LZ)	DIFF. (HZ-LZ)/HZ
pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)	6.03(1±0.005)	-0.8%
pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)	1.46(1±0.009)	-1.4%
⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)	4.50(1±0.06)	8.9%
⁸ B (10 ⁶ cm ⁻² s ⁻¹)	5.46(1±0.12)	4.50(1±0.12)	17.6%
¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)	2.04(1±0.14)	26.6%
¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	2.05(1±0.17)	1.44(1±0.16)	29.7%
¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)	3.261±0.18)	38.3%

Measuring the flux of CNO neutrinos could provide a crucial input to solve the puzzle;

Borexino under the Gran Sasso mountain

Borexino: the long story..

Borexino: essential ingredients (1)

For each scintillation event, we record

Borexino: essential ingredients (1)

For each scintillation event, we record

Number of collected photons (~ 500 p.e./MeV)

Time of arrival of collected photons @ each PMT

Actually much more complicated than this:

- Energy reconstruction is affected by nonlinearities (for example, quenching effect); also it depends on position and on particle type;
- σ(E) has non-Poissonian dependencies from E and also depends on position;
- Position reco and resolution are also energy and position dependent;
- It is crucial to be able of modeling correctly these effects (either analytically or with MonteCarlo simulations)

Borexino: essential ingredients (2)

Borexino detects neutrinos through scattering on electrons

$$v_x + e^- \rightarrow v_x + e^-$$

So, what we see is only the energy carried away by the electron NOT the total neutrino energy

Borexino: essential ingredients (2)

Spectrum simulation

So, what we see is only the energy carried away by the electron NOT the total neutrino energy

Borexino: essential ingredients (3)

Relatively high light yield (with respect, for example, to Cerenkov detectors)

Number of photons larger than random instrumental noise \rightarrow

- Low energy threshold is possible
- Hardware threshold~ 50 keV

Relatively good energy resolution \rightarrow

 Possibility to distinguish contributions from different signal/background in the energy spectrum;

Borexino: essential ingredients (4)

Scintillator light is not directional

 Signal cannot be separated from background using correlation with the Sun position

Extreem radiopurity needed!

Requirements

- The expected rate of solar neutrinos in BX is at most ~ 50 counts/day/100t which corresponds to ~ 5 10⁻⁹ Bq/Kg;
- Just for comparison:
 - Natural water is ~ 10 Bq/Kg in 238 U, 232 Th and 40 K
 - Air is ~ 10 Bq/m³ in ³⁹Ar, ⁸⁵Kr and ²²²Rn
 - Typical rock is ~ 100-1000 Bq/m³ in 238 U, 232 Th and 40 K

BX scintillator must be 9/10 order of magnitude less radioactive than anything on Earth!

15 years of work

- Internal background: contamination of the scintillator itself (²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - Solvent purification (pseudocumene): distillation, vacuum stripping with low Argon/Kripton N2 (LAKN);
 - Fluor purification (PPO): water extraction, filtration, distillation, N₂ stripping with LAKN;
 - Leak requirements for all systems and plants < 10⁻⁸ mbar · liter/sec;

• External background: γ and neutrons from surrounding materials

- Detector design: concentric shells to shield the inner scintillator;
- Material selection and surface treatement;
- Clean construction and handling;

Achievements

Internal background: contamination of the scintillator itself

- Contamination from ${}^{14}C \sim 2x10^{-18} {}^{14}C/{}^{12}C$ OK!
- Contamination from ²³⁸U chain ~10⁻¹⁷ g/g and ²³²Th chain ~5x×10⁻¹⁸ g/g; OK! More than one order of magnitude better than specifications!
- Contamination from ⁴⁰K not observed;
 OK!
- Contamination from ⁷Be (cosmogenic) not observed; OK!
- Contamination from ³⁹Ar <<1 cpd/100t
 OK!
- Some backgrounds out of specifications:²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi, ¹¹C) ← See later

External background: γ and neutrons from surrounding materials

Contribution in the relevant energy window ~3 counts/day/100t

The fight against background is not over...

Even in these high radiopurity conditions, we still have background events contaminating our solar neutrino signal;

We need to apply software cuts to data, in order to remove as much background as possible;

CUT 2 the innermost region of the scintillator is selected to reject external background

R<2.8 m -1.8 m<z<2.2 m

Residual backgrounds

- ¹⁴C: irreducible background in an organic scintillator. It decays β⁻ with an endpoint of 156 keV. It affects the low energy region (pp neutrinos);
- pile-up of events: it especially affects low-energies (pp neutrinos);

⁸⁵ Kr:	reduced in Phase-II by purifications	(pp, ⁷ Be neutrinos);
²¹⁰ Bi:	reduced in Phase-II by purifications	decays β^- with an
end-point of 1160 keV (pp, ⁷ Be, pep and CNO neutrinos);		

- ²¹⁰Po: reduced in Phase-II by natural decay
 ²³⁸U chain nor with
 ²¹⁰Pb; it decays with its livetime of ~ 200 days) (pp, ⁷Be, pep and CNO neutrinos);
- In C: produced by µ. It decays in 30 minutes → cannot be eliminated with the µ-daughter cut (pep and CNO neutrinos);

The search for CNO neutrinos

Extracting the CNO neutrino signal from data

Data set July 2016 – feb 2020 (after selection cuts)

Where are CNO neutrinos?

Strategy to extract the CNO neutrino signal from data (1)

Data set July 2016 – feb 2020 (after selection cuts)

Where are CNO neutrinos?

