

Fermilab

LATEST-NEUTRINO-ARGON SCATTERING RESULTS FROM MICROBOONE

Kirsty Duffy, Fermi National Accelerator Laboratory HEP Seminar, Imperial College London 10th March 2021

Run 3469 Eve

Neutrinos	MicroBooNE	Cross section results	What's next?
Most ne neutrin	eutrino experimen o interactions neutrino flav	ts rely on understa with nuclei , to rece our and energy	nding onstruct
The succe	ess of future liquid	argon experiments re	elies on a
good un	derstanding of the	se effects on <mark>argon</mark>	nuclei
MicroBool	NE is the world's c	only running liqui	d-argon
experin	nent taking dat	ta in a neutrino b	eam —

uniquely placed to answer these questions

I will use **"neutrino interactions"** and **"neutrino cross sections"** interchangeably in this talk

> Most neutrino experiments rely on **understanding neutrino interactions with nuclei**, to reconstruct neutrino flavour and energy

The success of future liquid argon experiments relies on a good understanding of these effects on **argon nuclei**

MicroBooNE is the world's **only running liquid-argon experiment taking data in a neutrino beam** uniquely placed to answer these questions

NEUTRINOS: WHAT WE KNOW

- Fundamental particles in the Standard Model
- Very small (non-zero) mass
- Interact via weak force
- "Paired" with charged leptons

NEUTRINOS: WHAT WE KNOW

*Named after physicists Pontecorvo, Maki, Nakagawa, and Sakata

Muon neutrino disappearance

Electron neutrino appearance

Kirsty Duffy 6

Probability to detect a neutrino of a given flavour oscillates as:

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Probability to detect a neutrino of a given flavour **oscillates** as:

Reason number I why neutrinos are exciting: Neutrino oscillation → Neutrinos have mass → Physics beyond the Standard Model!

CURRENT MEASUREMENTS

NOvA and **T2K** experiments are measuring neutrino oscillations over long baselines

Both have large uncertainties due to cross-section modeling

Type of Uncertainty	$\nu_e/\bar{\nu}_e$ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

T2K Nature 580, 339-344 (2020)

LOOKING FORWARD

Next-generation experiments **DUNE** and **Hyper-Kamiokande** will measure neutrino oscillations with unprecedented precision

Deep Underground Neutrino Experiment

- → 40kton Liquid Argon
- → build on current and future US LAr program:
 - → ArgoNeuT, LArIAT
 - → MicroBooNE
 - → ProtoDUNEs
 - → SBND, ICARUS

LOOKING FORWARD

A better understanding of neutrino interactions is vital for DUNE's success

2% reduction in uncertainty → 300 kt-MW-years

- \rightarrow ~6 years real time
- → \$150m operations cost

What's next?

What's next?

Charged-current

- → Exchange of W boson
- → Lepton produced with same flavour as V

Neutral-current

- → Exchange of Z boson
- \rightarrow Independent of V flavour

NUCLEAR EFFECTS

Image: <u>T. Golan</u>

- Particles may re-interact as they exit nucleus
 - \rightarrow particles can be lost
 - \rightarrow particles you see may not be from neutrino interaction
- Neutrino isn't interacting with a nucleon at rest → initial state of interaction unknown
- Nuclear effects depend on nucleus — argon data is vital!

Neutrinos

MicroBooNE

MicroBooNE is a 170 ton Liquid Argon Time Projection Chamber (LArTPC)

Main physics goals:

LArTPC detector R&D for future experiments

Measure neutrino-Ar cross sections

Search for new neutrino oscillations at short distances

Exotic beam-dump/astrophysical neutrino signals

Neutrinos

MicroBooNE

Cross section results

What's next?

MicroBooNE is a 170 ton Liquid Argon Time Projection Chamber (LArTPC)

Main physics goals:

LArTPC detector R&D for future experiments

Measure neutrino-Ar cross sections

Search for new neutrino oscillations at short distances

Exotic beam-dump/astrophysical neutrino signals

What's next?

FERMILAB'S NEUTRINO BEAMS

Booster v beam MicroBooNE, SBN program MicroBooNE, SBN program MicroBooNE proton energy: 8 GeV

NUMI v beam NOVA, MINERVA, MINOS+

Main Injector

proton energy: 120 GeV

DUNE v beam (planned)

Image: G. Zeller

What's next?

FERMILAB'S NEUTRINO BEAMS

Booster Neutrino Beam (BNB): 463m

> >99% $v_{\mu}/\overline{v}_{\mu}$ at peak <E_v> = 850 MeV

NuMI Neutrino Beam (NuMI): ~680m

8° off axis \rightarrow 5% ν_e

Image: G. Zeller

µBooN

Kirsty Duffy 38

Kirsty Duffy 39

CC-INCLUSIVE

Phys. Rev. Lett. 123, 131801 (2019)

Measure cross-section for charged-current (CC) inclusive muon neutrino interactions Outgoing μ - in final state ...and anything else Vu Large statistics Includes many different interaction types — overall test of how well we model all processes Target Pre-selection to study other channels Figure from <u>M. del Tutto</u>

CC INCLUSIVE CROSS SECTION MEASUREMENT

Phys. Rev. Lett. 123, 131801 (2019)

Signal (CC-inclusive) events: 50.4%

Largest background: **cosmic rays** (29%) → directly measured with beamoff data

First ever double-differential cross section measurement on argon: compare to worldwide interaction generators

CROSS SECTION

Phys. Rev. Lett. 123, 131801 (2019)

Double-differential cross section defined as:

UNCERTAINTIES

Phys. Rev. Lett. 123, 131801 (2019)

Calculate uncertainty on total CC-inclusive cross section

		Flux uncertainty ~12%
Source of uncertainty	Relative uncertainty $[\%]$	
Beam flux	12.4	
Cross section modeling	3.9	
Detector response	16.2	Inclusive measurement \rightarrow not
Dirt background	10.9	strongly dependent on cross
Cosmic ray background	4.2	section model
MC statistics	0.2	
Stat	1.4	
Total	23.8	
		Total uncertainty dominated

by detector response

INDUCED CHARGE

JINST 13 P07006 (2018)

JINST 13 P07007 (2018)

- Detector response → 16% uncertainty on total cross section
- Largest single contribution: 13% due to modeling of induced charge
 - MC assumes drift electrons cause signal on only one wire
 - Not true! Nearby wires see charge by induction
 - Because of this, detector response depends on track angle
 - Easy to fix include in simulation and account for in reconstruction!

Charge **collected** on wire

 $\varepsilon = -\underline{d}\phi_{B}$ dt = IR Signal **induced** on neighbouring wires

Phys. Rev. Lett. 123, 131801 (2019)

Kirsty Duffy 47

۱

TODAY'S CROSS SECTION MEASUREMENTS

LArTPC STRENGTH: LOW PROTON THRESHOLDS

- Measuring proton kinematics gives us more information about the interaction
- Low thresholds → access to new information about nuclear effects, probe e.g. 2p2h scattering
- MicroBooNE: 300 MeV/c =
- ArgoNeuT: 200 MeV/c Phys. Rev. D 90, 012008 (2014)
- T2K: 500 MeV/c

Phys. Rev. D 98, 032003 (2018)

MINERvA: 450 MeV/c Phys. Rev. D 99, 012004 (2019)

Protons identified by Bragg peak in last 30 cm of track

MEASUREMENTS WITH PROTONS

 $\cos\theta_{p}^{reco}$

- Big over-prediction at forward-going angles
- Models with RPA do much better, but not quite enough

CCQE-LIKE CROSS SECTION

Eur. Phys. J. C 79 673 (2019) Phys. Rev. Lett. 125, 201803 (2020)