They are submerged by residual backgrounds like a needle in a haystack

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

MonteCarlo g4bx

- Based on Geant4;
- Full simulation of all processes: energy deposition, light production (scintillator and Cerenkov), propagation and collection;
- All known materal properties included;
- Known time variations of the detector included (for example, number of live PMTs and electronics channels);
- Tuned on calibration data of Phase-I;

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

- The spectral shapes are those determined with MC simulations;
- The rates of each species are the only free parameters of the fit;

Strategy to extract the CNO neutrino signal from data (2)

In addition to the spectral shapes we exploit the Three Fold Coincidence method to tackle 11C

¹¹C is produced by muons together with neutron(s);

The data-set is divided in two samples: one depleted in ¹¹C (TFC-subtracted) and one enriched in ¹¹C (TFC-tagged) which are simultaneously fit;

Strategy to extract the CNO neutrino signal from data (3)

In addition, the radial distribution of events is included in the fit

to improve the fit capability to disentangle external background

 The residual external background which is able of penetrating even inside the FV can be disentangled from events uniformly distributed in the volume by their radial distribution;

CNO neutrinos: the problem of ²¹⁰Bi

The main problem for the extraction of CNO neutrinos is ²¹⁰Bi;

THE PROBLEM

- The rate of CNO signal and ²¹⁰Bi is expected to be comparable;
- The spectral shape is very similar
 → the fit cannot disentangle the two contributions easily!

Need to determine the rate of ²¹⁰Bi independently in order to constrain it in the fit

CNO neutrinos: the problem of ²¹⁰Bi

The main problem for the extraction of CNO neutrinos is ²¹⁰Bi;

THE PROBLEM

- The rate of CNO signal and ²¹⁰Bi is expected to be comparable;
- The spectral shape is very similar
 → the fit cannot disentangle the two contributions easily!

Need to determine the rate of ²¹⁰Bi independently in order to constrain it in the fit

CNO neutrinos: the problem of ²¹⁰Bi

How can we measure the ²¹⁰Bi rate independently from the fit?

²¹⁰Bi comes from ²¹⁰Pb

²¹⁰Pb \rightarrow ²¹⁰Bi + β^{-} (τ =33y) ²¹⁰Bi \rightarrow ²¹⁰Po + β^{-} (τ =7d) ²¹⁰Po \rightarrow ²⁰⁶Pb + α (τ =200d)

 At secular equilibrium, the rate of rate(²¹⁰Po) = rate(²¹⁰Bi);

²¹⁰Po is relatively easy to count since it is a peak and it is an alpha → pulse-shape discrimination methods can be used;

- What is causing the large instabilities of the ²¹⁰Po rate?
- We realized they are strongly correlated to temperature variations

- The vessel containing the scintillator is contaminated with ²¹⁰Pb;
- Temperature variations are causing convective motions which bring ²¹⁰Po from the vessel into the scintillator;
- In these conditions the secular equilibrium is broken and the tagging of ²¹⁰Bi with ²¹⁰Po gives misleading results, since ²¹⁰Po is the sum of two contributions:
- ²¹⁰Po from the ²¹⁰Pb chain (rate= ²¹⁰Bi)
- ²¹⁰Po from the vessel

- Need to thermally stabilize the detector;
- Insulation of the detector with a 20cm-thick layer of rock wool (work completed in dec 2015)

- Thanks to the insulation the convective currents are significantly reduced;
- There is an innermost region almost free of convective currents (Low Polonium Field-LPoF);
- 2D fit to the LPoF to find the minimum

$$R_{\rm Po}(\rho, z) = R_{\rm Po}^b \left[1 + \frac{\rho^2}{a^2} + \frac{(z - z_0)^2}{b^2} \right]$$

• This gives an upper limit of the ²¹⁰Bi rate

R (²¹⁰Bi) < 11.5 +/- 1.3 counts/day/100t

We now have all the elements to extract CNO neutrinos from data;

STEP 1

Apply selection cuts to the dataset (July 2016-Feb 2020)

STEP 2

Multivariate fit including energy and radial distributions

- We have ~90000 events surviving the cuts in the energy region between 320 keV and 2.8 MeV
- The rate of signal and backgrounds are the free parameters of the fit:
 - Two exceptions:
 - ²¹⁰Bi: rate is costrained to the upper limit found by the ²¹⁰Po tag analysis (11.8 +/- 1.3 cpd/100t)
 - pep v rate is constrained to the value found by a global analysis of all solar experiments + luminosity constraint;

Systematic errors

 $R(CNO) = 7.2^{+2.9}_{-1.7}(stat)^{+0.6}_{-0.5}(sys) \rightarrow \Phi(CNO) = 7.0^{+2.9}_{-1.9} \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$

Results (including sys errors) Rate(CNO)= 7.2 ^{+3.0} _{-1.7} cpd/100t φ(CNO)= 7.2 ^{+3.0} _{-2.0} x 10⁸ ν cm ⁻² sec ⁻¹

- The results are consistent with both HZ and LZ predictions;
- At the moment we cannot discriminate between HZ and LZ;

Significance of the CNO neutrino detection

Borexino can claim the first detection of CNO solar neutrinos

Conclusions

After many years of hard work

Borexino has been able of detecting neutrinos from the CNO cycle in the Sun with a significance of 5σ

1) With this result Borexino has completed the real time picture of the Sun, measuring both processes that sustain it: the **pp chain** and the **CNO cycle** more generally

2) With this result Borexino has proved experimentally for the first time the existence of the cathalized hydrogen fusion mechanism envisaged in the '30s by Bethe and Weiszacker;

(We remind that the CNO cycle plays a crucial role in stellar physics, since it is believed to be dominant in Stars heavier than the Sun)

Thank you!

Backup slides

• We have to prove the uniformity of ²¹⁰Bi in the entire volume

The systematic error associated to ²¹⁰Bi uniformity is 0.78 counts/day/100t