→ ~84% CCIp0π (~81% CCQE) purity, ~20% efficiency

Good agreement with models, except at very **forward muon scattering** angles

CCQE-LIKE CROSS SECTION Eur. Phys. J. C 79 673 (2019) Phys. Rev. Lett. 125, 201803 (2020)

momentum threshold 300 MeV/c

Across all kinematic variables, agreement is improved if forward muon angles are excluded

THAT FORWARD-ANGLE BIN: SIS I FNIT STO Phys. Rev. Lett. 123, 131801 (2019) Phys. Rev. D 102, 112013 (2020) Eur. Phys. J. C 79 673 (2019) Phys. Rev. Lett. 125, 201803 (2020)

All three compare to the same GENIE models \rightarrow cross-comparison

GENIE v3

GENIE v2 GENIE v3

GENIE v2 GENIE v3

U-

TODAY'S CROSS SECTION MEASUREMENTS νμ 👡

LARTPC STRENGTH: ELECTRONS AND PHOTONS

Phys. Rev. D 99, 091102(R) (2019)

Electrons and photons produce showers in LArTPCs

 \rightarrow important to understand for V_e appearance searches in SBN and DUNE

LARTPC STRENGTH: ELECTRONS AND PHOTONS

Phys. Rev. D 99, 091102(R) (2019)

Electrons and photons produce showers in LArTPCs

 \rightarrow important to understand for V_e appearance searches in SBN and DUNE

 π⁰ interactions are a background (although often can be distinguished by energy deposition)

 π^{0}

LARTPC STRENGTH: ELECTRONS AND PHOTONS Phys. Rev. D 99, 091102(R) (2019)

Electrons and photons produce showers in LArTPCs

 \rightarrow important to understand for V_e appearance searches in SBN and DUNE

- π⁰ interactions are a background (although often can be distinguished by energy deposition)
 - → measurement of CCπ⁰
 production cross section
 - → verify shower reconstruction by reconstructing π⁰ mass peak

CCT⁰ CROSS SECTION MEASUREMENT

Phys. Rev. D 99, 091102(R) (2019)

π⁰ MEASUREMENTS: FUTURE PROSPECTS

- With improvements in detector simulation and reconstruction, current selections have higher statistics and improved resolution
- Working towards:
 → Differential CCπ⁰
 cross section measurement
 → NCπ⁰ cross section
 measurement
 - → CC/NC comparisons

MICROBOONE-NOTE-1085-PUB

CHANGINGTRACK

- Electron neutrinos are hard to study: oscillation experiments' neutrino beams are intentionally mostly V_{μ}
- But electron neutrinos are what we want to measure in an oscillation analysis! Important to study and understand
- Off-axis NuMI flux: ~5% Ve

ELECTRON NEUTRINO CROSS SECTION MEASUREMENT

- V_e+V_e inclusive crosssection measurement with NuMI beam:
 - Purity 40%, efficiency 9%
 - Purity excluding cosmics
 > 65%
 - →~2|4 events in
 2.4×10²⁰ POT
- First demonstration of selecting
 V_e in a surface LArTPC

ELECTROMAGNETIC SHOWERS

arXiv:2101.04228[hep-ex]

- Select V_e by looking for showers
- Distinguish from photons using dE/dx at start of shower
- One of the key capabilities of LAr detectors in action!

ELECTROMAGNETIC SHOWERS

arXiv:2101.04228[hep-ex]

All showers

$0 < \theta < 60^\circ$: Perpendicular to wires

(A LOT) MORE DATA

BNB Data collection: Protons on Target (POT)

µBooNE

Kirsty Duffy 67

BETTER DATA AND MODELING

- MicroBooNE Collaboration has made huge improvements in our understanding of the detector in the past few years
- Detailed understanding of detector is key to our R&D mission for future LAr program
- Improved signal processing (2D deconvolution) accounts for interfering wire signals on all three planes
- Tracking is hard when particles go parallel to wires. Precise calorimetry on all planes → 3D tracking → 4π particle identification

JINST 13 P07006 (2018)

Kirsty Duffy 68

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

Previous Measurement

PRL 123, 131801 (2019)

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

IMPROVED INTERACTION MODELING ENABLES BETTER MEASUREMENTS

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

uncertainties

Source	Uncertainty	
	Previous Analysis	This Analysis
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	-
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

PRL 123, 131801 (2019)

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

uncertainties

MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

Largest reduction in uncertainties comes from improved detector understanding

Source	Uncertainty	
	Previous Analysis	This Analysis
Oetector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	-
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

PRL 123, 131801 (2019)

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

Instead of cosmic ray simulation, now use overlay: simulated neutrino interactions overlaid on real cosmic data → no uncertainty in cosmic ray model

Source	Uncertainty	
	Previous Analysis	This Analysis
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	-
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

PRL 123, 131801 (2019)

IMPROVED CROSS SECTION MEASUREMENT

_ MICROBOONE-NOTE-1074-PUB _ MICROBOONE-NOTE-1075-PUB _ MICROBOONE-NOTE-1069-PUB

Single-differential cross section as a function of reconstructed muon momentum and angle → very good agreement with previous measurement, but reduced uncertainties

Future development towards **double-differential** cross-section measurement

Many measurements of v-Ar scattering

v_µ CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_µ exclusive channels

 $\nu_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ } NC\pi^0 \text{ production}$

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production

Phys. Rev. D 96, 012006 (2017)

Phys. Rev. Lett. 113, 261801 (2014)

ArgoNeuT

ArgoNeuT

 $\nu_{\mu} \ and \ \overline{\nu}_{\mu} \ CC\pi^{+} \ production$ Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} CC2p production Phys. Rev. D 90, 012008 (2014)

Other measurements

Kirsty Duffy 77

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity Eur. Phys. J. C79, 248 (2019) μBooNE V_μ CCQE-like scattering Eur. Phys. J. C 79 673 (2019) Phys. Rev. Lett. 125, 201803 (2020)

µBooNE v_{μ} CC0 π Np (N \geq I) scattering Phys. Rev. D 102, 112013 (2020)

 μ **BooNP** \vee_{μ} CC π^{0} production Phys. Rev. D99, 091102(R) (2019)

µBooNP Double-differential cross section

Phys. Rev. Lett. 123, 131801 (2019) **µBooNP** Single-differential cross section with updated detector and interaction models MICROBOONE-NOTE-1069-PUB

ArgoNeul

 v_{μ} and \overline{v}_{μ} NC π^{0} production

Phys. Rev. D 96, 012006 (2017)

 v_{μ} and \overline{v}_{μ} CC π^{+} production Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 μ BooNP $_{\nu}$ ν_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 μ BooNE ν_{μ} NC Ip production **MICROBOONE-NOTE-1067-PUB**

rgoNeul

µBooNP MeV-scale physics MICROBOONE-NOTE-1076-PUB Limits on millicharged particles

Phys. Rev. Lett. 124, 131801 (2020)

Kirsty Duffy

78

MORE MEASUREMENTS!

A large number of new measurements are in progress, including:

- ν_µ CC 0π2p
- v_{μ} CC $0\pi Np$ transverse variables
- v_{μ} CC $0\pi Ip$ transverse variables
- v_{μ} CC π^{0} (update)
- ν_μ CC Iπ⁺
- v_{μ} CC-Coherent I π^+
- ν_µ NC π⁰
- ν_μ NC Ιγ
- ν_µ CC 0π0p

- ν_µ CC inclusive (update)
- ν_μ CC inclusive hadronic energy
- ν_μ NC Elastic p
- ν_μ CC ΙΚ[±]
- V_{μ} hyperon production
- v_{μ} CC eta production
- = KDAR v_{μ}
- V_e CC inclusive (update)
- ν_e CC 0πNp

MORE MEASUREMENTS!

A large number of new measurements are in progress, including:

- ν_µ CC 0π2p
- v_{μ} CC $0\pi Np$ transverse variables
- v_{μ} CC $0\pi I_{p}$ transverse variables
- v_{μ} CC π^{0} (update)
- v_{μ} CC $I\pi^{+}$ • v_{μ} CC-Coherent $I\pi^{+}$
- ν_µ NC π⁰
- ν_μ NC Ιγ
- ν_μ CC 0π0_P

■ Charged pions → dominant interaction modes at DUNE

 Development work focused on distinguishing charged pions from muons
 Ve CC UTIND

µBooNE

Kirsty Duffy

μBooN

MORE MEASUREMENTS!

- Rare interactions: charged kaon production
- Very little world data
- Background to proton decay search at DUNE: $p \rightarrow K^+ v$

easurements are in progress, including:

- ν_µ CC inclusive (update)
- ν_µ CC inclusive hadronic energy
- ν_μ NC Elastic p

ν_μ CC IK[±]

es

25

Signal: single, isolated proton

Neutrinos

 Already have an NCIp selection and preliminary cross section extraction

MicroBooNE

- Select events with Q² ~ 2m_pT_p = 0.1 GeV², significantly lower than previous measurements
- Future development towards NC elastic scattering cross section
 measure strange component of neutral-current axial form factor

0.25

0.3

0.15

0.1

0.05

0.2

0.35

Kinetic energy T (GeV)

0.4

0.45

0.5

Kirsty Duffy

SUMMARY

- Cross-section measurements on argon are vital for the success of the SBN program and eventually DUNE
- MicroBooNE has demonstrated 4π acceptance and ability to measure particles with very low thresholds
- We are already able to make precise, accurate measurements of exclusive final states
- Huge progress over the past few years: first time we can confront models tuned to carbon with high-statistics argon data
- More (and more precise) measurements expected in the future → stronger tests of our models

THANK YOU

NCIP CROSS SECTION MEASUREMENT

- Measure cross section for neutralcurrent single proton production
- Signal: I isolated proton

Vu

Z٥

NCIP CROSS SECTION MEASUREMENT

- Measurement includes events with Q² ~ 2m_pT_p = 0.1 GeV²,
 significantly lower than previous measurements
- Future development towards a measurement of NC
 elastic scattering cross section → measure strange
 component of neutralcurrent axial form factor

Vu

CC KAON PRODUCTION SELECTION

A. Fiorentini, poster

369, poster session 3

MICROBOONE-NOTE-1071-PUB

- CC kaon production: rare process, few existing measurements, background for proton decay $p \rightarrow K^+ v$ searches in DUNE
- Selection developed on simulation: look for K⁺ track from neutrino interaction and µ⁺ from K⁺ decay
- 67.7% purity and 7% efficiency → expect to select 12 candidate interactions in 1.3×10²¹ POT MicroBooNE data set
- Aim: cross section measurement and study of K⁺ in LArTPC

PUSHING THE LIMITS

Phys. Rev. D 102, 092010 (2020) Phys. Rev. Lett. 124, 131801 (2020) Phys. Rev. D 99, 012002 (2019) MICROBOONE-NOTE-1076-PUB

- Both ArgoNeuT and MicroBooNE have demonstrated ability to reconstruct energy depositions from sub-MeV particles (ArgoNeuT: 300 keV, MicroBooNE: 100 keV)
- Generally photons from nucleus de-excitation or neutron re-interactions → can give substantial improvements in calorimetry and energy reconstruction
- Used in ArgoNeuT to place constraints on BSM physics search for millicharged particles

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

arXiv:2011.01375[physics.ins-det] arXiv:2012.07928[hep-ex]

- MicroBooNE data 5906-74-3710 Wire-Cell 3D imaging and clustering
- Cosmic rejection power (without kinematic requirements) increased by factor of 8 compared to previous publications
- High efficiency: 80.4% for vµCC (87.6% for veCC)
- Increased statistics: 11.3k events, compared to 4.3k events in same data set for 2019 CC inclusive measurement

Simultaneously match all clusters in event to light → find cluster consistent with neutrino-induced flash

COSMIC REJECTION

Check if in time with beam flash

- Check if compatible with beam flash in terms of position and light intensity
- Check if track goes all the way through the detector
- Check if track is a cosmic crossing anode/cathode (known t0)
- Check for Bragg peak/ decay electron indicating muon enters and stops

Figure from <u>M. del Tutto</u>

SELECTING CC EVENTS

- Charged-current events selected
 by presence of muon
- Longest track in event is muon
 candidate → use
 dQ/dx and track
 length to reject
 protons

SELECTED EVENTS

Signal (CC-inclusive) events: 50.4%

Largest background: **cosmics** (29%) → directly measured with beam-off data

Other backgrounds from neutrino interactions outside fiducial volume and cosmic interactions in time with neutrino beam

Phys. Rev. Lett.

23, 131801

<u>(2019)</u>

SELECTED EVENTS

Largest ever sample of neutrino interactions on argon

CCPIO: PHOTON CONVERSION

Phys. Rev. D 99, 091102(R) (2019)

- Look at single photons passing
 CCπ⁰ selection
- Measure mean free path to validate:
 - I) that we have selected
 - photons
 - 2) that we have the interaction vertex right
- Data agrees with simulation within uncertainties

CCPIO SELECTIONS

Low-energy photons appear more track like

- → low reconstruction efficiency
- \rightarrow requiring that we reconstruct both π^0 photons limits statistics

Two-shower selection

 \rightarrow validate π^0 hypothesis by invariant diphoton mass

Single shower selection

 → validate photon hypothesis
 → maximize statistics for cross section measurement

Phys. Rev. D 99, 091102(R) (2019)

Kirsty Duffy 97

NUE SELECTED EVENTS

Ve selection efficiency: 9%, purity: 40%

CROSS SECTION

arXiv: 1905.09694 [hep-ex] Accepted to PRL

Note: cross section presented in **reconstructed** p_{μ} —cos θ_{μ} space

 Unlike other cross section measurements we do not unfold to true muon momentum and angle

- unfolding introduces bias, inflates uncertainties
- Instead, present result in reconstructed muon momentum and angle
- Publish detector smearing and efficiency
 - → theoretical predictions can be forward folded (i.e. smeared by our known detector effects)
 - \rightarrow produce a realistic prediction of what we expect to see in our detector
 - \rightarrow directly compare to data

NEUTRINO INTERACTIONS AND RECONSTRUCTING NEUTRINO ENERGY

- Reconstructing neutrino energy requires assumptions
 - CCQE formula: assume all events are CCQE, reconstruct energy from lepton — what if it's not CCQE?
 - Calorimetric: measure deposited energy of all particles — what about neutrals/particles you miss?
- Assuming the wrong interaction model:
 - → bias in reconstructing neutrino energy
 - \rightarrow **bias** in oscillation parameters

MICROBOONE'S DATA

SHORT-BASELINE NEUTRINOS AT FERMILAB

Kirsty Duffy 103

$\mathsf{IDENTIFYING}\;\pi^+$

MICROBOONE-NOTE-1056-PUB

Separate charged pions from protons using deposited energy in track per unit length

$\mathsf{IDENTIFYING}\;\pi^+$

- Separating charged pions from muons is harder → at our energies, dE/dx profile is ~identical
- So how can we distinguish charged pions from muons in a CCIpi+ measurement?

MICROBOONE-

NOTE-1056-PUB

RECONSTRUCTING π^+

- Charged pions can be difficult to reconstruct
 - Large amount of scattering: may be reconstructed as a shower, rather than a track
 - Secondary vertices often missed: pion and daughters can be merged

Slide source: Elena Gramellini, Fermilab Neutrino Seminar

Elastic Scattering Candidate

HADRONIC INTERACTIONS

Kirsty Duffy

Data

01/05/19

Elena Gramellini -- Fermilab

π^+ INTERACTIONS

Plots made using GEANTReWeight (J. Calcutt)

Roughly speaking, GENIE predicts π^+ produced in MicroBooNE will fall in this energy range

PUTTING IT ALL TOGETHER

